
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 16 NO. 1 PAGE 283–294 (2023)
DOI: HTTPS://DOI.ORG/10.36890/IEJG.1108703

Clairaut Pointwise Slant Submersions from
Locally Product Riemannian Manifolds

Murat Polat∗

(Dedicated to the memory of Prof. Dr. Krishan Lal DUGGAL (1929 - 2022))

ABSTRACT

In this paper, we consider pointwise slant submersions from locally product Riemannian
manifolds. We first give a necessary and sufficient condition for a curve on the total manifold to
be a geodesic and then focus investigate new Clairaut conditions for considered submersion. In a
main theorem, we find a new necessary and sufficient condition for a pointwise slant submersion
to be Clairaut in case of its total manifold is locally product Riemannian manifold. Finally, we
present an illustrative example for this kind of submersion which satisfies Clairaut condition.
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1. Introduction

O’Neill [20] and Gray [10] introduced Riemannian submersion between two Riemannian manifolds for
the first time. In differential geometry, to equate geometric structures described on the above mentioned
manifolds, Riemannian submersions are utilized broadly as differential maps. Riemannian submersions have
important application areas in medical imaging, in robotics theory and Kaluza-Klein theory and many
more. Afterwards, Watson [38] introduced almost Hermitian submersions and then Şahin [28] presented the
concept of anti-invariant submersions and Lagrangian submersion from almost Hermitian manifolds onto
Riemannian manifolds and this concept studied in [21, 32, 11, 5, 26, 15]. We refer interested readers to [31] and
references therein for current progress and applications of Riemannian submersions. Şahin [30] generalized
anti-invariant submersions, showing the advantages of study the geometry of the total manifold of semi
invariant submersions and the same idea investigated by Ozdemir et al. [21] and [14]. Most of the studies
related to Riemannian, almost Hermitian or contact Riemannian submersions can be found in the book [9].
Then, some researchers studies some different types of Riemannian submersions such as generic submersion
[1, 7, 23, 27], slant submersion [29, 17, 12, 16], semi-slant submersion [22], pointwise slant submersion [4, 8, 18],
hemi-slant submersion [33], conformal semi-slant submersion [2] and pointwise semi-slant submersions [24].
Pointwise slant submersions from locally product Riemannian manifolds are natural generalizations of anti-
invariant submersions from locally product Riemannian manifolds which were studied in [36].

In the investigation of geodesic upon a surface of revolution, a well known Clairaut’s theorem [6] says that
for any geodesic ς on the revolution surface ML the product r sinα is constant along ς, where α(s) be the
angle between ς(s) and the meridian curve through ς(s), s ∈ J. He also introduced and studied the theory
of Riemannian submersions which satisfy a generalization of Clairaut’s theorem. Then by following this
study, Clairaut submersions have been studied different kinds of structures. Allison [3] presented Lorentzian
Clairaut submersions. Lee et al. [19] considered Clairaut anti-invariant submersions with total Kaehler
manifolds. Clairaut anti-invariant submersions whose total manifolds are Sasakian and Kenmotsu were given
by Tastan and Gerdan [34] and in [35], the authors also investigated Clairaut anti-invariant submersions
from cosymplectic manifolds. Clairaut anti-invariant submersions whose total manifold is paracosymplectic
manifold are given in [13] with characterization theorems.
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In [31], Şahin investigated Clairaut conditions for pointwise slant submersions from a Kaehler manifold
onto a Riemannian manifold and the author studied pointwise slant submersions by providing a consequence
which defines the geodesics on the total space of this type submersions.

In this paper, we consider Clairaut pointwise slant submersions from a locally product Riemannian manifold
(l.p.R manifold) onto a Riemannian manifold. In Section 2, we give some expressions that we will need in the
next subsequent section. In Section 3, we investigate pointwise slant submersions by providing a consequent
which defines the geodesics on the total space of these types of submersions. We also give a non-trivial example
of the Clairaut pointwise slant submersions whose total manifolds are locally product Riemannian.

2. Preliminaries

In this section, we give the definitions and terminology used throughout this paper. We recall some necessary
facts and formulas from the theory of Riemannian manifold.

2.1. Locally product Riemannian manifolds

In this section, we give brief information for locally product Riemannian manifolds.
Let ML be a (m+ n)-dimensional smooth manifold given a tensor P of type (1, 1) such that

P 2 = I, (P ̸= ±I), (2.1)

where I is the identity morphism of tangent space TpML at p ∈ ML. If ML is equipped with the structure P,
then (ML, P ) is an almost product manifold. If an almost product manifold

(
ML, P

)
admits a Riemannian

metric gM̄L
such that

gM̄L
(PV1, PV2) = gM̄L

(V1, V2) or gM̄L
(PV1, V2) = gM̄L

(V1, PV2), (2.2)

where V1, V2 ∈ TML, then we say that ML is an almost product Riemannian manifold. An almost product
Riemannian manifold ML is called a l.p.R manifold if

(∇V1
P )V2 = 0, (2.3)

where V1, V2 ∈ TML and ∇ is the Riemannian connection on ML [37].

