

e-ISSN: 2651-4028 **Research Article**

2022, Volume: 6, Issue: 2, 99-105 Received: 28.04.2022; Accepted: 25.08.2022 DOI: 10.30516/bilgesci.1110376

Determination of Optimal Drilling Parameters of Massive Wooden Edge Glued Panels (EGP) and Medium Density Fiberboard using The **Taguchi Method**

Emine Nur Aktas¹, Sait Dündar Sofuoğlu^{1*}

Abstract: In this paper, the optimization of computer numerical control (CNC) drilling parameters was conducted using the Taguchi experiment design on the drilling holes' inner surfaces roughness (Ra) massive wooden edge-glued panels (EGP) made of spruce (Picea Orientalis Link.), beech (Fagus Orientalis Lipsky), Iroko (Chlorophora excelsa) and Medium Density Fiberboard surfaced with synthetic resin sheet (MDFlam). Three drilling parameters and their effects on Ra were evaluated. These parameters included spindle speed, feed rate, and cutter type. Surface roughness measurements according to ISO 4287 were performed on the inner surfaces of the holes, and Ra values were obtained. An analysis of variance (ANOVA) was performed to identify the significant factors affecting the Ra. Optimum drilling parameter combinations were acquired by analyzing the signal-to-noise (S/N) ratio. It is shown that the most ideal result was obtained with a two flutes cutter (cutter number 2) at 18000 rpm and feed of 1750 mm/minute for in-hole roughness values of the MDFlam test sample. In the drilling operations performed with a double-entry cutter, the lowest roughness values were obtained in all materials.

Keywords: CNC, Drilling, MDFlam, wood, Taguchi, roughness

- ¹Address: Kutahya Dumlupinar University, Simav Technology Faculty, Wood Works Industrial Engineering Kutahya/Türkiye.
- *Corresponding author: sdundar.sofuoglu@dpu.edu.tr

Citation: Aktas, E.N., Sofuoglu, S.D. (2022). Determination of Optimal Drilling Parameters of Massive Wooden Edge Glued Panels (EGP) and Medium Density Fiberboard using Taguchi Design Method. Bilge International Journal of Science and Technology Research, 6(2), 99-105.

1. INTRODUCTION

Wood and wood-based materials have been used as furniture and building construction materials for years (Davim, 2011). The inner surface of the holes' surface roughness of wood and wood-based materials is one of the most important properties characterizing the drilling process. The stylus method is commonly used for off-line roughness measurements of wood and wood-based materials (Sandak and Tanaka, 2003; Zhong et al., 2013). Computer numerical control (CNC) has been used for the drilling of furniture materials. CNC has a lot of advantages for furniture manufacturing (Costes and Larricq,2002; Ohuchi and Murase, 2005; Karagoz et al., 2011; Alves et al. 2015). The Taguchi Method (TM) can effectively determine the optimal combinations of machining parameters. TM uses a special design of orthogonal arrays (OA) to study entire parameter space with less experiment (Valarmathi et al., 2013; Kacal ve Gülesin, 2011; Sofuoglu, 2015; Sofuoglu, 2017).

As can be observed from the literature, optimization studies on the machining of wood and wood-based materials were performed and TM was used in many of them. However, a lack of studies on wood and wood-based materials, especially in the applications of CNC drilling operations.

In this study, three crucial drilling parameters (spindle speed, feed rate, and cutter type) with an experimental setup made by the TM were investigated with a CNC machine. The R_a values were measured with a surface roughness measuring device on the drilled surface.

2. MATERIAL AND METHOD

In this study, the material used were 18-mm-thick; EGP made of spruce (Picea Orientalis Link.), and beech (Fagus Orientalis Lipsky), Iroko (Chlorophora excelsa), and MDFlam (MDF surfaced with synthetic resin sheet). The EGP are supplied by ERPAN from Simav/Kutahya, Turkey. EGP panels and MDFLam were selected randomly from the manufacturer. Experiments can be performed Skilled CNC (Beysantaş A.Ş., Turkey) with a maximum 18000 rpm spindle speed and 2000 mm/min feed rate. The experiments were carried out with Netmak (Z2 and Z3) (Netmak group, Turkey) 8-mm-diameter CNC cutters made of solid carbide. New CNC cutters were used in drilling operation (Figure 1). The experiments evaluated three drilling parameters (spindle speed, feed rate, and cutter type) (Table 1). A total of 16x4=64 pieces were drilled on panels by a CNC router (Figure 2).

