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ABSTRACT. In this paper, we introduce and examine invariant and semi-invariant lightlike submanifolds of a poly-
Norden semi-Riemannian manifold. Also, we obtain some examples of such types submanifolds and study the
conditions for both integrability and totally geodesic foliation description of distributions.
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1. INTRODUCTION

In differential geometry, submanifolds equipped with different geometric structure have been studied widely. A
submanifold of a semi-Riemannian (briefly s-Riemannian) manifold is called a lightlike submanifold if the induced
metric is degenerate. The general view of lightlike submanifold has been introduced in [4] (see also [7]). Many results
on lightlike submanifolds have been given in many papers [1,5,6, 11,20].

The golden proportion and the golden rectangle have been found in the harmonious proportion of temples, fractals,
paintings etc. Golden structure was charecterized by J. Kepler. The number ¢, which is the real positive root of

X-x-1=0,

(hence ¢ = ”T‘E) is the golden proportion. In [8], inspired by golden ratio, golden Riemannian manifolds were
introduced. Then, many authors have studied golden structure on different manifolds [3, 12, 13, 17].
As a generalization of the golden mean family, metallic mean family was introduced in [18]. The positive solution
of
¥ —px—q=0,
is called member of the metallic means family, where p and ¢ are fixed two positive integers. These numbers denoted

by
P+ VPP +4q

Opq = )
2
are also known (p, g)—metallic numbers. Recently many paper about metallic mean have been published [2,9, 10, 15].
Also in [16], the authors have defined Bronze structure which is different from Bronze mean given in [14]. In [19],
B. Sahin introduce as a new type of manifold which is called almost poly-Norden manifolds. An almost poly-Norden
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structure can not be expressed with metallic structure for any positive integer p, g. Recently, Yiiksel Perktas studied
submanifolds of almost poly-Norden Riemannian manifolds in [21].

In this article, by inspiring from [19], we study lightlike submanifolds of poly-Norden manifolds. Also, we introduce
and examine invariant and semi-invariant lightlike submanifolds of a poly-Norden s-Riemannian manifold. Also, we
give some examples of such types submanifolds.

2. PRELIMINARIES
Let M be a diffrentiable manifold and ® be a (1, 1)—type tensor field on M. If
O’ =md -1,

satisfied, then @ is called an almost poly-Norden manifold [19].
Example 2.1 ([19]). Consider the 4-tuples real space R* and define a map by

® : R'SRY

(X1, %2, %3, X4) = (BuX1, BuX2, BuX3, Buxa),

where B, = @ and B = m — B,,. Thus, (R*, ®) is an example of almost poly-Norden manifold.

If a s-Riemannian metric g satisfies
g(@U, V) = mg(®U, V) - g(U, V), 2.1

then g is called ®—compatible. So (M, @, %) is called an almost poly-Norden s-Riemannian manifold [19].
By use of (2.1), we get
g(@U,V) =g, oV).
From now on, we will suppose that m is different from zero.
If the induced metric g from 2 is degenerate on M™ and
rank(RadT M) = r, 1<r<m,
then (M, g) is called a lightlike submanifold, where RadT M is the radical distribution and 7 M~ the normal bundle of
TM with
RadTM = TM N TM™,
and
™ = | J{V, € )M : g,(U,, V) = 0,YU e T(T, M)},
peM

Since TM and T M~ are non-degenerate vector subbundles, there exists complementary non-degenerate distributions
S(TM) and S(TM*) of RadT M in TM and T M+, respectively, which are the screen distribution and screen transversal
bundle of M with

TM = S(TM)LRadT M,
TM* = S(TM*)LRadT M.
Also, in view of an orthogonal complement subbundle S (7 M)* to S (T M) in T M such that
S(TM)* = S(TMYHLS(TM*Y)*, 2.2)
where S (T M*)* is the orthogonal complementary to S (7T M=) in S (T M)*.

