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Abstract 

In this work, we examine the differential geometric objects of the 

hypersphere 𝐡 in four dimensional Euclidean geometry 𝔼4. Giving some 

notions of four dimension, we consider the 𝑖th curvature formulas of the 

hypersurfaces of 𝔼4. In addition, we reveal the hypersphere satisfying 

∆𝐈𝐈𝐈𝐡 = 𝒜𝐡  for some 4 × 4 matrix 𝒜. 

 

 
 

1. Introduction 

 

Surfaces, hypersurfaces (hypfaces), and also sphere 

and hypersphere have been studied by 

mathematicians for centuries. 

Almost sixty years ago, Obata [1] worked the 

conditions for a Riemannian manifold to be isometric 

with a sphere; Takahashi [2] gave the related 

Euclidean submanifold (subfold) is 1-type (1-t), if and 

only if it is minimal or minimal in a hypersphere in 

𝔼𝑚; Chern et al. [3] focused the minimal subfolds of 

a sphere; Cheng and Yau [4] introduced the hypfaces 

having constant curvature; Chen et al. [5-11] 

researched the subfolds of finite type (f-t) whose 

immersion into 𝔼𝑚 (or 𝔼𝑣
𝑚) taking the finite number 

eigenfunctions of its Laplacian. Garay studied [12] 

expanded the Takahashi theorem in 𝑚-space. Chen 

and Piccinni [11] focused the subfolds with f-t the 

Gauss map (𝐆) in 𝔼𝑚. Dursun [13] considered the 

hypfaces having pointwise 1-t 𝐆 in 𝔼𝑛+1. 

In 𝔼3; Takahashi [2] proved the spheres, 

minimal surfaces are the unique supplying ∆𝑟 =

𝜆∈ℝ𝑟; Ferrandez et al. [14] found the surfaces holding 

∆𝐻 = 𝐴∈𝑀𝑎𝑡(3,3)𝐻 , are the right circular cylinder, or 

open sphere, or minimal; Choi and Kim [15] classifed 

the minimal helicoid having pointwise 1-t (p1-t) 𝐆 of 

                                                           

*Corresponding author: eguler@bartin.edu.tr              Received: 27.04.2022, Accepted: 28.06.2022 

the first type; Garay [16] studied f-t rotational surface; 

Dillen et al. [17] obtained that the unique surfaces 

supplying ∆𝑟 = 𝐴∈𝑀𝑎𝑡(3,3)𝑟 + 𝐵∈𝑀𝑎𝑡(3,1) are the 

circular cylinders, minimal surfaces, spheres; 

Stamatakis and Zoubi [18] focused the rotational 

surfaces holding ∆𝐼𝐼𝐼𝑥 = 𝐴𝑥; Senoussi and Bekkar 

[19] gave the helical surfaces 𝑀2 of f-t depends on 

𝐼, 𝐼𝐼 and 𝐼𝐼𝐼; Kim et al. [20] introduced the Cheng-

Yau operator with its 𝐆 of the rotational surfaces. 

In 𝔼4; Moore [21,22] considered the general 

rotational surfaces; Hasanis and Vlachos [23] 

obtained the hypfaces having harmonic mean 

curvature; Cheng and Wan [24] gave the complete 

hypfaces having CMC; Kim and Turgay [25] worked 

the surfaces having 𝐿1-p1-t 𝐆; Arslan et al. [26] 

studied the Vranceanu surface having p1-t 𝐆; Arslan 

et al. [27] worked the generalized rotational surfaces; 

Güler et al. [28] introduced the helicoidal hypfaces; 

Güler et al. [29] worked the 𝐆 and the third Laplace-

Beltrami operator (LBo) of the rotational hypfaces. 

In Minkowski geometry 𝔼1
4; Ganchev and 

Milousheva [30] studied the analogue surfaces of 

[21,12]; Arvanitoyeorgos et al. [31] indicated if 𝑀1
3 

has ∆𝐻 = 𝛼∈ℝ𝐻, then 𝑀1
3 covers CMC; Arslan and 

Milousheva [32] introduced the meridian surfaces 

having p1-t 𝐆; Turgay [33] considered some 
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classifications of Lorentzian surfaces f-t 𝐆; Dursun 

and Turgay [34] worked spacelike surfaces having 

p1-t 𝐆.  