2.2. Riemannian submersions

In this section, we recall the fundamental definitions and notions of a Riemannian submersion
Let be a surjective mapping φ : ML → NR between two Riemannian manifolds

(
ML, gM̄L

)
and

(
NR, gN̄R

)
such that dim(ML) > dim

(
NR

)
, is called a Riemannian submersion if it satisfies the following conditions:

(i). The fibers φ−1(a), a ∈ NR, are r−dimensional Riemannian submanifolds of ML, where r = dim(ML)−
dim

(
NR

)
.

In which case, for a vector field X1 on ML, if it is always tangent to fibers then it is called vertical and if it is
always orthogonal to fibers then it is called horizontal. If a vector field X1 on ML is horizontal and φ−related to
a vector field X1∗ on NR, then it is called basic, i.e., for all a ∈ NR, φ∗X1a = X1∗φ∗(a), where φ∗ is the derivative
map of φ.

(ii). φ∗q preserves the length of the horizontal vectors.
In which case, we get gM̄L

(X1, Y1) = gN̄R
(φ∗X1, φ∗Y1), for all q ∈ ML and for any horizontal vectors X1,Y1 ∈

(kerφ∗)
⊥ at q,

A Riemannian submersion φ : ML → NR specifies two (1, 2) types of tensor fields T and A on ML, by the
following formulas [20]:

T (E,G) = TEG = h∇vEvG+ v∇vEhG, (2.4)

A(E,G) = AEG = v∇hEhG+ h∇hEvG, (2.5)

for all E,G ∈ χ(ML), where h and v denote the horizontal and vertical projections, respectively. It is easy to
see that AE and TE are skewsymmetric operators.

Let X1, X2 be horizontal and V1, V2 be vertical vector fields on ML, then we get

AX1
X2 = −AX2

X1 =
1

2
v [X1, X2] , (2.6)

dergipark.org.tr/en/pub/iejg 284

https://dergipark.org.tr/en/pub/iejg


M.Polat

TV1V2 = TV2V1. (2.7)

From (2.4) and (2.5), we get
∇V1

V2 = TV1
V2 + ∇̂V1

V2, (2.8)

∇V1
X1 = TV1

X1 + h∇V1
X1, (2.9)

∇X1V1 = AX1V1 + v∇X1V1, (2.10)

∇X1
X2 = AX1

X2 + h∇X1
X2, (2.11)

for any X1, X2 ∈ Γ(kerφ∗)
⊥ and V1, V2 ∈ Γ(kerφ∗). Also, if X1 is basic then h∇V1

X1 = h∇X1
V1 = AX1

V1. We
observe that the horizontal distribution is totally geodesic if and only if A ≡0. From above equation, we can
also see that on the fibers, T take actions as the second fundamental form.

Let φ : ML → NR be a surjective mapping between two Riemannian manifolds
(
ML, gM̄L

)
and

(
NR, gN̄R

)
.

Then for E,G ∈ Γ
(
TML

)
the second fundamental form of φ is described as(

∇φ∗
)
(E,G) = ∇φ

Eφ∗G− φ∗
(
∇EG

)
, (2.12)

where ∇ is the Riemannian connection and ∇φ
is the pull-back connection. From [18], the second fundamental

form is well-known to be symmetric. Besides, φ is called totally geodesic if
(
∇φ∗

)
(E,G) = 0 for all E,G ∈

Γ
(
TML

)
.

The fibers of φ is called totally umbilical if

TV1V2 = gM̄L
(V1, V2)H, (2.13)

for any V1, V2 ∈ Γ(kerφ∗), here H is the mean curvature vector field of the fiber of φ [21].

2.3. Pointwise slant submersion

In this section, we present results on the geometry of pointwise slant submersions from locally product
Riemannian manifolds.

Definition 2.1. [25] Let φ : (ML, gM̄L
, P ) → (NR, gN̄R

) be a Riemannian submersion. Where (ML, gM̄L
, P ) is an

almost product Riemannian manifold and (NR, gN̄R
) is a Riemannian manifold. If the Wirtinger angle α(V )

between PV and the space (kerφ∗)q is independent of the choice of the nonzero vector V ∈ Γ (kerφ∗) ,at each
given point q ∈ ML, then φ is called a pointwise slant submersion. The angle α is called the slant function of
the pointwise slant submersion.

