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Abstract: In this work, the concepts of quantum derivative and quantum integral were renamed to be the left quantum
derivative and the left definite quantum integral. Symmetrically to the left, a new quantum derivative (the right) and definite
quantum integral (the right) were defined. Some properties of these new concepts were investigated and as well as according
to do these new concepts some inaccuracies in quantum integral inequalities were corrected. Moreover, some new quantum
Hermite-Hadamard type inequalities were established.
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Sol Sag Kuantum integrallerine Dayali Bazi Kuantum
Integral Esitsizlikleri

Oz: Bu calismada, kuantum tiirevi ve kuantum integrali kavramlari, sol kuantum tiirevi ve sol kuantum belirli integrali olarak
yeniden adlandirildi. Sola simetrik olarak, yeni bir kuantum tiirevi (sag) ve belirli kuantum integrali (sag) tanimlandi. Bu
kavramlarin bazi 6zellikleri arastirildi ve buna gore bu yeni kuantum integral esitsizliklerindeki bazi yanlisliklar diizeltildi.
Ayrica, bazi yeni kuantum Hermite-Hadamard tipi esitsizlikler kuruldu.

Anahtar kelimeler: Kuantum tiirev, kuantum integral, integral esitsizlikleri, konveks fonksiyonlar.

1.INTRODUCTION

A function f:] € R — R s said to be convex on J if the following inequality

fltx+ (A -)y) <tf()+ (A -)f»)

holds forall x,y € Jand t € [0,1].

One of the most useful inequalities for convex functions is Hermite-Hadamard’s inequality, due to its
geometrical importance and applications, which is described as follows:

Let f:] € R = R be a convex function on the interval of real numbers and a, b € | with a < b.
Then

(1.1) f(52) == )7 Fode < (OB

This inequality has been widely studied in different ways and different forms in the theory of integral
inequalities. It is indispensable to mention the papers [14], which are leading the studies over the past twenty years.
In [14], the authors gave an identity to obtain trapezoid type error estimations. Following, researchers continued
to work to obtain error estimates such as midpoint, Ostrowski, Simpson, Bullen, Newton, etc. and to improved
existing inequalities. Many generalizations of this paper have been done by considering different types of functions
or various types of integrals. In recent years, generalizations of these studies in quantum calculus theory have been
widely researched. For some studies in this regard, the reader is refer to [1]-[4], [6]-[13] , [18] -[25], [27]-[36].

However, since the quantum integral is different from the Riemann integral in some properties, some
inaccuracies in some of these studies arise. For instance, in [22, Lemma 3.1], the authors gave an identity to obtain
quantum analogues of Ostrowski type inequalities. To prove this identity, using similar proving argument with its
Riemann integral form, the authors proved the following identity:
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(x-a)?
b—-a

1
q(b-a)

(1.2) Jy t aDof(tx + (1 —)a) odgt = e [ = Lf@) qdgt.

After that, they assumed symmetrically to (1.2) the following identity could be held:

b—x
q(b—a)

1
q(b-a)

2
(13) L2 D f(tx+ (1—6)b) odgt = f(x) — Pf@) adgt.

(see [22, equalities (3.2) and (3.3)]). But the current quantum derivative and integral definitions are not sufficient
to satisfy (1.3). In fact, the reason for this problem is that there is no substitution rule in the quantum integral, and
the quantum integral is not similar to the Riemann integral for some aspects.

In our investigations, we realized that the existing quantum derivative and integral consepts are not sufficent
to overcome these problems. It is known that conjugate concepts of left and right fractional integrals are widely
used to derive fractional integral inequalities. Considering that a similar stuation can be useful for quantum integral
inequalities, we have found that it is necessary to give symmetric consepts which are conjugate to the concepts of
quantum derivative and integral.

In this context, the main motivation of this study is to introduce new quantum derivative and integral consepts
which are symmetrical to the known and to examine some of their properties. Using them, we will solve some
inaccuracies encountered in quantum integral inequalities. In addition, similar to fractional integral inequalities,
some quantum type integral inequalities will be obtained by using two symmetric quantum derivatives and
integrals concepts together. Also, in the last section, we will use these two conjugate concepts together to obtain
quantum analogs of some trapezoid type integral inequalities posed in paper [16]. We think that this new method
will be used effectively and widely in future studies.