Do Carmo and Dajczer [35] considered the 

rotational hypersurfaces in spaces of constant 

curvature; Alias and Gürbüz [36] worked an 

extension theorem of Takahashi. 

We introduce the hypersphere in 𝔼4. In 

Section 2, we recall the notions of 𝔼4. We consider 

the curvature formulas of a hypface of 𝔼4. We define 

the hypersphere in Section 3. Finally, we give the 

hypersphere satisfying ∆𝐈𝐈𝐈𝐡 = 𝒜∈𝑀𝑎𝑡(4,4)𝐡 in 

Section 4. In Section 5, we serve the results and 

discussion. We present the conclusion and 

suggestions in the last section. 

 

2. Preliminaries 

 

We give basic elements, definitions, etc. considered 

in this paper. Let 𝔼𝑛+1 describe a Euclidean (𝑛 + 1)-

space with a Euclidean inner product defined by 

〈�⃗� , �⃗�〉 = ∑ 𝑥𝑖𝑦𝑖
𝑛+1
𝑖=1 , where  

�⃗⃗⃗� = (𝑥1, 𝑥2, … , 𝑥𝑛+1), �⃗� = (𝑦1, 𝑦2, … , 𝑦𝑛+1) are the 

vectors in 𝔼𝑛+1. 

 

Let 𝐡 be an hypface in 𝔼𝑛+1, 𝐒 be its shape 

operator. The characteristic polynomial of 𝐒 is given 

by 

 

𝑃𝐬(𝜆) = 𝑑𝑒𝑡(S − 𝜆𝔗𝑛) 

           = ∑(−1)𝑘𝑠𝑘𝜆𝑛−𝑘 = 0.

𝑛

𝑘=0

 
 

 

Here, 𝑖 = 0,1, … , 𝑛, 𝔗𝑛 is the identity 𝑛-matrix. See 

[36] for details. Then, the curvature formulas of 𝐡 are 

(
𝑛
0

) ℭ0 = 𝑠0 = 1 (by definition), (
𝑛
1

) ℭ1 = 𝑠1,…, 

(
𝑛
𝑛

) ℭ𝑛 = 𝑠𝑛 = 𝐾. The 𝑘-th fundamental form of the 

hypface 𝐡 is given by 𝐈(𝐒𝑘−1(𝑋), 𝑌) = 〈𝐒𝑘−1(𝑋), 𝑌〉. 

Then, we obtain 

 

∑(−1)𝑖 (
𝑛
𝑖

) ℭ𝑖𝐈(𝐒𝑛−𝑖(𝑋), 𝑌)

𝑛

𝑖=0

= 0.  

 

Any vector will be identified with its transpose in the 

paper. Considering the curve 𝒞 as follows 

 

𝛾(𝑤) = (𝑓(𝑤), 0,0, 𝜑(𝑤)),  

 

where 𝑓, 𝜑 are the differentiable functions, and taking 

ℓ as the axis 𝑥4, the orthogonal transformation of 𝔼4 

has the following 

 

𝑍(𝑢, 𝑣)

= (

cos 𝑢 cos 𝑣 − sin 𝑢 − cos 𝑢 sin 𝑣 0
sin 𝑢 cos 𝑣 cos 𝑢 − sin 𝑢 sin 𝑣 0

sin 𝑣 0 cos 𝑣 0
0 0 0 1

), 
(1) 

 

and 𝑢, 𝑣 ∈ ℝ. 
 