Theorem 2.2 ( [4]). Let (M, g,S(TM),S(TM"Y)) be a r-lightlike submanifold of a s-Riemannian manifold M. Then,
there exists a complementary vector bundle ltr(T M) known a lightlike transversal bundle of RadT M in S (T M*)* and
a basis of T(Iltr(T M) consist of sections {Ny, ..., N,} of S (T M*)* such that

g(Ni,Nj) = 0, g(Ni,Ej) = 1, l,] = 1,...,1’,
where {E1, ..., E,} is a basis of T'(RadT M).
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This theorem gives that
tr(TM) = Itr(TM)LS (TM™Y),
S(TM*Y)* = RadTM & itr(TM).
So, in view of equations (2.2)—(2.4), we arrive at

™™

S(TM)LS(TM)*
S(TM)L{RadTM & ltr(T M)} LS (T M)*
TM & tr(TM).

The Gauss and Weingarten equations of M are given by
VyV =VyV +h(U,V), UV eT(TM),

VuN = -AyU + Vi N, N e T(tr(TM)),

where ViV, AyU € I(TM) and h(U, V), V,N € T(tr(T M)).
By using (2.5) with projection morphisms defined by

L:tr(TM) — ltr(TM), S :tr(TM) — S(TM*),
then every U,V € I(TM), N € T(ltr(TM)) and W € I'(S(T M*)), we get
VuV =VyV + KU, V) + kU, V),
VuN = -AyU + VN + D*(U,N),
VuW = —AwU + D'(U, W) + V3, W,
where Vi N, D'(U, W) € T(ltr(T M)) and D*(U, N), V5, W € T(S (T M*)) and

(U, V) = LWU, V) € T(Iltr(T M)),

h(U, V) = Sh(U,V) € I(S(TM™")).

If we denote the projection of TM on S (T M) with P, from (2.6), (2.7), (2.8) and (2.9), we obtain

g (U, V), W) + (Y, D'(U,W)) = g(AwU,Y),
g(D*(U,N),W) = g(N,AwU),
VyBV = Vi PV + h*(U, PV),

VyE = —ALU + VIE,

(2.3)

(2.4)

2.5)

2.6)

2.7)
2.8)

(2.9)

(2.10)

@2.11)

for U,V € T(TM), E € T(RadT M), where V* and V' are induced connections on S (T M) and RadT M, respectively.
Also, h* is I'(RadT M)— valued bilinear form on I'(T M) x I'(S (T M)) which is called second fundamental form on
S(TM) and A* is I'(S (T M))— valued bilinear forms on I'(RadT M) x I'(T M) which is called second fundamental form

on RadT M.
Moreover, induced connection V onM is not a metric connection and satisfies

(Vue)(V,Y) = g(W'(U, V), Y) + g(h' (U, Y), V).

Also, V* is a metric connection on S (T M).
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3. MAIN REsuLrs

In this article, we assume that
Vo =0,

3.

and to avoid repetition in the remain part of this section, (M, D, 2) will be considered a poly-Norden semi-Riemannian

manifold.

Definition 3.1. Let (M, g) be a lightlike submanifold of (M, D, &). Then, M is an invariant lightlike submanifold if the

following conditions are satisfied [4]:

O(S(TM)) = S(TM),
®(RadT M) = RadT M.

Example 3.2. Let M = R? be a semi-Euclidean space with coordinate system (xi, x, ..., X5) and signature (—, +, +, +, +).

If we take
D(x1, X2, ..., X5) = (BpX1, Bpxa, Byux3, BpXxsa, Byxs),

then @ is an almost poly-Norden structure on M.
Suppose that M is a submanifold given by

X| = uz, Xp = —sinau; + cos auy

X3 =cosau; +sinaus, x4 =up, x5=0,

where (u1, up, u3) is the local coordinate system of M. Then, T M is given by

¥, = —sina— + cos a/a—,
X2 X3
0
V= —,
6)(4
Y3 = — +cosa— + sina—.
oxy 0x 0x3

Hence, RadTM = S p{¥3}, S(TM) = S p{¥,¥,} and ltr(T M) is spanned by

N = l - i +cosa'i +sina/i
21 4x x> Ox3 )’

It follows that ®(RadT M) = RadT M and ®(S (T M)) = S(TM). Hence, M is an invariant lightlike submanifold.