2.PRELIMINARIES

In this section, we recall some previously known concepts.
In [30,31], Tariboon and Ntouyas introduced the concepts of quantum derivative and definite quantum
integral for the functions of defined on an arbitrary finite intervals as follows:

Definition 2.1. [30,31] A function f(t) defined on [a, b] is called quantum differentiable on (a, b] with the
following expression:

_ f®O-f(at+G-aa
Q1) WD f() =F LIS ER, t#a

and quantum differentiable on t = g, if the following limit exists:

oDef (@) = lim, ,D,f(a) ,
forany a < b (See also [19]).

Clearly, if a = 0 in (2.1), then (D, f(t) = Dy f (t) where D, f (t) is familiar quantum derivative given by
the following expression:

_ F®-FaD
(22)  Df(®) =F=5F, t#0,

D,f (0) = lim Dyf(0),
where f is defined on the interval [a, 0]. (see also [5,17])

Definition 2.2. [30,31] Let f(t) be a function defined on [a, b]. Then the definite quantum integral of f(t) on
[a, b] is delineated as:

23) [ f®) adet = (1 - q)(b—a) Tie q"f(q"b + (1 - q™a).
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If the series in the right-hand side of (2.3) is convergence, then f; f(®)qdgt is exist, ie., f(t) is quantum
integrable on [a, b]. For any ¢ € (a, b)

Q4 [T adgt = [o () adgt = [ F(E) adyt,

if the series in the right-hand side of (2.4) is convergence. (See also [19]).
Clearly,if a = 0, in (2.3), then fob f(t) dgt is familiar definite quantum integral (see [5,17]) on [0, b] such
as

L F© odgt = [7 F©) dgt = (1 — Qb T2 q"f(q").

Lemma 2.1. (19) Let f: [a, b] = R be a differentiable funtion. Then we have

. af(t
@5)  Jim oDyf (1) =<2,

Lemma 2.2.[19] Let f: [a, b] = R be an arbitrary function. Provided that f; f(t) dt converges, then we have

@6)  lim [7F(0) adgt = [ () dt.

By using the Definitions 2.1 and 2.2, in [7], the authors present the quantum Hermite-Hadamard inequality
(in [32], the authors proved the same inequality with the fewer assumptions and shorter method) as follows:

Theorem 2.1. Let f: [a, b] = R be a convex function and 0 < g < 1. Then we have

qa+b 1 b qf(a)+f(b)
2.7 f (E) < Efa f adqt < YR

We will use the following notations and names to avoid confusion:
The left quantum derivative on [a, b] for (2.1):

_ _ fO-f(qt+(1-q)a)
atDaf () = oDgf () = T aoea t#a.

The left definite quantum integral on [a, b] for (2.3):

[ @) godq = [ F(©) adg = (1 = )(b — @) Tie 4"F (@"b + (1 — qMa).
The left definite quantum integral on [0, b] for (2.1):

[y F(©) grdq =[] F(©) odg = (1~ )b Ti2-0 4" (4").

The left quantum integral on Hermite-Hadamard ineququality for (2.7)

qa+b 1 b af (@)+f®)
f ( 1+q) = b-a fa fO) qrdgt < 1+
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3.THE RIGHT QUANTUM DERVATIVE AND THE RIGHT QUANTUM INTEGRAL ON FINITE
INTERVALS

To begin with, we should point out that definitions and some results in this section are given in [13]
independently of us.
Let f(t) be a function defined on [a, b]. It is clear that gt + (1 — q)b € [a, b] for all t € [a, b]. It means that

f(t) — f(gt + (1 — g)b) is areal number for all t € [a, b]. Hence, W
exit for all t € [a, b) . Symmetrically to Definition 2.1, we can introduce the following definition of quantum

derivative:

is areal number and always

Definition 3.1. A function f(t) defined on [a, b] is called the right quantum differentiable on t € [a, b) with the
following expression:

. _ f)=f(qt+(1—-q)b)
3. b—qu(t) Y S t+b,

and the right quantum differentiable on t = b, if the following limit exists:
p-Daf (b) = lim. ,-D,f (£).

Clearly, if b = 0 in (3.1), then o-D,f(t) = D,f (t) where D, f(t) is familiar quantum derivative given
in (2.2) of the function defined on the interval [a, 0].

The question is that similar property as stated in Lemma 2.1 can be given or not for the right quantum
derivative. The answer is positive and follows:

Lemma 3.1. Left f: [a, b] = R be a differentiable function. Then

. _arf®
(3.2) qlg;l_ b-Daf(t) =—~.