Figure 1. Solid carpide router cutters one flute (a) and two flutes (b) cutter types

Table	1.]	Mach	ining	parameters	and	levels	for	drilling
			0					. 0

	Coded levels					
Machining parameter	Level	Level	Level	Level		
	1	2	3	4		
Spindle speed (rpm)	12000	14000	16000	18000		
Feed rate (mm/min)	1250	1500	1750	2000		
Cutter type	1	2				

Time TR200 (China) surface roughness measurement device was used. The sampling length= 2.5 mm; the evaluation length Lt= 12.5 mm. measurement speed=10 mm/min, the diameter of the measurement needle= 4 μ m, and the needle tip orientation= 90° were taken.

Wood drilling parameters were used as control factors, where two parameters were designed to have four levels and one parameter was designed to have two levels (Table 1). By TM, an L16 OA table with 16 rows was selected.

Figure 2. Skilled CNC 2040 CNC and drilling

Ra was measured on every drill hole three times. *Ra* is described in ISO 468 (2009), ISO 3274 (2005), and ISO 4287 (1997).

Statistical analyses (*S*/*N*, ANOVA) were performed by using MINITAB 19 software for a confidence level of 95%. The smaller-the-better quality characteristics for R_a *S*/*N* ratio.

3. RESULTS AND DISCUSSION

The experimental design of L16 and the experimental results are given in Table 2.

Process	Spindle speed	Feed rate	Cutter	MDFLam R _a	Spruce <i>R</i> _a	Beech R_a	Irako Ra
no	(rpm)	(mm/min)	type	μm	μm	μm	μm
1	12000	1250	1	6.86	3.07	5.76	2.15
2	12000	1500	1	6.61	2.88	6.37	2.80
3	12000	1750	2	4.45	2.93	4.69	3.77
4	12000	2000	2	4.36	1.74	6.33	2.02
5	14000	1250	1	6.88	6.67	6.18	3.10
6	14000	1500	1	6.06	2.22	7.17	2.90
7	14000	1750	2	5.26	2.58	4.24	1.88
8	14000	2000	2	5.47	3.70	6.44	2.05
9	16000	1250	2	4.00	1.39	4.76	2.03
10	16000	1500	2	4.51	3.93	6.53	3.43
11	16000	1750	1	7.02	5.39	6.56	4.67
12	16000	2000	1	6.30	3.26	7.85	3.53
13	18000	1250	2	3.95	3.11	4.98	2.34
14	18000	1500	2	3.66	2.32	5.74	1.01
15	18000	1750	1	3.19	7.96	6.20	3.45
16	18000	2000	1	5.90	3.13	6.22	3.09

Table 2. Experimental Design using a TM (L16) and of Surface Roughness (R_a) (Aktaş, 2021)

Table 3. ANOVA	A Results for	R_a in MDFLam	(Aktaş, 2021)
----------------	---------------	-----------------	---------------

Source	SourceDegrees of Freedom (DoF)Sequential Sum of Squares (Adj SS)Mean Squares		Mean Sum of Squares (Adj MS)	F	Р		
		Ra					
Spindle speed (rpm)	3	6.9711	2.3237	3.11	0.089		
Feed rate (mm/min)	3	0.6720	0.2240	0.30	0.825		
Cutter type	1	10.8257	10.8257	14.48	0.005		
Residual error	8	5.9792	0.7474				
Total	15	24.4481					
		Ra (for S/N ratios)					
Spindle speed (rpm)	3	23.629	7.8765	3.25	0.081		
Feed rate (mm/min)	3	2.774	0.9246	0.38	0.769		
Cutter type	1	26.737	26.7366	11.05	0.010		
Residual error	8	19.363	2.4204				
Total	15		72.503				