If we show the projection morphisim on S (7' M) and RadT M with T and R, respectively. Thus, for U € T'(T M), we

can state
U=TU+RU,
where TU € I'(S(TM)) and RU € I'(RadT M).
Applying @ to above equation, we get
dU = OTU + ORU,
from which we can write
U =SU + QU,

where SU € I'(S(TM)) and QU € I'(RadT M).
If we differentiate (3.2) and by use of (3.1) with (2.7)—(2.9), we arrive at

SVyV + QVyV + ®R (U, V) + ®h°(U, V) = VSV +h (USV)+h(USV)+h(U,SV)
—ApyU + VOV + h(U, QV) + h*(U, QV),

(3.2)
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which yields
SVyV = VSV -A,U,
OVyV = h'(USV)+ V0V,
oAU, V) = K(U,QV),
©r'(U, V) = h'(U,QV),
OVyV = V,SV- AZ)VU +h*(U,SV) + V,0V.
Theorem 3.3. Let (M, g) be an invariant lightlike submanifold of (M, ®, ). Then, RadT M is integrable if and only if
AZ)E]EZ = A:DEZEI and A*EIEQ = A*EZEI’
forany E1,Ey € T'(RadTM) and Z € T'(S(T M)).
Proof. For E\, E, € '(RadT M), RadT M is integrable if and only if
[E\, E;] € T(RadT M).
From above equation, we can say g([E, E»], Z] = 0. Therefore, from above equation and using (2.1) with (3.1), we get
Z(E1, Eal, Z] g(Ve,Ey = Vi,E1,Z)
= g(vEl E2» Z) - g(szEl» Z)
= —8(DVg, Ey, ®Z) + mg(Vg, Bz, ®Z) + §(OV, Ey, OZ) — mg(VE, E, PZ)
= —g(Vg,QE,, OZ) + mg(Vg, Er, OZ) + §(VE, PEy, OZ) — mg(Vg, Ey, OZ). (3.3)
In view of (2.7) with (3.3), we find
8(Ve,®E), DZ) - g(Vi, ®E,, ®Z) + m(g(V, By, ®Z) - g(Vi, Er, DZ)) = 0.

Therefore, using the decomposition (2.5) and (2.11), we arrive at
8(Aog, E\ — Agg, B2, DZ) + m(g(AElEz - AgEy, ‘DZ)) =0,
which yields the proof. O

Theorem 3.4. Let (M, g) be an invariant lightlike submanifold of (M, ®, g). Then, S(T M) is integrable if and only if
h'(U,®V) = h*(V,®U) and h*(U,V)=h*(V,U),
forany U,V e I'(S(TM)) and N € T(ltr(T M)).
Proof. For U,V e I'(S(TM)) and N € I'(itr(TM)), S(T M) is integrable if and only if
&(U,V],N] = 0.
Therefore, from above equation and using (2.1) with (3.1), we have

g(U, V], N] §(VyV - VyU,N)
= —g(®VyV,®N) + mg(VyV,®N) + g(@Vy U, ®N) — mg(Vy U, ®N)
= —g(Vy®V,®N) +mz(VyV,ON) + 5V, dU, ON) — mz3(Vy U, ON). 3.4)

By use of (2.10) with (3.4) and using the decomposition (2.5) and (2.11), we can write
g(h* (U, ®V) — h*(V,®U), ®N) + mg(h*(U, V) — h*(V, U), ®N) = 0,
which gives the proof. O

Theorem 3.5. Let (M, g) be an invariant lightlike submanifold of (M, ®,3). Then, V on M is a metric connection if
and only if

AppU = mALU, 3.5
forany U e I'(TM) and E € T'(RadT M).
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Proof. If V is a metric connection, we have
VyE € T(RadT M),

for any U € I'(TM) and E € I'(RadT M). So we can write
g(VyE,Z) =0,

for all Z € T'(S (T M)).
Therefore, using (2.7) with (2.1), we get

Z(DVYE, ®Z) — mg(VyE,®Z) = 0,
so from (3.1), we have
E(Vy®E,DPZ) — mg(VyE,®Z) = 0.
Therefore, using (2.11) in above equation, we find
8(-AL U + mALU,®Z) = 0,
which gives (3.5). |

Theorem 3.6. Let (M, g) be an invariant lightlike submanifold of (M, ®, g). Then, RadT M defines a totally geodesic
foliation on M if and only if

h(E,®U) = mh(E, U), (3.6)
forany U e I'(S(TM)) and E € T (RadT M).
Proof. The radical distribution RadT M defines a totally geodesic foliation if and only if

Vi E; € T(RadT M),
for any E|, E; € ['(RadT M). Because of V is a metric connection we can write for all U € T'(S (T M))
(Vg Ex, U) = (Vi Ep, U) = 3(E», Vi, U) = 0.

