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Abstract: Graceful labelings constitute one of the classical subjects in the area of graph labelings; among them,
the most restrictive type are those called α-labelings. In this work, we explore new techniques to
generate α-labeled graphs, such as vertex and edge duplications, replications of the entire graph, and
k-vertex amalgamations. We prove that for some families of graphs, it is possible to duplicate several
vertices or edges. Using k-vertex amalgamations we obtain an α-labeling of a graph that can be
decomposed into multiple copies of a given α-labeled graph as well as a robust family of irregular
grids that can α-labeled.
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1. Introduction

The roots of difference vertex labelings can be found in the area of combinatorial design, in particular,
this type of graph labeling was introduced as a mechanism to determine the veracity of two conjectures
associated with the decomposition of complete graphs into copies of a given tree. The first of these
conjectures, due to Ringel [13], states that the complete graph K2n+1 can be decomposed into copies
of any tree of size n. The second conjecture, posed by Kotzig [10], goes even further by adding the
condition that the decomposition is cyclic. Let G be a graph of size n, a difference vertex labeling of
G is a one-to-one function f : V (G) → S, where S is a set of non-negative integers, with the property
that every uv ∈ E(G) has associated a weight determined by |f(u) − f(v)|. In [14], Rosa defined four
of these labelings by introducing some conditions to the set S and to the set of weights induced by the
function. Rosa said that the function f is a β-valuation if S = {0, 1, . . . , n} and the set of weights is
W = {1, 2, . . . , n}. Years later, Golomb [7] used the term graceful labeling to refer to this valuation.
Graceful labelings are a special case of another labeling introduced by Rosa. A ρ-valuation satisfies
S = {0, 1, . . . , 2n} and the set of weights is W = {w1, w2, . . . , wn}, where wi = i or wi = 2n+ 1− i. Rosa
[14] proved that a cyclic decomposition of K2n+1 into copies of a given graph of size n exists if and only if
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there exists a ρ-labeling of G. Therefore, in these three articles we can see the origin of the most famous
conjecture in the area of graph labeling, known as the graceful tree conjecture that expresses that every
tree admits a graceful labeling.

Rosa and Širáň [16], introduced the concept of bipartite labeling of a tree. In [3], Barrientos and
Minion extended their definition to include all bipartite graphs. Let G be a bipartite graph and {A,B}
be the natural bipartition of V (G); we refer to A and B as the stable sets of G and reserve the symbols
a and b to represent the respective cardinalities of these sets. Assuming that G is a bipartite graph,
a difference vertex labeling of G is said to be bipartite if there exists an integer λ, called the boundary
value of f , such that f(u) ≤ λ < f(v) for every (u, v) ∈ A × B. In [14], Rosa defined an α-valuation
(or α-labeling) as a bipartite graceful labeling. We say that an α-graph is any graph that admits an
α-labeling. Rosa [14] proved that if a graph G of size n admits an α-labeling, then there exists a cyclic
decomposition of K2tn+1 into subgraphs isomorphic to G, where t is any natural number. This labeling
is the most versatile of the labelings introduced by Rosa; it can be transformed into several types of
labelings such as harmonious, magic, and antimagic. A detailed description of its interaction with other
labelings can be found in [11] and also in [19]. Thus, the study of α-graphs has implications in other
related research areas. This work is completely devoted to the study of this labeling.

In Section 2 we introduce some existing results that are used in the coming sections to build new
families of α-graphs. In Section 3 we work with the concept of vertex duplication, proving that any
vertex of a caterpillar can be duplicated to produce a new α-graph; we go even further, proving that an
α-graph is obtained when any number of pairwise non-adjacent vertices of a caterpillar are duplicated. In
Section 4 we study edge-duplications, proving that a graceful graph is obtained when an edge of a cycle is
duplicated and when the size of the cycle is even the labeling obtained is in fact an α-labeling. Moreover,
we prove a similar result if two selected edges of a cycle are duplicated. We conclude that section by
proving that any number of edges on the spine of a caterpillar can be duplicated and the outcome is an
α-graph. In Section 5 we extend the idea of vertex duplication; now we duplicate every vertex of a graph
with an action that resembles the Cartesian and the (weak) tensor product of a graph and a path. We
show that when a graph admits an α-labeling and all the vertices are duplicated the same number of
times, the final graph is also an α-graph. In Section 6 we analyze the process of vertex amalgamation
by studying some conditions that allow us to amalgamate multiple vertices of α-labeled graphs. This
construction is used to generate new α-graphs, among the graphs obtained we have a supersubdivision
of cycles of even size and a family of quadrangular cacti whose bases are some α-trees. We finish this
section introducing a family of graphs whose vertices are points in the orthogonal integer lattice; we call
these graphs irregular grids; an α-labeling for these grids is obtained using the tools presented in this
section.

The reader interested in this type of problems can find more information in the work of López and
Muntaner-Batle [11] and in Gallian’s survey [6]. All graphs considered here are finite with no loops nor
multiple edges. The technical terminology not defined here is taken from [5] and/or [6].