 

Then, the rotational hypface is stated by 𝐡(𝑢, 𝑣, 𝑤) =

𝑍(𝑢, 𝑣). 𝛾(𝑤). Supposing 𝐡 be the immersion 𝑀3 ⊂

𝔼3 → 𝔼4, the multiple vector product is given by 

 

�⃗� × �⃗� × 𝑧 = 𝑑𝑒𝑡 (

𝑒1 𝑒2 𝑒3 𝑒4

𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4

𝑧1 𝑧2 𝑧3 𝑧4

),  

 

where 𝑒𝑖 are the standart base elements, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are 

the elements of the vectors �⃗�, �⃗�, 𝑧 respectively, of 𝔼4. 

We have 

 

𝐈 = (
𝐸 𝐹 𝐴
𝐹 𝐺 𝐵
𝐴 𝐵 𝐶

),   

 

𝐈𝐈 = (
𝐿 𝑀 𝑃
𝑀 𝑁 𝑇
𝑃 𝑇 𝑉

),    

 

𝐈𝐈𝐈 = (
𝑋 𝑌 𝑂
𝑌 𝑍 𝐽
𝑂 𝐽 𝑈

), 

 

 

where 𝐈, 𝐈𝐈, 𝐈𝐈𝐈 are the fundamental form matrices with 

the following coefficients 

 

𝐸 = 〈𝐡𝑢 , 𝐡𝑢〉, 𝐹 = 〈𝐡𝑢 , 𝐡𝑣〉, 𝐺 = 〈𝐡𝑣  , 𝐡𝑣〉,  

𝐴 = 〈𝐡𝑢 , h𝑤〉, 𝐵 = 〈𝐡𝑣  , 𝐡𝑤〉, 𝐶 = 〈𝐡𝑤  , 𝐡𝑤〉,  

𝐿 = 〈𝐡𝑢𝑢 , 𝐆〉, 𝑀 = 〈𝐡𝑢𝑣 , 𝐆〉, 𝑁 = 〈𝐡𝑣𝑣  , 𝐆〉,  
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𝑃 = 〈𝐡𝑢𝑤  , 𝐆〉, 𝑇 = 〈𝐡𝑣𝑤  , 𝐆〉, 𝑉 = 〈𝐡𝑤𝑤 , 𝐆〉,  

𝑋 = 〈𝐆𝑢 , 𝐆𝑢〉, 𝑌 = 〈𝐆𝑢 , 𝐆𝑣〉, 𝑍 = 〈𝐆𝑣  , 𝐆𝑣〉,  

𝑂 = 〈𝐆𝑢 , 𝐆𝑤〉, 𝐽 = 〈𝐆𝑣  , 𝐆𝑤〉, 𝑈 = 〈𝐆𝑤 , 𝐆𝑤〉  

 

of the hypface 𝐡. Here, 

 

𝐆 =
𝐡𝑢 × 𝐡𝑣 × 𝐡𝑤

‖𝐡𝑢 × 𝐡𝑣 × 𝐡𝑤‖
 (2) 

 

is the Gauss map of the 𝐡. Hence, 𝐈−1 ∙ 𝐈𝐈 holds the 

shape operator matrix 𝐒. See [28,29] for details. Any 

hypface 𝐡 in 𝔼4 has the following: ℭ0 = 1, and 

 

ℭ1

=

{

(𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀)𝐶

+(𝐸𝐺 − 𝐹2)𝑉 − 𝐿𝐵2 − 𝑁𝐴2

−2(𝐴𝑃𝐺 − 𝐵𝑃𝐹 − 𝐴𝑇𝐹 + 𝐵𝑇𝐸 − 𝐴𝐵𝑀)
}

3[(𝐸𝐺 − 𝐹2)𝐶 − 𝐸𝐵2 + 2𝐹𝐴𝐵 − 𝐺𝐴2]
, 

(3) 

ℭ2

=

{

(𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀)𝑉

+(𝐿𝑁 − 𝑀2)𝐶 − 𝐸𝑇2 − 𝐺𝑃2

−2(𝐴𝑃𝑁 − 𝐵𝑃𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝐿 − 𝑃𝑇𝐹)
}

3[(𝐸𝐺 − 𝐹2)𝐶 − 𝐸𝐵2 + 2𝐹𝐴𝐵 − 𝐺𝐴2]
, 

(4) 

ℭ3 =
(𝐿𝑁 − 𝑀2)𝑉 − 𝐿𝑇2 + 2𝑀𝑃𝑇 − 𝑁𝑃2

3[(𝐸𝐺 − 𝐹2)𝐶 − 𝐸𝐵2 + 2𝐹𝐴𝐵 − 𝐺𝐴2]
. (5) 

 

See [37] for details. The hypface 𝐡 is 𝑖-minimal, when 

ℭ𝑖 = 0. 