Therefore, using (2.7) with (2.1) and (2.10), we get

0 = g(Vg®U,®F,) — mg(Ve, U, OF,)
= g('(E1, ®U), DEy) — mg(h'(E1, U), PEy).
So, we get (3.6). The converse of proof is clear. O

Now, we introduce semi-invariant lightlike submanifolds of (M, ®, g). Firstly, we give the following:
Definition 3.7. Let (M, g) be a lightlike submanifold of (M, ®, 2). Then M is called a semi-invariant lightlike subman-

ifold if the following conditions are satisfied:
®(RadTM) = S(TM),
O(Utr(TM)) = S(TM),
O(S(TMY)) =S(TM).
Taking D = ®(RadT M), D = ®(ltr(TM)), D = O(S (T M~)) then we can state
S(TM) = DyL{D & D}LD.
So, we get
TM = DyL{D ® D}1LD1RadT M,
TM = DyL{D & D}LD1S(TM*)L{RadTM & Itr(T M)).
If we take
D =DolD® LRadTM and D* = D1D,

then we can write
TM =D& D*.
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Example 3.8. Let M = RZ be a semi-Euclidean space with coordinate system (xy, xz, ..., x7) and signature
(=, +,— +, +,+, +). If we take

(D()Cl, X2 e )C7) = (Bmxls B, xo, Binx3, BiuXa, ByuXs, By Xe, Bm)C7),

where B,, = m — B,,, then we can say that ® is an almost poly-Norden structure on M.
Suppose that M is a submanifold given by

x1 = Buui+u+ Bmu3,
X2 = uy+ By — Bz,
X3 = U+ Byuup + Bus,
X4 = Byup+uy - Bmu3’
Xs = X¢=Buus, x7=us,

where (u1, us, ..., us) is the local coordinate system of M.Then, T M is given by

0 0 0 0
lI’]—Bma—)q"'a—xz+a—x3+ ma—m,

T2=%+Bm%+3m%+%,
W, = B’"aixl - 6% " Bma% - Bm%,
v, ‘B'"ais +B,,,6ixﬁ,

s = a%.

So, we have RadTM = S p{E = ¥} and S(TM) = S p{¥>, V3, ¥4, ¥s5} with
1 0 0 0 0 }

3B Do on o on

0 0
TM*)=SplL=—+—).
S(ITM~) =S pi 0x5+(9x6}

Moreover, we arrive at ®(E) = W,, ®(N) = W3 and ®(L) = V4. If we consider Dy = S p{¥s}, D= S p{¥>}, D= S p{¥s}
and D =S p{¥4}, then M is a semi-invariant lightlike submanifold.

Itr(TM)=Sp {N =

Suppose that M is a semi-invariant lightlike submanifold of (M, ®, ). If we show the projection morphism on
S(TM) and RadT M with T and S, respectively. Therefore, for U € I'(T M), we can write

U=TU+SU,

where TU e I'(S§(TM)) and SU € I'(RadT M).
Applying @ to above equation, we obtain

QU = OTU + DS U,

from which we can state
OU = KU + LU, (3.7

where KU € T'(S(TM)) and LU € I'(ltr(T M)).
Similarly, for any W € I'(¢r(T M)), we have

OW = BW + CW, (3.8)

where BW and CW are the tangential and transversal components of ®W, respectively.
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Lemma 3.9. Let M be a semi-invariant lightlike submanifold of (M, ®, g). Then, we get for any U,V € T(TM) and
W el (tr(TM)),

(VyK)V =AU + Bh(U, V), 3.9

LVyV =V, LV + hi(U,KV), (3.10)

VyBW = —KAyU + BVyW, 3.11)

hU,BW) = —LAyU. (3.12)