Definition 2.2. [25] If the slant function α = π
2 at q of the pointwise slant submersion, then a point q in a

pointwise slant submersion is called totally real. In the same way, if the slant function of the pointwise slant
submersion α = 0 at q, then a point q is called a complex point. If the slant function of the pointwise slant
submersion is neither a totally real nor a complex Riemannian submersion, then a pointwise slant submersion
is said to be proper.

Remark 2.1. [18] If the slant function α of the pointwise slant submersion is globally constant, then a pointwise
slant submersion is called slant, means that, α is also independent of the choice of the point on ML. In this
state, the constant angle α is called the slant angle of the slant submersion. If every point of ML is a totally real
point, then a pointwise slant submersion φ is called totally real.

We can say that slant submersions, anti-invariant and invariant submersions can be given as examples of
pointwise slant submersions. We will give an example for proper pointwise slant submersions.

Example 2.1. Let R5 be the standard Euclidean space with the standard metric gM̄L
. Suppose that P1 and P2

are the almost product Riemannian structures on R5 such that{
P1(

∂
∂x1

) = − ∂
∂x2

, P1(
∂

∂x2
) = − ∂

∂x1
, P1(

∂
∂x3

) = − ∂
∂x4

,

P1(
∂

∂x4
) = − ∂

∂x3
, P1(

∂
∂x5

) = ∂
∂x5

}
,{

P2(
∂

∂x1
) = ∂

∂x2
, P2(

∂
∂x2

) = ∂
∂x1

, P2(
∂

∂x3
) = ∂

∂x4
,

P2(
∂

∂x4
) = ∂

∂x3
, P2(

∂
∂x5

) = ∂
∂x5

}
.
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Now, we define product structure Pα on R5 by

Pα = sinαP1 + cosαP2.

Then we say that (R5, Pα, gM̄L
) is an almost product Riemannian manifold. Define a map φ : R5 → R2 by

φ(x1, x2, x3, x4, x5) = (
x1 + x4√

2
,
x5√
2
).

Then we have

kerφ∗ = span

{
V1 =

∂

∂x1
− ∂

∂x4
, V2 =

∂

∂x2
, V3 =

∂

∂x3

}
,

(kerφ∗)
⊥ = span

{
X1 =

∂

∂x1
+

∂

∂x4
, X2 =

√
2

∂

∂x5
,

}
.

φ is a Riemannian submersion. Moreover, φ is a pointwise slant submersion with slant function α such that
α = cos−1( sinα−cosα√

2
).

Let φ be a pointwise slant submersion from l.p.R manifold (ML, gM̄L
, P ) onto a Riemannian manifold

(NR, gN̄R
). For any V1 ∈ Γ(kerφ∗), we set

PV1 = ϕV1 + ωV1, (2.14)

where ϕV1 ∈ Γ(kerφ∗) and ωV1 ∈ Γ(kerφ∗)
⊥. Also, for X1 ∈ Γ(kerφ∗)

⊥ we write,

PX1 = BX1 + CX1 (2.15)

where BX1 ∈ Γ(kerφ∗) and CX1 ∈ Γ(kerφ∗)
⊥. We can denote (kerφ∗)

⊥ such as

(kerφ∗)
⊥ = ω(kerφ∗)⊥η,

where η indicate the orthogonal complementary distribution to ω(kerφ∗) in (kerφ∗)
⊥.

Theorem 2.1. [25] Let (ML, gM̄L
, P ) be a l.p.R manifold and (NR, gN̄R

) a Riemannian manifold. A Riemannian
submersion φ : (ML, gM̄L

, P ) → (NR, gN̄R
) is a pointwise slant submersion if and only if there exists a slant function α

such that for V1 ∈ Γ(kerφ∗)
ϕ2 = cos2 αV1. (2.16)

Lemma 2.1. [25]Let φ : (ML, gM̄L
, P ) → (NR, gN̄R

) be a pointwise slant submersion from l.p.R manifold onto a
Riemannian manifold . Then, for any V1, V2 ∈ Γ(kerφ∗) we have

gM̄L
(ϕV1, ϕV2) = cos2 αgM̄L

(V1, V2), (2.17)

gM̄L
(ωV1, ωV2) = sin2 αgM̄L

(V1, V2).

3. Clairaut pointwise slant submersions from locally product Riemannian manifolds

In this section, we give a new necessary and sufficient condition for a pointwise slant submersion to be
Clairaut in case of its total manifold is locally product Riemannian manifold. Finally, we present an illustrative
example for this kind of submersion which satisfies Clairaut condition.