Table 4. ANOVA	Results	for R_a in	Spruce	(Aktaş,	2021)
----------------	---------	--------------	--------	---------	-------

Source	DoF	Adj SS	Adj MS	F	Р				
		Ra							
Spindle speed (rpm)	3	4.751	1.584	0.57	0.653				
Feed rate (mm/min)	3	8.829	2.943	1.05	0.421				
Cutter type	1	10.391	10.391	3.71	0.090				
Residual error	8	22.384	2.798						
Total	15		46.355						
		Ra (for S/N ratios)							
Spindle speed (rpm)	3	20.54	6.846	0.45	0.725				
Feed rate (mm/min)	3	35.12	11.708	0.77	0.543				
Cutter type	1	54.66	54.660	3.59	0.095				
Residual error	8	121.83	15.229						
Total	15		232.15						

According to ANOVA results for MDFlam roughness (*Ra*) at 95% confidence level; it was seen that cutter type (0.05 > P = 0.005) was found to be a statistically significant difference, and spindle speed (0.05 < P = 0.089) and feed rate (0.05 < P = 0.825) did not make a statistically

significant difference (Table 3). According to ANOVA results for spruce roughness (*Ra*) at 95% confidence level; it was seen that spindle speed (0.05 < P = 0.653), feed rate (0.05 < P = 0.421) and cutter type (0.05 < P = 0.090) did not make a statistically significant difference (Table 4).

Source	DoF	Adj SS	Adj SS Adj MS		Р		
		Ra					
Spindle speed (rpm)	3	1.092	0.3640	1.30	0.340		
Feed rate (mm/min)	3	5.518	1.8394	6.56	0.015		
Cutter type	1	4.608	4.6082	16.43	0.004		
Residual error	8	2.244	0.2805				
Total	15		13.46	3			
		Ra (for S/N ratios)					
Spindle speed (rpm)	3	1.827	0.6090	0.86	0.502		
Feed rate (mm/min)	3	12.441	4.1469	5.82	0.021		
Cutter type	1	10.593	10.5926	14.88	0.005		
Residual error	8	5.696	0.7120				
Total	15	30.557					

Table 5. ANOVA Results for R_a in Beech (Aktaş, 2021)

According to ANOVA results for beech roughness (*Ra*) at 95% confidence level; it was seen that feed rate (0.05 < P = 0.015), cutter type (0.05 < P = 0.004) were found to be a

statistically significant difference, and spindle speed (0.05 < P = 0.340) did not make a statistically significant difference (Table 5).

Table 6.	ANOVA	Results	for R_a	in Ir	oko(Aktaş	, 2021)
----------	-------	---------	-----------	-------	-----------	---------

Source	DoF	Adj SS	Adj MS	F	Р		
		Ra					
Spindle speed (rpm)	3	2.373	0.7909	1.49	0.288		
Feed rate (mm/min)	3	2.603	0.8678	1.64	0.256		
Cutter type	1	3.208	3.2077	6.06	0.039		
Residual error	8	4.234	0.5292				
Total	15	12.418					
		Ra (for S/N ratios)					
Spindle speed (rpm)	3	24.16	8.055	0.99	0.446		
Feed rate (mm/min)	3	22.85	7.618	0.93	0.468		
Cutter type	1	42.02	42.015	5.15	0.053		
Residual error	8	65.28	8.160				
Total	15	154.31					

According to ANOVA results for Iroko roughness (*Ra*) at 95% confidence level; it was seen that spindle speed (0.05 < P = 0.288), feed rate (0.05 < P = 0.256) and cutter type

(0.05 < P = 0.039) did not make a statistically significant difference (Table 6).

Figure 3. (a) MDFLam main effect plot for R_a ; (b) mean *S/N* ratio for R_a

When the main effect and S/N ratio graphs for MDFlam *Ra* were examined (Figure 3), the lowest roughness values occurred at a speed of 18000 rpm, a feed rate of 1750 mm/min, and a cutter type 2.

Figure 4. (a) Spruce main effect plot for R_a ; (b) mean *S/N* ratio for R_a

When the main effect and S/N ratio graphs for spruce Ra were examined (Figure 4), the lowest roughness values occurred at a speed of 12000 rpm, a feed rate of 1500 mm/min, and a cutter type 2.