2. The essential results

Since the introduction of the concepts of graceful and α-labeling, many results have been obtained.
In this section we provide, without proof, some of the results that are essential in the coming sections.

Suppose that G is a graph of size n and f is a difference vertex labeling of G. A shifting of f in
c units is the labeling g of G defined for every v ∈ V (G) as g(v) = f(v) + c; clearly, the weight of any
given edge of G is the same under both labelings. If f is a graceful labeling, its complementary labeling
is the function f defined as f(v) = n − f(v) for every v ∈ V (G). If f is an α-labeling with boundary
value λ, then f is an α-labeling with boundary value n − λ. Note that if f assigns the label 0 on the
stable set A, f does it on the stable set B; in other terms, if f assigns the smaller labels to the elements
of A, f assigns the larger labels on this stable set. Each α-labeling of G is also associated with other
two important labelings of G; the first one is called the reverse of f , denoted by fr, and is defined as
fr(v) = λ − f(v) if f(v) ≤ λ and fr(v) = n + λ + 1 − f(v) if f(v) > λ. Take note of the fact that fr is
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also an α-labeling; thus, in general terms, the number of graceful labelings of a graph is always divisible
by 2 and the number of α-labelings is always divisible by 4. This labeling was also introduced by Rosa
[15] but under the name of inverse labeling.

A graph G of size n is said to be arbitrarily graceful if for every positive integer d, there exists a
difference vertex labeling that induces the weights d, d + 1, . . . , d + n − 1. When d > 1, the function
is called d-graceful labeling. For any positive integer d, an α-labeling f of G can be transformed into a
d-graceful labeling, this transformation (also called amplification) can be done by adding the constant
d − 1 to each vertex label larger than the boundary value of f . This property of the α-labelings was
proven, independently, by Maheo and Thuillier [12] and Slater [18]. In the coming sections, we transform
some of the α-labelings into d-graceful labelings, to obtain, new and larger α-graphs. When G is an
α-tree of size n and f is an α-labeling of G with boundary value λ, the associated d-graceful labeling
shifted c units assigns the labels in the set {c, c+ 1, . . . , λ+ c}∪{λ+ c+d, λ+ c+d+ 1, . . . , n+ c+d−1}
and induces the weights in the set {d, d+ 1, . . . , n+ d− 1}.

In [14], Rosa proved, among other results, the existence of α-labelings for two types of graphs used in
this work, caterpillars and cycles of size divisible by 4. In Figure 1 we show an example of these labelings
using a caterpillar and a cycle, both of order 12. The distribution of the labels can be extended to any
other member of the respective family.

11 10 9 8 7 6

0 1 2 3 4 5

12 11 10 9 8 7

0 1 2 4 5 6

Figure 1. A caterpillar and a cycle with their respective α-labeling

Let G1 and G2 be two graphs; a graph G is the result of a vertex amalgamation of G1 and G2 if
a vertex of G1 is identified (merged) with a vertex of G2. Let G1 and G2 be α-labeled graphs, it is
well-known that the chain graph obtained amalgamating G1 and G2 is an α-graph; the amalgamation is
done by identifying the vertex labeled 0 of G2 with the vertex of G1 which label is the boundary value of
its α-labeling. Furthermore, a wider category of graphs is obtained if G2 is just a graceful graph; in this
case, we obtain a graceful chain graph. The k-vertex amalgamation of G1 and G2 is the graph obtained
by identifying k independent vertices of G1 with k independent vertices of G2. In Section 6 we discuss
an alternative to use this multi-vertex amalgamation to generate new α-graphs. An edge amalgamation
of G1 and G2 is the process of identifying an edge of G1 with an edge of G2. If both graphs have been
α-labeled, there is an α-graph G that is the result of the amalgamation of the edge of weight n1 in G1

with the edge of weight 1 in G2, where n1 is the size of G1. This result was proven by Barrientos and
Minion in [2]. Observe that in both types of amalgamations, the second condition that asks for two
α-graphs can be replaced by an α-graph and a graceful graph, but now the outcome is a graceful graph
instead of an α-graph.

The following definition was given by Sethuraman and Selvaraju [17]. Let G be a graph of order m
and size n; a graph H is called a supersubdivision of G if H is obtained from G by replacing every edge e
of G by a complete bipartite graph K2,se in such a way that the end-vertices of e are amalgamated with
the vertices of the 2-element stable set of K2,se and the edge e is deleted. Note that the complete bipartite
graphs used in these replacements do not need to be isomorphic. In [1], Barrientos and Barrientos proved
that any graph of positive size has a supersubdivision that admits an α-labeling.
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3. Duplicating vertices

The duplication of a vertex v of a graph G is the graph G′ obtained from G by adding a new vertex
v′ to G and connecting v′ to all the neighbors of v. In [9], Kaneria et al. proved that the duplication of
a vertex of a cycle of even size is graceful. In the following proposition we prove that every vertex of a
caterpillar can be duplicated to produce a new α-graph. Recall that the spine of a caterpillar is the path
containing all the vertices of degree larger than 1.

