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Abstract

Nowadays, several classical order results are being analyzed in the sense of fractional derivatives. In this research
work, we discuss two different boundary value problems. In the first half of the paper, we generalize an integer-order
boundary value problem into fractional-order and then we demonstrate the existence and uniqueness of the solution
subject to the Caputo fractional derivative. First, we recall some results and then justify our main results with the
proofs of the given theorems. We conclude our results by presenting an illustrative example. In the other half of the
paper, we extend Banach’s contraction theorem to prove the existence and uniqueness of the solution to a sequential
Caputo fractional-order boundary value problem.

Keywords: Caputo fractional derivative Existence and uniqueness Boundary value problem
2020 MSC: 26A33; 65D05; 65D30

1. Problem-1: Existence of a unique solution for a Caputo-type fractional boundary value problem

Fractional differential equations (FDEs) are the equations that consist of fractional-order values on their differen-
tial operators. Currently, fractional differential equations are very useful to describe or define several scientific and
engineering problems. Here, we are trying to add some new analysis to the literature on FDEs. In this regard, the
following result is taken from one theorem proved in [1], which is also stated without proof in [2] (Theorem 3.3), as
well as left as an unsolved problem in [3] (Problem [41.6]).
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Theorem 1.1. ([1]) Let us consider h : [c, d] × R2 −→ R is continuous and accepts a uniform Lipschitz condition
respectively v and v′

|h(t, v, v′) − h(t,w,w′)| ≤ M|v − w| + N |v′ − w′|,

for (t, v, v′), (t,w,w′) ∈ [c, d] × R2, where N ≥ 0, M > 0 are constants. If

M
(d − c)2

8
+ N

(d − c)
2
< 1,

then the boundary value problem (BVP)

v′′ = −h(t, v, v′), v(c) = U, v(d) = V,

has a unique solution.

Here we try to generalize the above-mentioned result in the sense of a fractional-order Caputo-type BVP (we
suggest the readers to see [4] for the fundamental literature along with necessary results and definitions on fractional
calculus) at the place of the classic operator v′′, that is, we give the proof of the existence of unique solutions to the
adopted fractional-order BVP

CDνcv(t) = −h(t, v(t),C Dθcv(t)), c < t < d (1)

v(c) = U, v(d) = V. (2)

Here, 1 < ν ≤ 2, 0 < θ ≤ 1. To date, a number of results related to the existence and uniqueness of the solution
to the initial and boundary value problems in fractional-order sense have been studied by many researchers (see, for
example, [[5], [6], [7], [8], [9], [10], [11]] and the quotations mentioned therein). At our discretion, our results are
the first to report the fractional counterpart of the problem given in Theorem 1.1. In the formulation of this section,
we present subsection 1.1 to pose some basic notions from the theory of fractional calculus. We provide subsection
1.2 to simulate our main results where we give important lemma, proposition and a theorem. We solve an example in
subsection 1.3. A conclusion completes the research.

1.1. Basic notions

Firstly we present some background materials from the theory of fractional calculus to study the boundary value
problems, see [4].

Definition 1.2. For jth continuously differentiable mapping v : [0,∞] −→ R, the Caputo fractional derivative of order
ν is specified as

CDνcv(τ) =
1

Γ( j − ν)

∫ τ

c
(τ −ϖ) j−ν−1v( j)(ϖ)dϖ, j − 1 < ν ≤ j, j = [ν] + 1,

where [ν] shows the integer-part of the real number ν.

Definition 1.3. For a continuous function v, the Riemann-Liouville factional integral of order ν is described by

Iνc v(τ) =
1
Γ(ν)

∫ τ

c
(τ −ϖ)ν−1v(ϖ)dϖ, ν > 0.

Definition 1.4. For ν, the fractional differential equation cDνcv(τ) = 0 has a general solution is defined in the following
form

v(τ) = m0 + m1τ + m2τ
2 + ..... + m j−1τ

j−1,

For some mi ∈ R, i = 0, 1, ..., j − 1( j = [ν] + 1).



Z. Bekri, V.S. Erturk, P. Kumar, V. Govindarj, Results in Nonlinear Anal. 5 (2022), 299–311. 301

1.2. Main Results

We give the integral formula for the BVP (1)-(2) in terms of the green function.

Lemma 1.5. Let us assume that h is a continuous mapping (or function). A mapping v ∈ C1[c, d] satisfies (1)-(2) if
and only if v satisfies the integral equation

v(t) =
(V − U)(t − c) + U(d − c)

(d − c)
+

∫ d

c
A(t, s)h(s, v(s),C Dθcv(s))ds

where

A(t, s) =
1
Γ(ν)


(t−c)(d−s)ν−1

(d−c) − (t − s)ν−1, c ≤ s ≤ t ≤ d,

(t−c)(d−s)ν−1

(d−c) , c ≤ t ≤ s ≤ d.