Figure 5. (a) Beech main effect plot for R_a ; (b) mean *S/N* ratio for R_a

When the main effect and S/N ratio graphs for beech Ra were examined (Figure 5), the lowest roughness values occurred at a speed of 18000 rpm, a feed rate of 1750 mm/min, and a cutter type 2.

Figure 6. (a) Iroko main effect plot for R_a ; (b) mean *S/N* ratio for R_a

When the main effect and S/N ratio graphs for Iroko *Ra* were examined (Figure 6), the lowest roughness values occurred at a speed of 18000 rpm, a feed rate of 1250 mm/min, and a cutter type 2.

In the literature; *Ra* decreased with the decreasing feed rates. Ra decreases with increasing spindle speed (Iskra and Tanaka 2005; Davim et al. 2009; Sutcu & Karagoz 2012; Sutcu 2013). According to some other literature; revolutions per minute were the most effective parameter for the changes in massive wooden table, which is made of Scotch pine drilling holes roughness (Kacal and Sofuoglu 2013).

Surface roughness values of drilling samples are important for determining surface quality. Average surface roughness (Ra) values were obtained as 14.58 μ m, 11.18 μ m, 15.17 μ m, 11.94 μ m for ship auger bit drill and 7.06 μ m, 13.02 μ m, 7.91 μ m, 7.55 μ m for multiple spur bit drill inEuropean black pine, black poplar, sessile oak, and cedar of Lebanon respectively (Sofuoglu, *et.al*, 2015.

4. CONCLUSIONS

The following results can be drawn from the hole internal surface R_a , for the Medium Density Fiberboard with synthetic resin sheet (MDFlam), and the material used were; massive wooden edge-glued panels (EGP) made of spruce (*Picea Orientalis* Link.), beech (*Fagus Orientalis* Lipsky), Iroko (*Chlorophora excelsa*):

- The lowest roughness values occurred at a speed of 18000 rpm, a feed rate of 1750 mm/min, and a cutter

type 2 for MDFlam,

- The lowest roughness values occurred at a speed of 12000 rpm, a feed rate of 1500 mm/min, and a cutter type 2 for spruce,
- The lowest roughness values occurred at a speed of 18000 rpm, a feed rate of 1750 mm/min and a cutter type 2 for beech.
- The lowest roughness values occurred at a speed of 18000 rpm, a feed rate of 1250 mm/min, and a cutter type 2 for Iroko.
- The lowest roughness values were obtained in drilling operations in all materials with the type 2 cutter.

Acknowledgments

This work is derived from the master's thesis titled "Determination of optimum drilling parameters for MDFlam and massive wooden materials" conducted in Kutahya Dumlupinar University, Kutahya Institute of Graduate Education.

Ethics Committee Approval

N/A

Peer-review

Externally peer-reviewed.

Author Contributions

S.A: Construction of experiments, analysis of results. SDS: Experiment design, article writing and analysis of results. All authors have read and agreed to the published version of manuscript.

Conflict of Interest

The authors have no conflicts of interest to declare.

Funding

The authors declared that this study has received no financial support.

REFERENCES

- Aktaş E.N. (2021). MDFLam ve masif ağaç malzemelerin delinmesinde optimum delme parametrelerinin belirlenmesi. Kütahya Dumlupınar Üniversity, Master'thesis
- Alves, P.R.G., Goncalves, M.T.T., Alves, M.C.D. (2015). Surface quality of wood in face milling, techniques up-milling and down-milling in CNC machine. 22nd Proceedings of International Wood Machining Seminar (IWMS 22), Quebec City, Canada, 215-222.
- Costes, J.P., Larricq, P. (2002). Towards high cutting speed in wood milling. Annals of Forest Science, 59(8), 856-865. <u>https://doi.org/857-865.10.1051/forest:2002084.</u>
- Davim, J.P., Clemente, V.C., Silva, S. (2009). Surface roughness aspects in milling MDF (Medium Density Fibreboard). International Journal of Advanced Manufacturing Technology. 40(1-2), 49-55. <u>https://doi.org/10.1007/s00170-007-1318-z.</u>