Proposition 3.1. Every vertex of a caterpillar can be duplicated to produce a new α-graph.

Proof. Suppose that G is a caterpillar of size n. Let v ∈ V (G) be the vertex to be duplicated. If
deg(v) = 1, then G′ is a caterpillar of size n+ 1, which is an α-graph. Suppose that deg(v) > 1. The size
of G′ is n + deg(v) and its order is n + 2. Since G is bipartite and v′ is only connected to the vertices
adjacent to v, we get that G′ is also a bipartite graph.

Suppose that f is the α-labeling of G that follows the pattern in Figure 1; we define an α-labeling
g of G′ as follows:

g(u) =

 f(u) if f(u) ≤ f(v),
f(u) + deg(v) if f(u) > f(v),
f(v) + deg(v) if u = v′.

Let u1v, u2v, . . . , ukv be the edges ofG incident to v. The weights of these edges form a set of k consecutive
integers. Let wi = |f(ui)− f(v)|; without loss of generality we assume that w1 < w2 < · · · < wk.

When v ∈ A, wi = f(ui)− f(v), we get

g(ui)− g(v) = f(ui) + k − f(v) = f(ui)− f(v) + k = wi + k

and

g(ui)− g(v′) = f(ui) + k − f(v)− k = f(ui)− f(v) = wi.

Thus, the weights of the edges incident to v or v′ form the set {w1, w2, . . . , wk, w1+k,w2+k, . . . , wk+k} =
{w1, w1 + 1, . . . , w1 + 2k − 1} because wi+1 = wi + 1. Let xy ∈ E(G) with x ∈ A. If f(y)− f(x) < w1,
then g(y) − g(x) = f(y) − f(x) because both original labels are incremented k units. If f(y) − f(x) >
wk = w1 + k − 1, then g(y)− g(x) = f(y)− f(x) + k because only the label of y increases k units. This
implies that the new weight of xy is at least equal to w1 + 2k. Consequently, the set of induced weights
is {1, 2, . . . , n+ k}.

When v ∈ B, wi = f(v)− f(ui) and g(v)− g(ui) = wi but g(v′)− g(ui) = f(v) + k− f(ui) = wi + k.
Thus, the set of weights induced on the edges incident to v or v′ is {w1, w1 + 1, . . . , w1 + 2k − 1}. Let
xy ∈ E(G) with x ∈ A. If f(y)− f(x) < w1, then g(y)− g(x) = f(y)− f(x) because none of the original
labels are incremented. If f(y)− f(x) > wk, then g(y)− g(x) = f(y)− f(x) + k because only the label of
y increases k units. As in the previous case, these edges have weights in {w1 +2k,w1 +2k+1, . . . , n+k}.
Then, the set of induced weights is {1, 2, . . . , n+ k}.

Since the largest label used is n+k, and every label is used exactly once, this is a graceful labeling of
G′; moreover, the labels assigned by g to the vertices of B are larger than those assigned to the elements
of A, therefore, g is an α-labeling of G′.

In Figure 2 we show a sequence of examples where each internal vertex of a caterpillar has been
duplicated.

There are two features of the vertex duplication that we want to mention:

• Let v be the vertex of G, selected to be duplicated; if deg(v) = 2, then the graph G′, can be seen,
as a supersubdivision of the caterpillar G.
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Figure 2. α-labeled graphs obtained by duplicating every internal vertex of a caterpillar

• If G is a tree, the subgraph of G induced by the edges incident to v is isomorphic to the complete
bipartite graph K1,deg(v). In the case of a caterpillar with the α-labeling described before, the
labels of the vertices adjacent to v form a set of consecutive integers. The labels of v and v′ are
deg(v) units apart. Thus, the subgraph formed by all the edges incident to v or v′ is isomorphic
to K2,deg(v) and the labeling of this graph is a shifting of a d-graceful labeling. Consequently, if
instead of adding one new vertex we add any number of copies of v, the previous result still holds.

In the next theorem we prove that for any subset of vertices of a caterpillar, such that the vertices
in this subset are pairwise non-adjacent, we can duplicate all the elements of this set and the result is an
α-graph.

Theorem 3.2. Let G be a caterpillar and S be a subset of V (G). If the elements of S are pairwise
non-adjacent, then an α-graph is obtained by duplicating all of them.

Proof. If S contains any vertex of degree one, its duplication results in another caterpillar, which admits
an α-labeling. Therefore we may assume that all the vertices in S are in the spine of the caterpillar.
Let S = {v1, v2, . . . , vs} where dist(vi, vj) ≥ 2 and the path connecting vi and vi+1 does not contain any
other member of S. The graph G can be decomposed into s subgraphs, being each of them a caterpillar
containing exactly one element of S. Thus, each of these caterpillars has only one vertex that has been
duplicated; consequently, each of them is an α-graph. The α-labeling of each of these graphs can be
amplified and shifted conveniently in such a way that there is no repetition of weights when they are
taken collectively, the shiftings can be made in such a way that the vertices on the spine used in the
decomposition are the only one where a label is repeated. The concatenation of these graphs is made
using vertex amalgamation. Thus, an α-labeling of G′ can be obtained.