Proof. We have
CDνcv(t) = −h(t),

Iνc
CDνcv(t) = −Iνc h(t) + c0 + c1t, c0, c1 are constants.

Then,
v(t) = −Iνc h(t) + c0 + c1t.

using the boundary conditions
v(c) = U, i.e c0 + cc1 = U,

v(d) = V, i.e − Iνc h(d) + c0 + c1d = V.

So, we have a system
c0 + cc1 = U −→ (i)

c0 + c1d = V + Iνc h(d) −→ (ii)

i.e
(i) =⇒ c0 = U − cc1,

by putting it in (ii), we get
U − cc1 + c1d = V + Iνc h(d),

c1(d − c) = V − U + Iνc h(d),

c1 =
1

(d − c)
(
(V − U) + Iνc h(d)

)
,

and

c0 = U − cc1 = U − c
[

1
(d − c)

((V − U) + Iνc h(d))
]
,

c0 =
U(d − c) − c(V − U)

(d − c)
−

c
(d − c)

Iνc h(d).

By putting the above value in equation v(t), we get

v(t) = −Iνc h(t) +
U(d − c) − c(V − U)

(d − c)
−

c
(d − c)

Iνc h(d) + t
[

1
(d − c)

((V − U) + Iνc h(d))
]
,

v(t) = −Iνc h(t) +
(t − c)
(d − c)

Iνc h(d) +
(t − c)(V − U) + U(d − c)

(d − c)
,

v(t) = −
1
Γ(ν)

∫ t

c
(t − s)ν−1h(s)ds +

(t − c)
Γ(ν)(d − c)

∫ d

c
(d − s)ν−1h(s)ds
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+
(t − c)(V − U) + U(d − c)

(d − c)
,

v(t) = −
1
Γ(ν)

∫ t

c
(t − s)ν−1h(s)ds +

(t − c)
Γ(ν)(d − c)

∫ t

c
(d − s)ν−1h(s)ds

+
(t − c)
Γ(ν)(d − c)

∫ d

t
(d − s)ν−1h(s)ds +

(V − U)(t − c) + U(d − c)
(d − c)

.

Therefore,

v(t) =
(V − U)(t − c) + U(d − c)

(d − c)
+

1
Γ(ν)

∫ t

c

(
(t − c)(d − s)ν−1

(d − c)
− (t − s)ν−1

)
h(s)ds

+
1
Γ(ν)

∫ d

t

(t − c)(d − s)ν−1

(d − c)
h(s)ds,

and the proof is finish. □

Now we establish the following result which is necessary to prove our main results.

Proposition 1.6. ConsiderA be the Green function mentioned in Lemma 1.5. Then,∫ d

c
|A(t, s)|ds ≤

1
Γ(ν)

(
1

νν/(ν−1) −
1

ν(2ν−1)/(ν−1)

)
(d − c)ν,

and ∫ d

c

|A(t, s)|
∂t

ds ≤
1
Γ(ν)

(d − c)ν

ν
.

Proof. We determine
∫ d

c |A(t, s)|ds, whereA(t, s) ≥ 0 for all c ≤ t, s ≤ d. Therefore,∫ d

c
|A(t, s)|ds =

1
Γ(ν)

[∫ t

c

(
(t − c)(d − s)ν−1

d − c
− (t − s)ν−1

)
ds +

∫ d

t

(t − c)(d − s)ν−1

d − c
ds

]
,

we calculate the primitives∫ d

c
|A(t, s)|ds =

(t − c)
Γ(ν)(d − c)

[
−

1
ν

(d − s)ν
]t

c
+

1
Γ(ν)

[
1
ν

(t − s)ν
]t

c

+
(t − c)
Γ(ν)(d − c)

[
−

1
ν

(d − s)ν
]d

t
,

then, ∫ d

c
|A(t, s)|ds =

1
Γ(ν)

[
(t − c)(d − c)ν−1

ν
−

(t − c)ν

ν

]
,

implies that ∫ d

c

|A(t, s)|
∂t

ds =
1
Γ(ν)

[
(d − c)ν−1

ν
− (t − c)ν−1

]
.

Now we define l : [c, d] −→ R by

l(t) =
(t − c)(d − c)ν−1

ν
−

(t − c)ν

ν
,

and we also define l′ : [c, d] −→ R by

l′(t) =
(d − c)ν−1

ν
− (t − c)ν−1.
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Differentiating the functions l and l′, we sharply find that their maximum are achieved at the points

t∗ =
(d − c)
ν1/(ν−1) + c,

and
t∗1 = c.