Proof. Since f is differentiable on [a, b], clearly

(3.3) lim LEW=FO _ i FER=FO _ o fEHR-FO _ df©)
h-0% h h—0~ h h—>0 h dt

)

forall t € (a,b) and

@) _ iy L@@
dt h-0t h

’

dF®7) _ iy FOHR-10)
dt h—-0— '

Since0 < q<1,(1—-q)(t—b)<0,foralla <t < b.Changing variable in (3.1) as (1 — q)(t — b) = —h, then
q » 1~ wehave h » 0% and gt + (1 — q)b = t + h. Using (3.3),

: . fO-f(qt+(1-q)b)
34 lim -D t) = lim ——————=
( ) q-1" b qf( ) q-1" (1-q)(t-b)

= lim F@®)-f(t+h)
h-0% —h

lim ft+h)-f (1)
h—0*t h

_ i L1 ©
h—-0 h
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_dr@®
dat

)

forall t € (a, b).
For t = a, similarly to (3.4).

. . fl@-f(qa+(1-q)b)
lim ,-D,f(a) = lim —————,
Jm p-Defla) = lim == e

fla)-f(a+h)

= lim
h-0% —h

= lim fla+h)=f(a)
h—0*t h

_ df(ah

T oac

On the other hand, for t = b,

lim ,-D,f(a) lim lim ,-D,f(t)
q-1" -

q—-1" t-b

= gt 7 Daf O

lim (m)
t->b~ dt

fe+h)—f(6)

= lim lim
t—-b~ h—0 h

= lim lim £&R/®
t—-b~ h—0~ h

= lim lim £&R7®
h—-0~ t->b~ h

lim f(b+h)—f(b)
h—0~ h

_ areD)
dt

)

which completes the proof.
It is known that in classical quantum derivative D,t"™ = [n],t""" where [n],

property in the right quantum derivative as follows:

Example 1. Let f:[a, b] = R, f(t) = (t — b)" forn € N, then

_ (=D (@t+(1-@b)-b)"
(- (t-b)

b=Dqf () b=Dqf (t = b)"

(b-"-q"(t-b)"

(1-q)(t-b)
_1-q" _ p\n—-1
=2 - 1)

= [n]yt — b))t
347
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Theorem 3.1. Let f, g: [a, b] = R arbitrary functions, 4 € R constant, then
6] b-Dalf (@) + g(®)] = p-Dyf (t) + ,-Dgg(t) , forall t € [a, b],
(ii) p-DgAf (£) = Ap-Dyf (t), for all t € [a, b],
(i) p-Da(f9)(®) = f(8) p-Dgg(t) + g(qt + (1 — q@)b) ,-D,yf (), forallt € [a, b],

i - L) _ 9 p=Dgf (O~ f(®) p=Dqg(®)
@ D (f)® Lol - 10 b

forall t € [a, b]\ {t: g(t)g(qt + (1 — q)b # 0}.

’

Proof. It is omitted because the proof is quite easy and similar to the proof of [30, Theorem 3.1].

Definition 3.2. Let f(t) be a function defined on [a, b]. Then the nth order right quantum derivative of f(t) for
n € N is defined as

(3.5 p-Dif(t) = p-Dg(,-Dg ' f(®) ) .

For the definition of the right definite quantum integral the following shift operator is used.
K F(t):=F(qt + (1 —q)b).

By Mathematical induction, we have Kj'F(t) can be written as

Ky (K3~'F)(t) = F(q"t+ (1 —q™)b , n€N

kpre = F() =

According to the Definition 3.1 and K, F (t)

F(t)-F(qt+(1-q)b) _  1-Kq

p-DgF (1) = a-@-b)  1-@)(t-b)

F() = f(©.
It implies that the right quantum antiderivative of F(t) can be expressed as :

F(©) = (1= @) - [ = D @)

By using the geometric series expansion, the right quantum antiderivative of f(t) can be written as:
(3.6)  F() =1 —q) Xz K[t =b)f(B)]

= (1= q) Zn=ol(q"t + (1 = q™)b) = blf (g™t + (1 = q")b)

=1 =)t —-b) Xy q"f(q"t + (1 —q™)b),

provided that if the series in the right-hand side of (3.6) converges. Symmetrically to Definition 2.2, definite
quantum integral can be defined as follows:

Definition 3.3. Let f(t) be a function defined on [a, b]. Then the right definite quantum integral of f(t) on
[a, b] is described as:

BT [ @) pdet =F(b) = F(a) = (1— q)(b — @) 5o q"f(q"a + (1 — g")b).