In Figure 3 we show this procedure, where three vertices of the spine are duplicated, one of them
more than once, and an end-vertex is also duplicated. The different colors are used to emphasize the
subgraphs in the decomposition mentioned in the proof of this theorem.
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Figure 3. α-labeling of a graph obtained by duplicating multiple vertices of a caterpillar

4. Duplicating edges

The duplication of an edge e = uv of a graph G, is the process that consists of the introduction of an
edge e′, with end-vertices u′ and v′, and the additional edges uu′ and vv′, that connect e′ to the graph
G. Kaneria et al. [9] proved that the duplication of an edge of an even cycle is graceful. In the following
results we extend this result by showing, first, that this is also valid with an odd cycle, and second that
more edges of a cycle can be duplicated with the same end result.

Proposition 4.1. If G is the result of an edge duplication of the cycle Cn, then G admits a graceful
labeling when n is odd and an α-labeling when n is even.

Proof. Recall that Cn is graceful if and only if n ≡ 0, 3(mod 4) and it is an α-graph if and only if
n ≡ 0(mod 4). The graph G can be explained as the edge amalgamation of C4 and Cn; based on the
result in [2] and the fact that C4 is an α-graph, we know that G is graceful or an α-graph depending on
the value of n. So, we need to analyze the cases where Cn is not graceful. In either case we consider
G as the outerplanar graph, obtained from Cn+2, with a single chord connecting two vertices located at
distance 3 from each other. Note that the case n ≡ 2(mod 4) was solved in [9], i.e., we just need to study
the case n ≡ 1(mod 4). We denote by v1, v2, . . . , vn+2 the consecutive vertices of Cn+2.

For n ≡ 1(mod 4), we use the following labeling of the vertices of Cn+2:

f(vi) =


i−1
2 if i is odd,
n+ 4− i

2 if 2 ≤ i ≤ n−1
2 is even,

n+ 3− i
2 if i = n+3

2 ,
n+ 2− i

2 if n+7
2 ≤ i ≤ n+ 1 is even.

Note that when i is odd, f is increasing with range {0, 1, . . . , n+1
2 }, when i is even, f is decreasing

with range {n+3
2 , n+5

2 , . . . , 3n+1
4 } ∪ {

3n+9
4 } ∪ {

3n+17
4 , 3n+21

4 , . . . , n + 3}. Thus, the labels assigned by f
are in the set {0, 1, . . . , n+ 3}, where n+ 3 is the size of G.

For each n+7
2 ≤ i ≤ n+1 even, the edge vi−1vi has weight f(vi)−f(vi−1) = n+2− i

2−
i−2
2 = n+3−i,

while vi+1vi has weight f(vi)− f(vi+1) = n+ 2− i
2 −

i
2 = n+ 2− i. In other terms, the weights of the

edges incident to vi are two consecutive integers. Therefore, for these values of i, the weights on all these
edges form the set {1, 2, . . . , n−12 }. The edge v1vn+2 has weight f(vn+2) − f(v1) = n+2−1

2 − 0 = n+1
2 .

When i = n+3
2 , vivi−1 has weight f(vn+3

2
)−f(vn+1

2
) = n+3− n+3

4 −
n+1
2 −1
2 = n+5

2 and vivi+1 has weight
f(vn+3

2
)− f(vn+5

2
) = n+3

2 . Similarly, for each 2 ≤ i ≤ n−1
2 even, vi−1vi has weight n + 5 − i and vi+1vi

has weight n+ 4− i; thus, {n+9
2 , n+11

2 , . . . , n+ 3} is the set formed by the weights of these edges. Hence,
the weights on the edges of Cn+2 form the set {1, 2, . . . , n+ 3} − {n+7

2 }.
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Since vn−1
2

and vn−1
2 +3 are three units apart, when they are connected, the cycles C4 and Cn are

formed, i.e., the graph G is obtained. The weight of the new edge is f(vn−1
2

) − f(vn−1
2 +3) = n + 4 −

n−1
4 −

n+5
2 −1
2 = n+7

2 , that is, the weight that has not been obtained on Cn+2. Therefore, f is a graceful
labeling of G.

Let e1, e2 ∈ E(G), we define the distance between e1 and e2, denoted by dist(e1, e2), as the length
of the shortest path connecting an endvertex of e1 to an endvertex of e2. In the next theorem we prove
that the duplication of two edges of the cycle Cn is a graceful graph when the edges duplicated are at
distance 1, 2, or 3.