Proof. From (3.1) and (3.7) with (3.8), one can easily see that (3.9)-(3.12). O
Theorem 3.10. Let (M, g) be a semi-invariant lightlike submanifold of (M, ®, ) . Then, D is integrable if and only if
R (@U, ®V) = mh'(V,dU) - K (V, U), (3.13)

h(@U,®V) = mh*(V,0U) — h*(V,U), (3.14)

forany U,V € T'(D).
Proof. From the definition of D, D is integrable if and only if
g([®U,V],®E) =0,
and
g([@dU,V],®L) =0,

for E € '(RadT M) and L € T(S(TM™)).
In view of (2.1) and (2.7), we get
g([@U, V], ®E) g(VouV, ®F) - g(VyQU, ®E)
= g(®VoyV,E) - 3(@VyU, OE)
= §Vou®V.E) - mg(®VyU,E) + g(VyU,E)
= g(Vou®V,E) - mg(Vy®U, E) + g(Vy U, E)

= g(h'(@U,®dV),E) — mg(h'(V,®U),E) + g(h'(V, U), E),

which gives (3.13).

Also,
g(OU,V],®L) = g(VouV,®L) - g(Vy®U, ®L)
= 3@VeyV,L) - g(@VyU,OL)
= g(Vou®V,L) - mg(®VyU, L) + g(VyU,L)
= g(Vou®V,L) - mg(Vy®U, L) + g(VyU,L)
= g(W(@U,®V), L) — mg(h*(V,®U), L) + g(h*(V,U), L),
which implies (3.14). |

Theorem 3.11. Let (M, g) be a semi-invariant lightlike submanifold of (M, ®, ) . Then, D* is integrable if and only if
i) mg(h*(U, V) — h*(V,U),N) = g(Aw,V — Aw, U, N),
ii) g(Aw, V.ON) = g(Ay, U, ON),
iii) g(Aw, V, Z) = g(Aw,U, ®Z)
SJorany U,V e T(D*), N € T(Itr(TM)), Z € T(Dy) and Wy, W, € T(tr(T M)).

Proof. From the definition of D*, D* is integrable if and only if
g([U,V],®N) =0,
g&(U,V],N) =0,
and
g(U,Vv],2) =0,
for any U,V € T'(D*), N € T'(itr(TM)) and Z € T'(Dy). Taking U,V € T'(D*), there are some vector fields W, W, €

I['(tr(T M)) such that
U=0W, and V =OW,.
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By use of (2.1), (2.7), (2.8) and (2.10), we find
2([U, V], ®N) g(VyV,®N) - g(VyU, ON)
= 3(VyOW,, ®N) - 3(VyOW,, ON)
= mg(Vy®Ws,N) - g(VyW,, N) — mg(Vy®W,, ©N) + g(Vy Wi, ON)
= mg(Vy®W, — VyOW,,N) + g(Aw,U — Ay, V,N)
= mg(h*(U,®W,) — h*(V,®W)), N) + g(Aw,U — Aw, V. N),

which gives (7).
Moreover,
g(U,VI,N) = &VyV,N)-gVyUN)
= g(Vy®W,, N) - §(VyOW;,N)
= Z(@VyW,,N) - g(D®Vy W, N)
= g(VyW,, ®N) - g(VyW;, ®N)
= g(Aw,V -Aw,UN),

which implies (ii).

Also,
(U VLZ) = g(VuV.2)-3g(VvU.2)
= 3VyOW,,2) - 3(VyOW,,2)
= @VyW2,2) - g(@VyWy,2)
= 3VyW,, ®Z) - 3(Vy W, dZ)
= g(Aw,V -Aw,U,2),
from which we obtain (iii). |

Theorem 3.12. Let (M, g) be a semi-invariant lightlike submanifold of (M, ®, ). Then, RadT M is integrable if and
only if
i) *(E1, ®E,) = h*(DEy, E»),
ii) h'(E, ®E>) = h'(QE), E»),
iii) h*(Ey, PE») = h*(PEy, E»),
) Ay E» = AL Ey,
forany E\, Ey, E3 € T(RadT M), N € T(ltr(TM)), Z € T(Dy) and L € T(S(T M™)).
Proof. From the definition of RadT M, RadT M is integrable if and only if
&([E\, E2], ®N) = 0,
8([Ey, E2], ©F3) = 0,
8([E1, E2],@L) = 0,
and
8(E Ex],Z) = 0,
for any E1, E», E3 € [(RadTM), N € T(Itr(TM)), Z € T(Dy) and L € T'(S(T M™)).
By use of (2.1), (2.7), (2.10) and (2.11), we can write
Z(E\, E;l,ON) = gV Ey, ®N) - §(Vi, Ey, ©N)
= Z(@VgExN) - g@Vg,E N)
= (Vg ®E2,N) - 2(Ve, ®E1, N)
= g(VEl(DEZaN)_g(VEz(DEI,N)
= g(h*(El’q)EZ)’ N) _g(h*(EZ’(DEl)’N)’
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8(E\,E>],®E3) = (Vg E>, ®E3) - g(Vp,E, OE;3)
= §(®Vg, E,, E3) - gDV, E, E3)
= gV, ®E>, E3) - §(Vi,OF,, E3)
= g(Vg,®E,, E3) — g(Vg,PE, E3)
= g(W'(E\, ®F,), E3) — g(h'(E», ®F)), E3),