Definition 3.1. [6] Let φ : (ML, gM̄L
) → (NR, gN̄R

) be a Riemannian submersion and ς a geodesic on ML. If
there exists a positive function r on ML, such that the function (r ◦ ς) sinα is constant, then φ is called a Clairaut
submersion. Here α(s) is the angle between the horizontal space at ς̇(s) and ς(s), for any s ∈ J.

In [6], Bishop introduced Clairaut submersion and he obtained the necessary and sufficient condition for a
Riemannian submersion to be a Clairaut submersion as follows:

Theorem 3.1. [6] Let φ : (ML, gM̄L
) → (NR, gN̄R

) be a Riemannian submersion between two Riemannian manifolds
with connected fibers. Then, φ is a Clairaut submersion with the function r = eβ if each fiber is totally umbilical and has
the mean curvature vector field H = −gradβ, here according to gM̄L

, gradβ is the gradient of the function β.
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Herein, after giving several supporting results, we state new Clairaut conditions for pointwise slant
submersions.

Theorem 3.2. Let φ : (ML, gM̄L
) → (NR, gN̄R

) be a pointwise slant submersion from a l.p.R manifold onto a
Riemannian manifold. If ς : I2 ⊂ R → ML is a regular curve, then ς is a geodesic if and only if the following equations
hold:

0 = −2 sin 2ας̇(α(s))V1 + cos2 α
{
∇̂V1

V1 + v∇X1
V1

}
(3.1)

+(TV1
+AX1

)ωϕV1 +Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ϕ((TV1

+AX1
)ωV1) + TV1

X1,

0 = cos2 α {TV1
V1 +AX1

V1} (3.2)
+h

{
∇V1

ωϕV1 +∇X1
ωϕV1 +∇V1

X1 +∇X1
X1

}
+Ch

{
∇V1ωV1 +∇X1ωV1

}
+ ω((TV1 +AX1)ωV1) +AX1X1.

where V1(s) and X1(s) denote the vertical and horizontal parts of the tangent vector field ς̇(s) of ς(s), respectively.

Proof. Let ς : I2 ⊂ R → ML be a regular curve and V1(s) and X1(s) are the vertical and horizontal parts of the
tangent vector field ς̇(s) of ς(s), respectively. Since ML is a locally product manifold, we get

∇ς̇(s)ς̇(s) = P (∇ς̇(s)Pς(s))

= P (∇ς̇(s)P (V1(s) +X1(s))

= P∇ς̇(s)PV1(s) + P∇ς̇(s)PX1(s)).

Using (2.14) and (2.3), we can write

∇ς̇(s)ς̇(s) = P (∇ς̇(s)(ϕV1 + ωV1)(s) +∇ς̇(s)X1(s).

Again using (2.14) and (2.3), we get

∇ς̇(s)ς̇(s) = ∇ς̇(s)PϕV1 +∇ς̇(s)PωV1 +∇ς̇(s)X1

= ∇ς̇(s)ϕ
2V1 +∇ς̇(s)ωϕV1 + P∇ς̇(s)ωV1 +∇ς̇(s)X1.

By Theorem 2.1, we have

∇ς̇(s)ς̇(s) = ∇ς̇(s) cos
2 αV1 +∇ς̇(s)ωϕV1 + P∇ς̇(s)ωV1 +∇ς̇(s)X1.

On the other hand, from the definition of covariant derivative and after some calculations, we obtain

∇ς̇(s)ς̇(s) = −2 cosα sinας̇(α(s))V1 + cos2 α
{
∇V1V1 +∇X1V1

}
+∇V1

ωϕV1 +∇X1
ωϕV1 + P∇V1

ωV1 + P∇X1
ωV1 +∇V1

X1 +∇X1
X1.