Theorem 4.2. Let e1, e2 be non-incident edges of Cn and G be the graph obtained from Cn by duplicating
e1 and e2. If dist(e1, e2) ∈ {1, 2, 3}, then G is a graceful graph when n is odd or an α-graph when n is
even.

Proof. The graph G has order n + 4 and size n + 6. Let e1, e2 ∈ E(Cn) such that σ = dist(e1, e2) ∈
{1, 2, 3}. The graph G can be formed by connecting four subgraphs, denoted by G1, G2, G3, G4, where
each Gi is vertex amalgamated to Gi+1 and G4 is connected to G1 with an edge. On Gi, we distinguish
two vertices, denoted by ui and vi; thus, vi is amalgamated to ui+1 and an edge is used to connect v4 and
u1. These subgraphs are chosen in such a way that G1

∼= C4, C2
∼= Pr, and G3

∼= Ps, where s = n− r−σ
and

r =


n
2 if n ≡ 0(mod 4),
n+1
2 if n ≡ 1(mod 4),

n
2 if n ≡ 2(mod 4),
n+3
2 if n ≡ 3(mod 4).

The graph G4 varies with σ; in general, it can be described as the vertex amalgamation of C4 and a path
of order σ. All these subgraphs admit an α-labeling. The labeling of G1 is (0, 4, 1, 2); the labeling of the
paths G2 and G3 is the one given in Section 2 or its complementary; the labeling of G4 is given in the
following diagram, where each residue class of n is considered, the vertices u4 and v4 are highlighted.

In G1, the vertices u1 and v1 are those labeled 1 and 2, respectively. In G2 and G3, the distinguished
vertices are the corresponding end-vertices.

The α-labeling of G1 is transformed into a (n + 3)-graceful labeling, thus u1 is labeled 1 and v1
is labeled n + 4. For i = 2, 3, the α-labeling of Gi is chosen based on the new labeling of Gi−1, then
it is amplified and shifted in such a way that the label of ui matches with the label of vi−1, in this
way there is no repetition of labels, except for the vertices that are going to be amalgamated. Thus,
assuming that f is the α-labeling of the path given in Section 2, the α-labeling of G2 is f shifted 2
units and amplified to produce a largest weight equal to n + 2. The α-labeling of G3 is f only when
n ≡ 0(mod 4), otherwise it is f , this is amplified to produce a largest weight equal to n+4

2 when n is
even, n+3

2 when n ≡ 1(mod 4), or n+1
2 when n ≡ 3(mod 4). The α-labeling of G4, taken from the

previous chart, is just shifted based on the final label of v3. Then, the weights on the edges of the union
of these four graphs form the set {1, 2, . . . , n − 6} − {x}, where x = n+6

2 when n is even, x = n+5
2

when n ≡ 1(mod 4), or x = n+3
2 when n ≡ 3(mod 4). Hence, the information of the following chart holds.

Final label of v3 Final label of v4 Weight of u1v4
n ≡ 0(mod 4) n/2 (n+ 8)/2 (n+ 6)/2

n ≡ 1(mod 4) (n+ 11)/2 (n+ 7)/2 (n+ 5)/2

n ≡ 2(mod 4) (n+ 2)/2 (n+ 8)/2 (n+ 6)/2

n ≡ 3(mod 4) (n+ 11)/2 (n+ 5)/2 (n+ 3)/2

Consequently, if we connect with an edge the vertices u1 and v4 we obtain an edge with a weight
that complements the set of weights on the concatenation of these graphs. Therefore, the graph G is
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Different α-labeled alternatives for the graph G4

σ

1

2

3

n ≡ 0(mod 4) n ≡ 1(mod 4) n ≡ 2(mod 4) n ≡ 3(mod 4)

4 0

1 2

v4 u4

2 4

3 0

3 0

2 4

1 4

3 0

4 1 5

2 0

v4 u4

3 4 0

2 5

3 2 5

4 0

2 3 0

1 5

5 3 4 0

1 6

v4 u4

3 1 2 6

5 0

4 3 5 0

2 6

2 3 1 6

4 0

graceful. Furthermore, when n is even, G and its labeling are bipartite, which implies that G is indeed
an α-graph. The boundary value of this α-labeling is λ = n+2

2 when n ≡ 0(mod 4) and λ = n+6
2 when

n ≡ 2(mod 4).

In the previous section we study how to duplicate any vertex on the spine of a caterpillar, now we
analyze how to duplicate any edge on the spine.

Proposition 4.3. Let G be a caterpillar of diameter at least three. An α-graph is obtained by duplicating
any edge on the spine of G.

Proof. Let e = v1v2 be any edge on the spine of G; thus, G−e has two components that are caterpillars
on their own. We denote these components by G1 and G2 and assume that vi ∈ V (Gi) and ni is the size
of Gi. We know that there exists an α-labeling fi of Gi, with boundary value λi, such that f1(v1) = λ1
and f2(v2) = n2.