 

3. Hypersphere in 4-Space 

 

We reveal the hypersphere, then obtain its geometric 

objects in 𝔼4. Assume 𝛾: 𝐼 ⊂ ℝ → Π be a curve in a 

plane Π, ℓ be a line on Π in 𝔼4. 

 

Definition 1. A rotational hypface in 𝔼4 is called 

hypersphere, when the profile curve  

 

𝛾(𝑤) = (𝑟 𝑐𝑜𝑠𝑤, 0,0, 𝑟 𝑠𝑖𝑛𝑤)  

 

rotates by (1) around the axis ℓ = (0,0,0,1) for 𝑟 >

0. So, the hypersphere spanned by the vector ℓ, is 

defined by 𝐡(𝑢, 𝑣, 𝑤) = 𝑍(𝑢, 𝑣) ∙ 𝛾(𝑤). Therefore, 

more clear form of 𝐡 is written by 

 

𝐡(𝑢, 𝑣, 𝑤) = (

 𝑟 cos 𝑢 cos 𝑣 cos 𝑤 
 𝑟 sin 𝑢 cos 𝑣 cos 𝑤

𝑟 sin 𝑣 cos 𝑤
𝑟 sin 𝑤

). (6) 

 

Here, 𝑟 > 0, 0 ≤ 𝑢, 𝑣, 𝑤 ≤ 2𝜋. When 𝑤 = 0, we 

have the sphere in 𝔼4. See [38] for details. 

 

Next, we will obtain the 𝐆 and the ℭ𝑖 of the 

hypersphere (6). The first quantities of (6) are given 

by 

 

𝐈 = 𝑑𝑖𝑎𝑔(𝑟2 cos2𝑣 cos2𝑤, 𝑟2 cos2𝑤,  𝑟2). (7) 

 

By (2), we obtain the 𝐆 of the hypersphere (6) as 

follows 

 

𝐆 = (

cos 𝑢 cos 𝑣 cos 𝑤 
sin 𝑢 cos 𝑣 cos 𝑤

sin 𝑣 cos 𝑤
sin 𝑤

). (8) 

 

By taking the second derivatives of (6) with respect 

to 𝑢, 𝑣, 𝑤, and by the 𝐆 (8) of the hypersphere (6), 

we have 

 

𝐈𝐈 = 𝑑𝑖𝑎𝑔(−𝑟 cos2𝑣 cos2𝑤, −𝑟 cos2𝑤, −𝑟). (9) 

 

Computing the shape operator matrix of the 

hypersphere (6): 𝐒 = −
1

𝑟
𝔗3, we find the following 

third quantities 

 

𝐈𝐈𝐈 = 𝑑𝑖𝑎𝑔(𝑟2 cos2𝑣 cos2𝑤, 𝑟2 cos2𝑤, 1). (10) 

 

Finally, by using (3), (4), (5), with (7), (9), 

respectively, we obtain the following. 

 

Theorem 1. Suppose 𝐡 ∶ 𝑀3 ⊂ 𝔼3 → 𝔼4 be the 

hypface given by (6). Then, the hypersphere 𝐡 has the 

following curvatures 

 

ℭ1 = −
1

𝑟
,   ℭ2 =

1

𝑟2
,    ℭ3 = −

1

𝑟3
.  