- Davim, J.P. (2011). Wood machining. Iste Ltd., John Wiley and Sons Inc., UK, USA.
- Iskra, P. Tanaka, C. (2005). The influence of wood fiber direction, feed rate, and cutting width on sound intensity during routing. Holz als Roh-und Werkstoff. 63(3), 167-172. <u>https://doi.org/10.1007/s00107-004-0541-7</u>.
- ISO 468 (2009). Surface roughness-parameters, their values and general rules for specifying requirements, International Organization for Standardization, Geneva, Switzerland.
- ISO 3274 (2005). Geometrical Product Specifications (GPS)-Surface texture: Profile method- Nominal characteristics of contact (stylus) instruments, International Organization for Standardization, Geneva, Switzerland.
- ISO 4287 (1997). Geometrical product specifications surface texture profile method terms, definitions and surface texture parameters," International Organization for Standardization, Geneva, Switzerland.
- Kacal, A., Gulesin, M. (2011). Determination of optimal cutting conditions in finish turning of austemperedductile iron using Taguchi design methot, Journal of Scientific and Industrial Research, Vol. 70, 278-283.
- Kacal, A., Sofuoglu, S.D. (2013). Experimentally and statistically evaluting of drilling of massive wooden table which is made of Scotch pine (*Pinus* sylvestris L.), 21st Proceedings of International Wood Machining Seminar (IWMS 22), Tsukuba, Japan, 421-428.
- Karagoz, U., Akyildiz, M., Isleyen, O. (2011). Effect of heat treatment on surface roughness of thermal wood machined by CNC. Proligno, **7**(4), 50-58.
- Sandak, J., Tanaka, C. (2003). Evaluation of surface smoothness by laser displacement sensor-1: effect of wood species, Journal of Wood Science, 49(4), 305-311. <u>https://doi.org/10.1007/s10086-002-0486-6</u>
- Sutcu, A. (2013). Investigation of parameters affecting surface roughness in CNC routing operation on wooden EGP. Bioresources. 8(1), 795-805.
- Sutcu, A. Karagoz, U. (2013). The influence of process parameters on the surface roughness in aesthetic machining of wooden edge-glued panels (EGPs). BioResources. 8(4), 5435–48. https://doi.org/10.15376/biores.8.4.5435-5448
- Ohuchi, T., Murase, Y. (2005). Milling of wood and woodbased materials with a computerized numerically controlled router IV: development of automatic measurement system for cutting edge profile of throw-away type straight bit. Journal of Wood Science, 51(3), 278-281. https://doi.org/10.1007/s10086-004-0663-xh

- Sofuoğlu, S.D. (2015). Determination of optimal machining parameters of massive wooden edge-glued panelsnade of European larch (*Larix decidua* mill.) using Taguchi design method. BioResources, 10(4), 7772 - 7781. https://doi.org/10.15376/biores.10.4.7772-7781
- Sofuoğlu, S.D. (2017). Determination of optimal machining parameters of massive wooden edge glued panels which is made of Scots pine (Pinus sylvestris L.) using Taguchi design method. European Journal of Wood and Wood Products. 75(1), 33-42. https://doi.org/10.1007/s00107-016-1028-z
- Sofuoglu, S.D., Percin, O., Yesil, H., Kuscuoglu, M.Ö. (2015). Evaluation of hole drilling operations of drill holes some tree species in Turkey, 22nd Proceedings of International Wood Machining Seminar (IWMS 22), Quebec City, Canada, 118-125.
- Valarmathi, T.N., Palanikumar, K., Sekar, S. (2013). Prediction of parametric influence on thrust force in drilling of wood composite panels. IJMMME, 1(1), 71-74.
- Zhong, Z.W., Hiziroglu, S., Chan, C.T.M. (2013). Measurement of the surface roughness of woodbased materials used in furniture manufacture. Measurement. 46(4), 1482-1487. <u>https://doi.org/10.1016/j.measurement.2012.11.04</u> <u>1</u>