If H is the graph that result of the duplication of e, then H can be seen as the chain graph obtained
using G1, C4, and G2 in this specific order. To generate an α-labeling of H we proceed as follows.
The function f1 is transformed into a (n2 + 5)-graceful labeling; this new labeling uses the labels in
{0, 1, . . . , λ1} ∪ {n2 + λ1 + 5, n2 + λ1 + 6, . . . , n1 + n2 + 4} and induces the weights in {n2 + 5, n2 +
6, . . . , n1 + n2 + 4}. The labeling f2 is shifted λ1 + 2 units; thus, the new labeling of G2 uses the labels
in {λ1 + 2, λ1 + 3, . . . , n2 + λ1 + 2} and induces the weights in {1, 2, . . . , n2}. The α-labeling of C4 is
the one that assigns the labels 0, 4, 1, 2 to the consecutive vertices; this labeling is transformed into a
(n2+1)-graceful labeling shifted λ1 units. Hence, the new labels are λ1, n2+λ1+4, λ1+1 and n2+λ1+2,
respectively; the induced weights are {n2 + 1, n2 + 2, n2 + 3, n2 + 4}. Note that the weights on the edges
of the union of these three graphs form the set {1, 2, . . . , n1 +n2 + 4}, where n1 +n2 + 4 is the size of H,
and the labels are in {1, 2, . . . , n1, n2 + 4}, being λ1 and n2 + λ1 + 2 the only labels used twice. So, to
form the graph H we identify the vertices labeled λ1 of G1 and C4 and the vertices labeled n2 +λ1 + 2 of
G2 and C4. Since all the labelings used are bipartite, the final labeling of H is in fact an α-labeling.
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An important characteristic of this labeling of H is that its boundary value is assigned either on a
leaf maximum of eccentricity or on a vertex adjacent to a leaf of maximum eccentricity. Therefore, we
can create a chain graph using multiple graphs similar to H, that is, built in the same way, to produce
an α-graph that is the result of duplicating multiple edges of the spine of a caterpillar. Thus, we have
the following corollary.

Corollary 4.4. Let G be a caterpillar of diameter at least three. An α-graph is obtained by duplicating
any number of edges on the spine of G.

In Figure 4 we show an example of this corollary, where the four edges on the spine of a caterpillar
of size 12 have been duplicated.
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Figure 4. α-labeling of a graph obtained by duplicating some edges of a caterpillar

5. Connecting multiple copies of an α-graph

Some authors used G�H to represent the traditional Cartesian product of the graphs G and H, the
reason for this notation is based on the fact that a given edge uv ∈ E(G) induces a square in G×H. In
this section we present a graph obtained with r copies of a graph G, that could be written as G ./ Pr.

The r-tie of a graph G, is the graph H obtained with r copies of G, say G1, G2, . . . , Gr, where
every vertex in Gi is adjacent to all the vertices adjacent to its copy in Gi+1. More formally, for each
i ∈ {1, 2, . . . , r}, let Gi be a copy of a graph G of order m and size n, where V (Gi) = {vi1, vi2, . . . , vim};
assuming that vi+1

k is the copy of vik in Gi+1, we say that a graph H is the r-tie of G if V (H) = ∪ri=1V (Gi)

and E(H) = ∪ri=1E(Gi) ∪ {uijv
i+1
k : 1 ≤ i ≤ r − 1 ∧ uijvik ∈ E(Gi)}. Thus, we have that H is a graph of

order rm and size n(3r − 2) that can be decomposed into 3r − 2 copies of G. In the next theorem we
prove that when G is an α-graph, any r-tie of G is also an α-graph.

Theorem 5.1. If G is an α-graph, then for each r ≥ 2 the r-tie of G is also an α-graph.

Proof. Suppose that G is an α-graph of order m and size n with stable sets A and B. Then, there
exists an α-labeling f of G that assigns the label 0 to a vertex of A; this implies that the boundary value
of f is at least λ = |A| − 1. Let H be the r-tie of G, where r ≥ 2; if V (G) = {v1, v2, . . . , vm}, then
V (Gi) = {vi1, vi2, . . . , vim} where Gi is the ith copy of G in H and 1 ≤ i ≤ r. Consider the following
labeling of the vertices of H:

g(vij) =

{
(3r − 2)f(vj) + (i− 1) if f(vj) ≤ λ,
(3r − 2)f(vj) + 2(i− 1) if f(vj) > λ.
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Note that the first part of this function is strictly increasing, while the second part is strictly de-
creasing. Moreover, when f(vj) ≤ λ, we get that min{g(vij) : 1 ≤ i ≤ r} = 0 and max{g(vij) : 1 ≤ i ≤
r} = (3r−2)λ+ r−1. When f(vj) > λ, we get that min{g(vij) : 1 ≤ i ≤ r} = (3r−2)(λ+ 1)−2(r−1) =

(3r − 2)λ + r and max{g(vij) : 1 ≤ i ≤ r} = (3r − 2)n − 2(1 − 1) = n(3r − 2). Hence, g is an injective
function with range in the interval [0, n(3r − 2)]. If A is the stable set of H that contains the vertex
labeled 0 by g, then the largest label on a vertex of A is Λ = (3r − 2)λ+ r − 1.