 

4. Hypersphere Satisfying ∆𝐈𝐈𝐈𝐡 = 𝓐𝐡 

 

In this section, we give the third LBo of a function, 

and then calculate it by using the hypersphere (6).  
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Definition 2. The third LBo of 𝜙 =

𝜙(𝑥1, 𝑥2, 𝑥3)|𝐷⊂ℝ3 of 𝐶3 depends on the third 

fundamental form is defined by 

 

∆𝐈𝐈𝐈𝜙 =
1

√|𝑡|
∑

𝜕

𝜕𝑥𝑖
(√|𝑡|𝑡𝑖𝑗

𝜕𝜙

𝜕𝑥𝑗
) ,

3

𝑖,𝑗=1

  

 

where 𝐈𝐈𝐈 = (𝑡𝑖𝑗)
3×3

, (𝑡𝑖𝑗) = (𝑡𝑘𝑙)−𝟏  and 𝑡 =

𝑑𝑒𝑡(𝑡𝑖𝑗). See [29] for details. 

 

Therefore, the third LBo of the hypersphere (6) 

transforms to 

 

∆𝐈𝐈𝐈𝐡 =
1

√|𝑑𝑒𝑡 𝐈𝐈𝐈|
(

𝜕

𝜕𝑢
Φ −

𝜕

𝜕𝑣
Ω +

𝜕

𝜕𝑤
Ψ), (11) 

 

where 

Φ

=
(𝑂𝑍 − 𝐽2)

𝜕𝐡
𝜕𝑢

− (𝐽𝑈 − 𝑂𝑌)
𝜕𝐡
𝜕𝑣

+ (𝐽𝑌 − 𝑈𝑍)
𝜕𝐡
𝜕𝑤

√|𝑑𝑒𝑡 𝐈𝐈𝐈|
, 

 

Ω

=
(𝐽𝑈 − 𝑂𝑌)

𝜕𝐡
𝜕𝑢

− (𝑂𝑋 − 𝑈2)
𝜕𝐡
𝜕𝑣

+ (𝑈𝑌 − 𝐽𝑋)
𝜕𝐡
𝜕𝑤

√|𝑑𝑒𝑡 𝐈𝐈𝐈|
, 
 

Ψ

=
(𝐽𝑌 − 𝑈𝑍)

𝜕𝐡
𝜕𝑢

− (𝑈𝑌 − 𝐽𝑋)
𝜕𝐡
𝜕𝑣

+ (𝑋𝑍 − 𝑌2)
𝜕𝐡
𝜕𝑤

√|𝑑𝑒𝑡 𝐈𝐈𝐈|
. 

 

 

By using the derivatives 
𝜕Φ

𝜕𝑢
,

𝜕Ω

𝜕𝑣
,

𝜕Ψ

𝜕𝑤
, and substituting 

them into (11), respectively, we obtain the following. 

 

Theorem 2. Let 𝐡 ∶ 𝑀3 ⊂ 𝔼3 → 𝔼4 be an 

hypersphere (6). Then, 𝐡 has the following 

 

∆𝐈𝐈𝐈𝐡 = − 3 𝑟 𝐆,  

 

where 𝑟 > 0. 

 

Proof. By direct computation, it is clear. 

 

5. Results and Discussion 

 

Considering all findings in the previous section, we 

give the following results. 

 

Corollary 1. Assume that 𝐡 ∶ 𝑀3 ⊂ 𝔼3 → 𝔼4 be an 

hypersphere (6). Therefore, the hypersphere 𝐡 has 

∆𝐈𝐈𝐈𝐡 = 𝒜𝐡 , where 

 

𝒜∈𝑀𝑎𝑡(4,4) = (−1)𝑖+13𝑟𝑖ℭ𝑖𝔗4, 𝑖 = 0,1,2,3.  

 

and 𝔗4 is the 4 × 4 identity matrix. 

 

6. Conclusion and Suggestions 

 

In this paper, we introduce the the hypersphere 𝐡 in 

four dimensional Euclidean geometry 𝔼4. Recalling 

some notions of 4-dimension, we give the 𝑖th 

curvature formulas of the hypersurfaces of 𝔼4. 

Moreover, we present the hypersphere supplying 

∆𝐈𝐈𝐈𝐡 = 𝒜𝐡 for some 4 × 4 matrix 𝒜. It can be 

studied in other space forms. 
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