If the series in right hand side of (3.7) is convergence, then f: f(£) p-dgt is exist, i.e., f(t) is right quantum
integrable on [a, b]. For any ¢ € (a, b)

B8)  [If(®) pdat = [ f(©) p-dgt — [, F(t) p-dgt,
348
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if the series in right hand side of (3.8) is convergence.
If b=0in(3.7), then

0 fee)
(3.9 [Lf® odet =1 —q)(-a) 09" f(q" ).
It is called as the right definite quantum integral of f on [a, 0].

The question is that similar property as stated in Lemma 2.2 can be given or not for the right definite quantum
integral on [a, b]. The answer is positive and as follows:

Lemma 3.2. Let f: [a, b] = R be an arbitrary function. Provided that if ff f(t)dt converges, then
. b b
(310)  Jim [} £ podgt = [} F©de

Proof. Let f: f(t)dt converges, then fol f(ta + (1 — t)b)dt converges also. Hence, by using Lemma 2.2, we have

Jim [ f(©) pedgt = lim (1~ q)(b ~ ) %o q"f (4" a + (1~ q")b)
= (b - a) lim J, f(ta+ (1 —t)b) j+dgt
= (b—a) [, f(ta+ (1 - t)b)dt

= [, (.

|
Some properties of the right definite quantum integral similar to the [30, Theorem 3.2, Theorem 3.3] are
discussed in the following theorem.

Theorem 3.2. Let f: [a, b] = R be arbitrary functions, 4 € R be a constant, then

0[O +gO] pdgt = [ F©) podgt + [} 9(©) p-dt,

) 7A@ pdgt = A [, F(Op-dgt |

(iii) »-Dyg ftbf(s)b—dqs = —f(t),if f is right quantum integrable on [t, b] for all t € [a, b],
(iv) ftb p-Daf () p-dgs = f(b) — f(t), forall ¢ € [a,b], if f is continuous on [a, b],

) J £(8)p-Deg(8)p-dgs = (F9)(b) = (FG)(©®) = J] g(qs + (1 = @)b) p-Dof () p-dys ,
if f is right quantum integrable on [¢, b] for all t € [a, b].

Proof. The proof of (i) and (ii) follows by direct computation by Definition 3.3.

(iii) Using Definitions 3.1 and 3.3, then

b
b_Dq ft f(S)b—qu
_ ftbf(s) b—dqs_f;t+(1_q)bf(s) p—dqs

N (1-q)(t-b)
(1-Q)(b-t) T2 4" f (@™t +(1-q™)b)

|- -o(b-(at+(1-9)b)) X0 4" f (a™ (at+(1-q)b) +(1-q™)b)
- (1-q)(t-b)

349



Some Quantum Integral Inequalities Based on Left-Right
Quantum Integrals

(b—1) Tio 4" (q"t+(1—q™b)— q(b—1) Tpoo q"F (@™ t+(1-q™F1)b)
(t-b)

Y1t f(@ t+ (1 —q™b)— Y09 f(@" t+ (1—q™)b)
= —f ().

(iv) Similarly to (iii), we have

[} b-Daf (5) p-dgs

b f(s)=f(gs+(1-q)b)
t  (1-q)(s-b) b=dqS

b f(s) b f(qs+(1-q)b)
J; s—b b=dgs = J; s=b b=0qS ]

__1 [
(1-q)

L V(b — )3 gn L@ e A=a"D)
(1 Q)(b t)2n=0q (q"t+(1—-q™)b)-b

Tl 4 v nfa@t+1-gMb)+(1-q)b)
(1 Q)(b t) Zn:Oq (q"t+(1-q™)b)-b

1

n F(@™e+(1-q™1)b)
(q"™(t-b)

o (a™t+(1-g™Mb) o
= (b~ q" Hm S — (b~ D E0q

Tn=o f(@t+ (1 —q""H)b) — X7, f(q"t + (1 —qMb)

Ili_)r{)lo[f(qk“t + (1 —g*Vb — f(£)] (Since f(t) is continuous)

fb) = f(@®.