Now we turn our attention to the weights induced by g on the edges of H. Let vavb ∈ E(G) such
that f(vb) − f(va) = w, where w ∈ {1, 2, . . . , n}. Then, g(vib) = (3r − 2)f(vb) − 2(i − 1), g(via) =

(3r − 2)f(va) + (i− 1), g(vi+1
b ) = (3r − 2)f(vb)− 2i, and g(vi+1

a ) = (3r − 2)f(va) + i. Therefore,

g(vib)− g(via) = (3r − 2)(f(vb)− f(va))− 3(i− 1) = (3r − 2)w − 3i+ 3,

g(vib)− g(vi+1
a ) = (3r − 2)(f(vb)− f(va))− 3i+ 2 = (3r − 2)w − 3i+ 2,

g(vi+1
b )− g(via) = (3r − 2)(f(vb)− f(va))− 3i+ 1 = (3r − 2)w − 3i+ 1,

g(vi+1
b )− g(vi+1

a ) = (3r − 2)(f(vb)− f(va))− 3i = (3r − 2)w − 3i.

In other terms, these four weights form the set Wi = {(3r−2)w−3i+k : 0 ≤ k ≤ 3}, where 1 ≤ i ≤ r−1
and ∪r−1i=1Wi = [(3r − 2)w − 3(r − 1), (3r − 2)w]. Taking the union of these intervals over all the values
of w, we get ∪nw=1[(3r − 2)w − 3(r − 1), (3r − 2)w] = [1, n(3r − 2)]. Thus, the set of weights induced by
g on the edges of H is {1, 2, . . . , n(3r − 2)}. Therefore, g is a bipartite graceful labeling, in other terms,
g is an α-labeling of H with boundary value Λ.

In Figure 5 we show an example of this labeling method for G ∼= C8 and r = 3.

24

26

28

31
33

35
45

47

49

52
54

56

0

1

2

7
8

9

14

15

16

21
22

23

Figure 5. α-labeling of the 3-tie of C8

6. k-vertex amalgamation

The k-vertex amalgamation is the process that allows us to construct a new graph starting with two
graphs G1 and G2 each of order at least k, where k selected vertices from each graph are merged. Note
that if two adjacent vertices from G1 are amalgamated with two adjacent vertices from G2 we obtain a
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multigraph. In the context of this work, the k vertices on each set are pairwise non-adjacent, in this way,
we can be sure that the outcome of the amalgamation is indeed a graph, that is, there are no multiple
edges present.

Lemma 6.1. For i = 1, 2, let Γi be a tree with stable sets Ai and Bi. If Γi admits an α-labeling, then
there exists an α-graph obtained amalgamating k vertices of B1 with k vertices of B2, where 1 ≤ k ≤
min{|B1|, |B2|}.

Proof. For i = 1, 2, assume that Γi is an α-tree of size ni with stable sets Ai and Bi, where |Ai| = ai and
|Bi| = bi. Any graph obtained via k-vertex amalgamation of Γ1 and Γ2 is bipartite of size n1+n2 and order
n1+n2+2−k, where 1 ≤ k ≤ min{b1, b2} is the amount of pairs of vertices amalgamated. Since Γi is an α-
tree, there exists an α-labeling fi of Γi that assigns the label 0 to a vertex of Ai. The labeling f2 is shifted
a1+k−1 units; thus, the set of new labels is L2 = {a1+k−1, a1+k, . . . , a1+a2+k−2} and the set of induced
weights is still W2 = {1, 2, . . . , n2}. The labeling of Γ1 is transformed into a (n2 + 1)-graceful labeling.
Hence, the set of labels on the vertices of Γ1 is now L1 = {0, 1, . . . , a1−1}∪{n2+a1, n2+a1+1, . . . , n1+n2}
and the set of induced weights is W1 = {n2 + 1, n2 + 2, . . . , n1 + n2}.

Note thatW1∪W2 = {1, 2, . . . , n1 +n2} and that L1∩L2 = {n2 +a1, n2 +a1 +1, . . . , n2 +a1 +k−1},
i.e., a set of cardinality k formed by consecutive integers. So, identifying the vertices of B1 and B2 with
the same label we obtain a graph with an α-labeling.

In Figure 6 we show an example of the construction presented in this lemma, where Γ2 has size 9,
a2 = 6, b2 = 4, Γ1 has size 10, a1 = 5, b1 = 6, the graph on the left side corresponds to the amalgamation
of k = 4 vertices while the graph on the right side is obtained with k = 3.