Using (2.14), (2.15) and (2.8)-(2.11), we get

∇ς̇(s)ς̇(s) = − sin 2ας̇(α(s))V1 + cos2 α
{
TV1V1 + ∇̂V1V1 +AX1V1 + v∇X1V1

}
+TV1ωϕV1 + h∇V1ωϕV1 +AX1ωϕV1 + h∇X1ωϕV1

+∇V1
(BωV1 + CωV1) +∇X1

(BωV1 + CωV1) +∇V1
X1 +∇X1

X1

= − sin 2ας̇(α(s))V1 + cos2 α
{
TV1

V1 + ∇̂V1
V1 +AX1

V1 + v∇X1
V1

}
+h

{
∇V1

ωϕV1 +∇X1
ωϕV1 +∇V1

X1 +∇X1
X1

}
+(TV1 +AX1)ωϕV1 +Bh

{
∇V1ωV1 +∇X1ωV1

}
+Ch

{
∇V1

ωV1 +∇X1
ωV1

}
+BTV1

ωV1 +BAX1
ωV1

+CTV1
ωV1 + CAX1

ωV1 + TV1
X1 +AX1

X1

= − sin 2ας̇(α(s))V1 + cos2 α
{
TV1V1 + ∇̂V1V1 +AX1V1 + v∇X1V1

}
+h

{
∇V1ωϕV1 +∇X1ωϕV1 +∇V1X1 +∇X1X1

}
+ (TV1 +AX1)ωϕV1

+Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ Ch

{
∇V1

ωV1 +∇X1
ωV1

}
+ϕ((TV1

+AX1
)ωV1) + ω((TV1

+AX1
)ωV1) + TV1

X1 +AX1
X1.
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If we take into account the horizontal and vertical parts of this equation, then we acquire

h∇ς̇(s)ς̇(s) = cos2 α {TV1V1 +AX1V1}
+h

{
∇V1

ωϕV1 +∇X1
ωϕV1 +∇V1

X1 +∇X1
X1

}
+Ch

{
∇V1ωV1 +∇X1ωV1

}
+ ω((TV1 +AX1)ωV1)

+AX1X1.

and

v∇ς̇(s)ς̇(s) = − sin 2ας̇(α(s))V1 + cos2 α
{
∇̂V1

V1 + v∇X1
V1

}
+(TV1 +AX1)ωϕV1 +Bh

{
∇V1ωV1 +∇X1ωV1

}
+ϕ((TV1 +AX1)ωV1) + TV1X1,

Now, ς is a geodesic if and only if ∇ς̇ ς̇ = 0, then (3.1) and (3.2) come from the last equations.

Theorem 3.3. Let φ be a pointwise slant submersion from a l.p.R manifold (ML, gM̄L
, P ) onto a Riemannian manifold

(NR, gN̄R
). Let ς : I2 ⊂ R → ML be a regular curve, then φ is a Clairaut submersion with the function r = eβ if and

only if the following equation hold:

− sec2 α

{
gM̄L

((TV1
+AX1

)ωϕV1) +Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ϕ((TV1

+AX1
)ωV1) + TV1

X1, V1(s))

}
=

{
2 tanας̇(α(s))− gM̄L

(gradβ, ς(s))
}
gM̄L

(V1, V1)

where V1(s) and X1(s) denote the vertical and horizontal parts of the tangent vector field ς̇(s) of ς(s), respectively.

Proof. Let ς(s) be a geodesic on ML, V1(s) = vς(s) and X1(s) = hς(s). Let
√
k be constant speed of ς on ML that

is, k = gM̄L
(ς(s), ς(s)) = ∥ς(s)∥2 . Thence we conclude that,

gM̄L
(V1(s), V1(s)) = k sin2 ρ(s) (3.3)

gM̄L
(X1(s), X1(s)) = k cos2 ρ(s). (3.4)

Differentiating (3.3), we have

d

ds
gM̄L

(V1(s), V1(s)) = 2gM̄ (∇ς(s)V1(s), V1(s)) = 2k sin ρ(s) cos ρ(s)
dρ

ds
.

So, it follows that

gM̄L
(∇ς(s)V1(s), V1(s)) = k sin ρ(s) cos ρ(s)

dρ

ds
.

From (2.8)-(2.11), we have

k sin ρ(s) cos ρ(s)
dρ

ds
= gM̄L

(∇ς(s)V1(s), V1(s)) (3.5)

= gM̄L
(∇V1(s)V1(s) +∇X1(s)V1(s), V1(s))

= gM̄L
(TV1

V1 +AX1
V1 + ∇̂V1

V1 + v∇X1
V1, V1(s))

= gM̄L
(∇̂V1V1 + v∇X1V1, V1(s)).

On the other hand, from (3.1), we have

cos2 α
{
∇̂V1

V1 + v∇X1
V1

}
= 2 sin 2ας(α(s))V1 − (TV1

+AX1
)ωϕV1

−Bh
{
∇V1ωV1 +∇X1ωV1

}
−ϕ((TV1 +AX1)ωV1)− TV1X1.

If this equation is substituted in (3.5), then we have

gM̄L
(sin 2ας(α(s))V1 − (TV1

+AX1
)ωϕV1)

−Bh
{
∇V1ωV1 +∇X1ωV1

}
− ϕ((TV1 +AX1)ωV1)− TV1X1, V1(s))

= k cos2 α sin ρ(s) cos ρ(s)
dρ

ds
.
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Now, φ is a Clairaut pointwise slant submersion with r = eβ if and only if d
ds ((r ◦ ς) sin ρ(s)) = 0. Therefore

d

ds
(
(
eβ ◦ ς

)
sin ρ(s)) = 0 ⇐⇒

(
eβ ◦ ς

)
(
dβ

ds
ς(s) sin ρ(s) + cos ρ(s)

dρ

ds
) = 0.