(v) Using Theorem 3.1 (ii), we have

@B.11)  f(s) p-Dag(s) = »-Dg(fg)(s) — g(qs + (1 = q)b) p-Daf (s) .
Taking the right definite quantum integral of (3.11) on [¢, b], it gives that
(312)  [] f() 5-Dgg(s) p-ds = J; -Da(f9)(s) p-ds — f; (s + (1~ @b) »-Dyf (s) p-dis -

If the previous result is used in (3.12), then the desired result is obtained. [ ]

4.CORRECTION OF “QUANTUM OSTROWSKI INEQUALITIES FOR DIFFERENTIABLE CONVEX
FUNCTIONS”

In this section the right quantum derivative and the right quantum integral are used to correct the identity
given in [22, Lemma 3.1].

Lemma 4.1. Let f:[a, b] > R be an arbitrary function with ,+D,f and ,-D,f are left quantum integrable on
[a, b], then we have
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@) f@ =@ pdgt+ [P O pdyt |

=1 “) Jo t @Dy fltx+ (1 —)a) edyt

= ") Jy t =Dy f(tx + 1 —0)b)  edgt

forall x € [a,b] .
Proof. From [22, Lemma 3.1] , we have
(4.2) =1 ‘” Jo t q#Dq f(tx + (1 = )a) grdgt == f () === [7 f(t) gedgt .
Similarly, we have
b-x)? (1
43)  —LZE (e, D, f(tx+ (1—6)b)  gedgt

_q(b-x)* fl f(tx+(1-)b)—f (tqx+(1-tq)b)
b—a 0 (1-q)t(x-b)

o+dat

= s [y e+ (A= 0b) gyt~ ) ftqx + (L= tq)b) gedyt |

_ _ab-n (1—-q) Xn=0q"f(q"x+ (1 —q™)b)
(b-a)(1-q) |— (1 — q) Z;?:O qnf(qn+1x + (1 _ qn+1)b)

= Q(s)b_—ax)) [Z;.zo=o q*f(@"x+ (1 —q")b) — 52;?:1 f(q"x + (1 — q”)b)]

q(s)b ;))[Zn anf(q X—}—(l— n)b)__Zn anf(q x+(1_ n)b)_l_f(x)]

b- o
=209 (1-2) Teanf@x + (1 - by + 12|

(b—x)

= f@ =5l - 0 -0 Z20q"f@x + (1 —qb) ]

_ (b-x)

=8B ) = [T ) pdgt

Summing (4.2) and (4.3), we get (4.1). [ ]
By using Lemma 4.1, [22, Theorem 3.1 and Theorem 3.2] are corrected as follows:

Theorem 4.1. (Correction to [22, Theorem 3.1]) Let f: [a, b] — R be an arbitrary function with ,+D,f and ,-Dg f
are left quantum integrable on [a, b]. If | atDaf | and | b-Dqf | are convex functions, | atDqf (x)| <M and
|b—qu(x) | <M forall x € [a,b], then we have

qM[(x—a)2+(b—x)2]
(b-a)(1+q)

(44) F0O =3[ FEF @ gedgt+ [ F®) pdgt]| <
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Theorem 4.2. (Correction to [22, Theorem 3.2]) Let f: [a, b] — R be an arbitrary function with ,+D,f and ,-D, f

are left quantum integrable on [a, b]. If | atDaf | " and | v-Dqf | T are convex functions for p,r > 1, %+ % =
1, |#Dgf (¥)| <M and|,-D,f(x) | <M forall x € [a,b], then we have

4.5) ) == [ JFF O grdgt+ [P FO) pdyt] | < ‘*M[@“(‘;)_z;“"x)z] (=%) o

5.SOME NEW QUANTUM INTEGRAL INEQUALITIES

In this section, new quantum Hermite-Hadamard typr inequalities are investigated with respect to the left and
right definite quantum integrals.

Theorem 5.1. Let f:[a, b] = R be a convex function and 0 < g < 1. Then we have

(5.1) () <555 [J2F@®) gdgt+ [) () p-dgt] <ZLD

2

Proof. Clearly
(52) [Fhb+ (A =Da) pedy = (A —q) B4 /@D F (1-qMa)
=L [1-9b - L0 q"f (@b + (1 - gMa)]
=[P F(®) gdgt,

(5.3) folf(ta +(1=0)b) grdy = (1—q) 20 7"f(q"a + (1 — q™)b)
=L [(1 - b - a) T2 q"f(q"a+ (1 — g)b)]

1 b
= Efa f@) p-dgt,
Since f(t) is a convex function on [a, b], then we have

5.4) f (ﬂ) < %[f(tb +(1-0a)+f(ta+ (1 -t)b)] < f(a);rf(b) ’

2

for all t € [0,1]. Taking the left definite quantum integral on all sides of the inequalities (5.4) over [0,1], using
(5.2) and (5.3), we have (5.1). [

Similarly to Theorem 2.1, the right quantum Hermite —Hadamard inequality can be given as follows:

Theorem 5.2. Let f:[a,b] = R be a convex function and 0 < g < 1. Then we have

a b a
(5.5) F(EL) <L 71() podgt <KD

1+q/ ~ b- 1+q

Proof. It is omitted because the proof is similar to the proof of Theorem 2.1.
In the following quantum Hermite-Hadamard type inequalities , the left and right quantum integrals are used
together.