Γ1 :

0 1 2 3 4 5

9 8 7 6

Γ2 :

10 9 8 7 6 5

0 1 2 3 4

k = 4 :

8 9 10 11 12 13

19 18 17 16 15 14

0 1 2 3 4
k = 3 :

7 8 9 10 11 12

1319 18 17 16 15 14

0 1 2 3 4

Figure 6. α-labelings of some k-vertex amalgamations of two α-trees

The core of the proof of this lemma can be found on the fact that the labels on a stable set of an
α-labeled tree are consecutive integers; this characteristic is also present in the α-labelings of some other
graphs like complete bipartite graphs and some cycles. In particular, the well-known α-labeling of the
cycle C4n assigns consecutive integers to the elements of one stable set, therefore, it can be used in the
context of this lemma. When Γ1 = Γ2 = C4n, the edge amalgamation of the 2n vertices of one stable set
results in a graph H that can be understood as well as the supersubdivision of every edge of C2n where
each edge of this last cycle is replaced by a copy of C4

∼= K2,2. Summarizing, using this lemma together
with the α-labeling of C4n given by Rosa in [14], we can prove the following theorem.

Theorem 6.2. Let n ≥ 2, if every edge of the cycle C2n is supersubdivided, that is, replaced by K2,2, the
resulting graph admits an α-labeling.
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In Figure 7 we show two examples of this construction for the cycles C4 and C6.

16 15

1413

0 8

1

9

311

4

12

24 23 22

212019

0 12

1

13

2

14

416

5

17

6

18

Figure 7. α-labelings of a supersubdivision of C4 and C6

A quadrangular cactus is a connected graph all of whose blocks are squares (the cycle C4
∼= K2,2)

and the block-cutpoint graph is a tree. The lemma also allows us to prove the existence of an α-labeling
for a family of quadrangular cacti.

Theorem 6.3. If T is an α-tree such that all the vertices of one stable set have degree two, then the
quadrangular cactus obtained by duplicating all these vertices is an α-graph.

Proof. To obtain an α-graph from T we just need to apply the construction in Lemma 6.1, where
Γ1
∼= Γ2

∼= T and the α-labeling of T is one that assigns the largest label to the vertices of the stable set
containing no interior vertices. The fact that each vertex in this stable set has degree two guarantees the
obtainment of a square, for every subpath u1 − v − u2, where v is the vertex of degree two.

We show an example of a quadrangular cactus in Figure 8, which α-labeling was attained following
the procedure of Lemma 6.1. We must observe here that the condition that states that the degree must
be two can be dropped, the resulting graph is still an α-graph but it is not a cactus.
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Figure 8. α-labeling of a quadrangular cactus built on an α-tree

We conclude this work with another application of Lemma 6.1. The m × n grid is the Cartesian
product G = Pm × Pn. Assuming that the vertices of this graph have integer coordinates, a cell of G
is the subgraph induced by the vertices (i, j), (i + 1, j), (i + 1, j + 1), and (i, j + 1). This graph can be
understood as a sequence of vertex amalgamations of paths. In particular, if t ≥ 0, the grid Pm × Pm+t

is obtained with the sequence of paths H1, H2, . . . ,H2m+t−2, where
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Hi
∼=


P2i+1 if 1 ≤ i ≤ m− 1,

P2m if m ≤ i ≤ m+ t− 1,

H2m+t−1−i if m+ t ≤ i ≤ 2m+ t− 2,

where all the vertices in the largest stable set of the ith term of the sequence are amalgamated with all
the vertices in the smallest stable set of the (i + 1)th term. In other words, an α-labeling of G can be
obtained applying the method of Lemma 6.1 to this sequence of paths. This labeling does not correspond
with the α-labeling of the grid given by Jungreis and Reid [8].

In [4], Barrientos and Minion introduced the concept of analogous caterpillars. The caterpillars G1

and G2 are said to be analogous if the stable sets of G1 have the same cardinality as the stable sets of
G2. Suppose that for each i ∈ {1, 2, . . . , 2m+ t− 2}, Gi is analogous to the path Hi defined above. We
say that G is an irregular grid of order m × (m + t) if G is obtained from Pm × Pm+t by replacing the
subgraph Hi by an analogous Gi. Note that G is also a bipartite graph where all the cells are copies of
C4 too. We claim that all irregular grids are α-graphs.

Theorem 6.4. All irregular grids are α-graphs.

Proof. Suppose that G is an irregular grid of order m× (m+ t) built with the sequence of subgraphs
G1, G2, . . . , G2m+t−2. We assume that the stable set Bi of Gi has the same cardinality that the stable set
Bi+1 of Gi+1 and that all the vertices in Bi and Bi+1 are amalgamated. Since each of these subgraphs
is a caterpillar, there exists an α-labeling for each of them. For every 2 ≤ i ≤ 2m + t − 2, we apply
the lemma with Γ2 = Gi and Γ1 being the graph obtained with G1, G2, . . . , Gi−1. When this process is
concluded we have an irregular graph with an α-labeling as claimed.

In Figure 9 we present an example of an irregular grid of order 6 × 6 which α-labeling is obtained
using the procedure described in the last theorem.
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Figure 9. α-labeling of an irregular grid
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