Since r is a positive function, then
dβ

ds
ς(s) sin ρ+ cos ρ

dρ

ds
= 0.

By multiplying this with non-zero factor k sin ρ, then we have

−dβ

ds
ς(s)k sin2 ρ = k cos ρ sin ρ

dρ

ds
. (3.6)

Since the right-hand sides of equations (3.3) and (3.6) are equal, then we have

sin 2ας(α(s))gM̄L
(V1, V1)− cos2 α

dβ

ds
ς(s)gM̄L

(V1, V1)

= −gM̄L
((TV1 +AX1)ωϕV1) +Bh

{
∇V1ωV1 +∇X1ωV1

}
+ϕ((TV1 +AX1)ωV1) + TV1X1, V1(s)).

By multiplying this with non-zero factor sec2 α and since dβ
ds ς(s) = ς [β] (s) = gM̄L

(gradβ, ς(s)) =
gM̄L

(gradβ, V1(s) +X1(s) = gM̄L
(gradβ,X1), we obtain{

2 tanας(α(s))− gM̄L
(gradβ, ς(s))

}
g1(V1, V1)

= − sec2 α

{
gM̄L

((TV1
+AX1

)ωϕV1) +Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ϕ((TV1

+AX1
)ωV1) + TV1

X1, V1(s))

}
.

Hence the theorem is proved.

Let φ : (ML, gM̄L
, P ) → (NR, gN̄R

) be a pointwise slant submersion with slant function α. φ is a slant
submersion if the function α is constant. So, we can give the following results, which are not difficult to prove.

Theorem 3.4. Let φ : (ML, gM̄L
, P ) → (NR, gN̄R

) be a slant submersion from a l.p.R manifold onto a Riemannian
manifold. If ς : I2 ⊂ R → ML is a regular curve, then ς is a geodesic if and only if the following equations hold:

0 = cos2 α
{
∇̂V1

V1 + v∇X1
V1

}
+ (TV1

+AX1
)ωϕV1 (3.7)

+Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ ϕ((TV1

+AX1
)ωV1) + TV1

X1,

0 = cos2 α {TV1
V1 +AX1

V1} (3.8)
+h

{
∇V1

ωϕV1 +∇X1
ωϕV1 +∇V1

X1 +∇X1
X1

}
+Ch

{
∇V1

ωV1 +∇X1
ωV1

}
+ ω((TV1

+AX1
)ωV1) +AX1

X1,

where V1(s) and X1(s) denote the vertical and horizontal parts of the tangent vector field ς̇(s) of ς(s), respectively.

Corollary 3.1. Let φ : (ML, gM̄L
, P ) → (NR, gN̄R

) be an anti-invariant submersion with α = π
2 . In this case

0 = (TV1
+AX1

)ωϕV1 +Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ϕ((TV1

+AX1
)ωV1) + TV1

X1,

0 = h
{
∇V1ωϕV1 +∇X1ωϕV1 +∇V1X1 +∇X1X1

}
+Ch

{
∇V1

ωV1 +∇X1
ωV1

}
+ ω((TV1

+AX1
)ωV1) +AX1

X1,

the equalities satisfy if and only if every fibre is totally geodesic.
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Theorem 3.5. Let φ : (ML, gM̄L
, P ) → (NR, gN̄R

) be a slant submersion from a l.p.R manifold onto a Riemannian
manifold and let ς : I2 ⊂ R → ML be a regular curve, then φ is a Clairaut submersion with the function r = eβ if and
only if the following equation hold:

sec2 α

{
gM̄L

((TV1
+AX1

)ωϕV1) +Bh
{
∇V1

ωV1 +∇X1
ωV1

}
+ϕ((TV1 +AX1)ωV1) + TV1X1, V1(s))

}
= gM̄L

(gradβ, ς(s))gM̄L
(V1, V1)

where V1(s) and X1(s) denote the vertical and horizontal parts of the tangent vector field ς̇(s) of ς(s), respectively.

Theorem 3.6. Let φ be a Clairaut pointwise slant submersion from a l.p.R manifold (ML, gM̄L
, P ) onto a Riemannian

manifold (NR, gN̄R
) with totally umbilical fibers with the function r = eβ . Then, gradβ ∈ Γ(η).