Theorem 5.3. Let f:[a, b] = R be a convex function and 0 < g < 1. Then we have
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SO _

2 — 2(b-a)

(5.6) [J2F@©) pdgt+ [L () p-dgt] <ZLD

Proof. Adding (2.7) and (5.5) side by side and multiplying the final inequality by % , implies (5.6) [ ]

D)

2 >

Remark 5.1. Since any convex function f(t) and 0 < g < 1. we have f (aTer)

(5.6) is better than (5.1).

IA

Thearem 5.4. Let f, g : [a, b] — [0, ) be the right quantum integrable functions on [a,b] for 0 < g <1, r,s >
1 and%+§= 1. Then we have :

(5.7) L0 pdet < (217 pdgt) T ([ g°®) podgt) s
Proof. Using classical Holder inequality for sum and Definition 3.3,
ff fOI®) p-dg=A—qQ)(b—a)Lr-oq"f(q"a+ (1 —q")b)g(q"a+ (1 —q™)b)

=1-Qb-a
x T o[ @ f(gha + (1 - qM)b)|[(@ g (@ a + (1 - q™)b)]
<A-q)b-a)(Troq (@ a+ (1 -qMb) )
x(Zee0a"g*(q@"a+ (1 —q™b) ) /s
=(A-)(b-a) Tieq"f (@ a+ A —qMb) ) /r
(1= b —a) Tioq"g°(@"a+ (1 —q™b) ) /s
= ([ £ @ podgt) 7 (1] 9°O) pdgt) Vs .

The proof is completed. n

Theorem 5.5. Let f:[a,b] >R be a right quantum differentiable function for 0 <g <1 and
p-Dqf € Lo[a, b], then we have

(b-a)?

fla)+f(b) b —_—
(5.8) (b= @) KOO [ g+ (1= )b) p-dgt| < S

ls=Daf [l .
where ||b—qu || w = Sup |b—qu(t) | .

t€la,b]
Proof. Using Theorem 3.2 (v) (The right quantum partial integration formula), we get

(5.9) L(52-t) pDof() pdgt

== -t ) ro)®-[(5-t) o] @
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a+b

— [} flat + (A= @)b) ,-D(2—t) y-dys

L2 (@) 2 f () + [, fqt+ (1= @)b)p-dgs
=0 - )Ly [PF(gt+ (L —q)b) pdys .
Then from (5.9), we have

(510) |- )LD - (gt + (1 - q)b) podgs) |

sff ath t| |5-Daf () | p-dqt
<712 t| lo-Dof Il b-dgs
= loDaf e f; [Z2—t| bdys .

Calculating the following right quantum integral,

G11) [
- :fa%b(aTHj_t)b‘dqt‘Ffé(t—aTw) p-dgt ]
[ (E2-) t2 o (- 22) e |

1- )b - ) L5 q" (B2 = (g"a+ (1 - q")b)|

a+b

+2(1-9) (b= 22) Zio 0™ (0" 22 + (1 — q™)b) - 22

2

A-Db-a) |22 5r,q" — a%m,q®" — bEeeq" + b T, q*"|

- b b . b
+2(1-q) (b —22) [22 i 2" + b Bire 4" — b i ¢*" — 22 K0 a7
a+b a b
) (b—a)[——m—b+m
- a+b a+b b a+b
2e-P) st

2(1+q)

-[io-0r B30 - ]

_ (b-a)?
T 2(1+q)

The desired inequality is obtained from combining (5.10) and (5.11), we have (5.8). This completes the proof.
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6. CONCLUSION

Quantum integral inequalities on an arbitrary finite interval is widely studied in the papers [6,7], [18]-[36]
and some others. From now on, they should be considered as the left quantum integral inequalites. Definitions of
the right quantum derivative and the right definite quantum integral are bear a torch to many aymmetric
invertigations. Using the left and right quantum integrals together could give interesting results.
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