8(E\,E2],®L) = §(Vg E>, ®L) - §(VE,E, OL)
= Z(DVg Es, L) - gDV, E L)
= g(Vg,®E;, L) - 3g(Vg,®E;, L)
= (Vg ®E;, L) - g(Vi,PE, L)
= g(h*(Ey,®Ey), L) — g(h*(E;, OE)), L),

8(E1,E2),2) = g(VpEyZ)-§(VpE2)
= g(A} E2.Z) - g(AL E\, 2),

which completes the proof. O

Theorem 3.13. Let (M, g) be a semi-invariant lightlike submanifold of (M, D, 8). Then, ®RadT M is integrable if and
only if

i) g(h(QE,, E»), E3) = g(h'(®E», E)), E5),

ii) g(W*(PEY, Er), L) = g(h*(PEy, EY), L),

iii) g(OE>, ANDE;) = g(OE|, ANyDE>),

iv) g(Ap, PE>, ©Z) = g(Ag, PE|, PZ),

forany E, E», E3 € T(RadT M), N € T(ltr(TM)), Z € I'(Dy) and L € T'(S (T M1)).

Proof. From the definition of ®RadT M, ®RadT M is integrable if and only if
8([PE,, PE,], ®E3) = 0,

§([QE,, DE,],@L) = 0,

2(DE;, PE>],N) =0,
and
3(DE, PE>],Z) = 0,
for any E|, E», E3 € T(RadTM), N € T(Itr(TM)), Z € T(Dy) and L € T(S(TM™)).
By use of (2.1), (2.7), (2.10) and (2.11), we can write
Z(DE|, ®E,],PE;) = §(Vor, ®Ey, PE3) — §(Vor, DE;, OEs)
= (@Yo Ey, OE3) — PV, E1, OE3)
= mg(®Vor Es, E3) — §(Vor, Ez, E3) — mg(®Vop, E1, E3) + §Vor, E1, E3)
= mg(Vor, PEs, E3) — §(Vor, Ez, E3) — mg(Vorp, ®E, E3) + §Vor, E1, E3)
= g(h(®Ey,Ey), Es) — g(h'(DE,, Ey), E3),

(DE|,®E,],®L) = g(Vep ®PE), ®L) — §(Vor, DE;, DL)
= (Vg Er, ®L) — 3(DVep, E1, DL)
= mg(®Vor, Es, L) — §Vor, Ez, L) = mg(®Vop,E, L) + Vo, E1, L)
= mg(Vor, ®E>, L) — §(Vor, Ez, L) = mg(Vop, ®E), L) + Vo, E1, L)
= g(h*(DEy, Ey), L) — g(h*(PEy, Er), L),
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8([DE, DE,], N) 8(Vor, ®E2, N) — g(Vor, PE;, N)

= OFE g(PE>, N) — §(PEy, Vor, N) — PE,g(PE}, N) + §(DE, Vor,N)
= —8(®E>,Vog,N) + §(®E;, Vor,N)
= g(PEy, ANDE)) - g(PE,, ANDE)),

8(DE|,®E>],Z) = g(Vor, PE1,Z) — §(Vor,®E,Z)
= g(OVog Er,Z) — g(®Vor,Ey, Z)
= 2(Vor, E2, ©Z) — §(Vor, E1, DZ)
= g(Vog Er,®Z) — g(Vor, E(, PZ)
= —g(Ag,®E,,DZ) + g(Ag, OE,, ®Z),

which gives the proof of our assertion. O
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