Proof. For any V ∈ Γ(kerφ∗), from (2.13) and (2.17) we have

TϕV ϕV = −gM̄L
(ϕV, ϕV )gradβ

= − cos2 αg1(V, V )gradβ.

From (2.8), we get
∇ϕV ϕV − ∇̂ϕV ϕV = − cos2 αgM̄L

(V, V )gradβ.

From (2.14) and again from (2.8), we have

P (TϕV V + ∇̂ϕV V )− TϕV ωV − h∇ϕV ωV − ∇̂ϕV ϕV = − cos2 αgM̄L
(V, V )gradβ.

Since fibers are totally umbilical, then we get

P ∇̂ϕV V − h∇ϕV ωV − ∇̂ϕV ϕV = − cos2 αgM̄L
(V, V )gradβ.

If we take the inner product of both sides with ωV, then get

gM̄L
(P ∇̂ϕV V, ωV )− gM̄L

(h∇ϕV ωV, ωV )− gM̄L
(∇̂ϕV ϕV, ωV )

= − cos2 αgM̄L
(V, V )gM̄L

(gradβ, ωV ).

From (2.8), (2.14) and after some easy calculations, we have

cos2 αgM̄L
(V, V )gM̄L

(gradβ, ωV ) = 0.

So, Since φ is a pointwise slant submersion, then gradβ ∈ Γ(η).

Theorem 3.7. Let φ be a Clairaut pointwise slant submersion from a l.p.R manifold (ML, gM̄L
, P ) onto a Riemannian

manifold (NR, gN̄R
) with the function r = eβ . Then

− sinαV (α) + gM̄L
(V, TV ∗ωV ) = gM̄L

(V, TV ωV ∗ + ∇̂V ϕV ∗), (3.9)

for any vertical unit vector field V ∗ . Furthermore, if φ has totally umbilical fibers then ∇V V ∈ Γ((kerφ∗)
⊥).

Proof. Let V ∈ Γ(kerφ∗) be any unit vertical vector field. From (2.16), there exists a unit vertical vector field V ∗

such that ϕV = (cosα)V ∗ . For V ∈ Γ(kerφ∗), Using (2.1), (2.2), (2.3) and (2.8)-(2.11) we get

∇V PV = ∇V (cosαV ∗ + ωV )

= ∇V cosαV ∗ +∇V ωV

= − sinαV (α)V ∗ + cosα∇V V ∗ +∇V ωV

= − sinαV (α)V ∗ + cosα(TV V ∗ + ∇̂V V ∗) + TV ωV + h∇V ωV.

On the other hand, the l.p.R manifold property (∇V P )V = 0,

(∇V PV ) = P (∇V V ) = P (TV V + ∇̂V V )

= BTV V + CTV V + ϕ∇̂V V + ω∇̂V V.
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Comparing the vertical components of the resulting equation, we get

− sinαV (α)V ∗ + cosα∇̂V V ∗ + TV ωV = BTV V + ϕ∇̂V V.

Thus, if we take the inner product with V ∗ ,we have

− sinαV (α)gM̄L
(V ∗ , V ∗) + gM̄L

(cosα∇̂V V ∗ , V ∗) + gM̄L
(TV ωV, V ∗)

= g1(BTV V, V ∗) + gM̄L
(ϕ∇̂V V, V ∗).

Using the facts that V ∗ is unit vertical vector field and the tensor T is skew-symmetric and substituting
ϕV = cosαV ∗ in last expression, we get

− sinαV (α) + gM̄L
(TV V ∗ , ωV ) = g1(TV V, ωV ∗) + gM̄L

(∇̂V V, ϕV ∗).

Using (2.7) in the above equation, we obtain (3.9).

From Theorem 3.7, we can give the following result.

Corollary 3.2. Let φ be a Clairaut pointwise slant submersion from a l.p.R manifold (ML, gM̄L
, P ) onto a Riemannian

manifold (NR, gN̄R
) with the function r = eβ . Then, φ is a slant submersion if and only if

gM̄L
(TV V ∗ , ωV ) = gM̄L

(TV V, ωV ∗) + gM̄L
(∇̂V V, ϕV ∗). (3.10)

holds.

Corollary 3.3. Let φ be a Clairaut slant submersion from a l.p.R manifold (ML, gM̄L
, P ) onto a Riemannian manifold

(NR, gN̄R
). From Theorem 3.6, we know that gradβ ∈ Γ(η), then using (2.13) in (3.10), we obtain

TϕV ωV = TV ωϕV.

Now, we give an example of a Clairaut pointwise slant submersion from a l.p.R manifold (ML, gM̄L
, P ) onto

a Riemannian manifold (NR, gN̄R
) with the function r = eβ .

Example 3.1. Let ML be an Euclidean space given by

ML =
{
(x1, x2, x3, x4, x5) ∈ R5 : (x2, x3, x4, x5) ̸= 0, x1 ̸= 0

}
.

We define the Riemannian metric gM̄L
on ML by

gM̄L
= e−2x1dx2

1 + e−2x1dx2
2 + 2e−2x1dx2

3 + e−2x1dx2
4 + e−2x1dx2

5.

We take the almost product Riemannian structure (Pα, gM̄L
) on ML given in Example 2.1. Let NR ={

(v1, v2, v3) ∈ R3
}

be a Riemannian manifold with Riemannian metric gN̄R
on NR given by

gN̄R
= e−2x1dv21 + e−2x1dv22 + 2e−2x1dv23 .

A P−basis can be given by{
e1 = ex1

∂

∂x1
, e2 = ex1

∂

∂x2
, e3 = ex1

∂

∂x3
, e4 = ex1

∂

∂x4
, e5 = ex1

∂

∂x5

}
,

on TqML and {
e∗1 =

∂

∂y1
, e∗2 =

∂

∂y2
, e∗3 =

∂

∂y3

}
,

on Tφ(q)NR for all q ∈ ML . Now, we define a map φ : (ML, P, gM̄L
) → (NR, gN̄R

) by

φ(x1, x2, x3, x4) = (
x2 − x3√

2
,
x4 − x5√

2
, x1).

Then, we have
kerφ∗ = span {V1 = e2 + e3, V2 = e4 + e5} ,
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(kerφ∗)
⊥ = span {X1 = e2 − e3, X2 = e4 − e5, X3 = e1} .

Hence it is easy to see that
gM̄L

(Xi, Xi) = gN̄R
(φ∗ (Xi) , φ∗ (Xi)) = 2,

for i = 1, 2, 3.Thus φ is a Riemannian submersion. Moreover, φ is a pointwise slant submersion with slant
function α such that α = cos−1( cosα−sinα

2
√
1−sin 2α

). Now, we will find smooth function β on ML satisfying TV V =

−gM̄L
(V, V )gradβ, for all V ∈ Γ (kerφ∗) . We can simply calculate that

Γ1
22 = 1,Γ2

22 = Γ3
22 = Γ4

22 = 0,

Γ1
33 = 2,Γ2

33 = Γ3
33 = Γ4

33 = 0,

Γ1
44 = 1,Γ2

44 = Γ3
44 = Γ4

44 = 0,

Γ1
55 = 1,Γ2

44 = Γ3
44 = Γ4

44 = 0,

other connection coefficients are zero. And

∇e2e2 = e2x1
∂

∂x1
,∇e2e3 = 0,∇e3e2 = 0,∇e3e3 = 2e2x1

∂

∂x1
,

∇e4e4 = e2x1
∂

∂x1
,∇e4e5 = 0,∇e5e4 = 0,∇e5e5 = e2x1

∂

∂x1
,

∇e2e4 = 0,∇e2e5 = 0,∇e3e4 = 0,∇e4e5 = 0,

∇e4e2 = 0,∇e4e3 = 0,∇e5e2 = 0,∇e5e3 = 0.

Hence, we have

∇V1
V1 = 3e2x1

∂

∂x1
,∇V2

V2 = 2e2x1
∂

∂x1
,

∇V1
V2 = ∇V2

V1 = 0.

Now, if we take V = λ1V1 + λ2V2 for λ1, λ2 ∈ R then

TV V = λ2
1TV1

V1 + λ2
2TV2

V2 + 2λ1λ2TV1
V2.

From (2.8)-(2.10), by direct calculations, we have

TV V = (3λ2
1 + 2λ2

2)e
2x1

∂

∂x1
.

Since V = λ1V1 + λ2V2, then by direct calculations, we obtain

gM̄L
(V, V ) = (3λ2

1 + 2λ2
2).

Moreover, for any smooth function β on R5, the gradient of β with respect to the metric gM̄L
is given by

∇β =

5∑
i,j=1

gij
M̄L

∂β

∂xi

∂

∂xj

= e2x1
∂β

∂x1

∂

∂x1
+ e2x1

∂β

∂x2

∂

∂x2
+

1

2
e2x1

∂β

∂x3

∂

∂x3

+e2x1
∂β

∂x4

∂

∂x4
+ e2x1

∂β

∂x5

∂

∂x5
.

Hence ∇β = −e2x1 ∂
∂x1

for the function β = −x1. Therefore it is easy to see that TV V = −gM̄L
(V, V )gradβ. Hence

φ is a Clairaut pointwise slant submersion.
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