Moreover,

l(t∗) =
(

1
νν/(ν−1) −

1
ν(2ν−1)/(ν−1)

)
(d − c)ν,

and

l′(t∗1) =
(d − c)ν−1

ν
,

that finishes the proof. □

Theorem 1.7. Let h : [c, d]×R2 −→ R is continuous mapping and agrees to a uniform Lipschitz constraint according
to the second variable on [c, d] × R2 with Lipschitz constant M, that is,

|h(t, v, v′) − h(t,w,w′)| ≤ M|v − w| + N |v′ − w′|,

for (t, v, v′), (t,w,w′) ∈ [c, d] × R2, where N ≥ 0, M > 0 are constants. If

M
Γ(ν)

(
1

νν/(ν−1) −
1

ν(2ν−1)/(ν−1)

)
(d − c)ν +

N
Γ(ν)

(d − c)ν−1

ν
< 1, (3)

then the BVP
CDνcv(t) = −h(t, v(t),C Dθcv(t)), c < t < d (4)

v(c) = U, v(d) = V, (5)

exists a unique solution.

Proof. Assume Ω is the Banach space of continuous mappings derived on [c, d] with the norm

∥v∥ = max
t∈[c,d]
{M|v(t)| + N |v′(t)|}.

By Lemma 1.5, v ∈ C1[c, d] is a solution of (4)-(5) if and only if it solves the integral equation

v(t) =
(V − U)(t − c) + U(d − c)

(d − c)
+

∫ d

c
A(t, s)h(s, v(s),c Dθcv(s))ds.

Define the operator F : Ω −→ Ω by

Fv(t) =
(V − U)(t − c) + U(d − c)

(d − c)
+

∫ d

c
A(t, s)h(s, v(s),C Dθcv(s))ds,

for t ∈ [c, d]. Here we will justify that the operator F exists a unique fixed-point. Let v,w ∈ Ω. Then,

M|Fv(t) − Fw(t)| ≤ M
∫ d

c
|A(t, s)|

∣∣∣h(s, v(s),C Dθcv(s)) − h(s,w(s),C Dθcw(s))
∣∣∣ ds

≤ M
∫ d

c
|A(t, s)|

(
M|v(t) − w(t)| + N |v′(t) − w′(t)|

)
ds

≤ M
∫ d

c
|A(t, s)|ds∥v − w∥
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≤ M
1
Γ(ν)

(
1

νν/(ν−1) −
1

ν(2ν−1)/(ν−1)

)
(d − c)ν∥v − w∥,

for t ∈ [c, d], then similarly

N |(Fv)′(t) − (Fw)′(t)| ≤ N
∫ d

c

|A(t, s)|
∂t

∣∣∣h(s, v(s),C Dθcv(s)) − h(s,w(s),C Dθcw(s))
∣∣∣ ds

≤ N
∫ d

c

|A(t, s)|
∂t

(
M|v(t) − w(t)| + N |v′(t) − w′(t)|

)
ds

≤ N
∫ d

c

|A(t, s)|
∂t

ds∥v − w∥

≤ N
1
Γ(ν)

(d − c)ν

ν
∥v − w∥,

for t ∈ [c, d], we have
∥Fv − Fw∥ ≤ δ∥v − w∥,

where

δ :=
M
Γ(ν)

(
1

νν/(ν−1) −
1

ν(2ν−1)/(ν−1)

)
(d − c)ν +

N
Γ(ν)

(d − c)ν−1

ν
< 1,

here we have applied Proposition 1.6. By Eq. (3), we get that F is a contracting mapping on Ω, according
the Banach contraction mapping theorem, we conclude the necessary result i.e. we receive that F exists a unique
fixed-point in C1[c, d].Which implies that the BVP (4)-(5) has a unique solution. □

Remark 1.8. We notice that when ν = 2 and θ = 1 in Theorem 1.7, in condition (3), we clearly obtain Theorem 1.1.

1.3. Example

We consider the BVP

CD3/2
0 v(t) = 1 − t2 − cos(v(t)) + sin(CD1

0v(t)), 0 < t < 1 (6)

v(0) = 1, v(1) = 2. (7)

Set,
ν = 3/2, θ = 1, c = 0 and d = 1

Here,
h(t, v(t),C D1

0v(t)) = 1 − t2 − cos(v(t)) + sin(CD1
0v(t)),

and, therefore,

|h(t, v, v′) − h(t,w,w′)| ≤ | cos(v(t)) − cos(w(t))| + | sin(CD1
0v(t)) − sin(CD1

0w(t))|,

≤ M|v − w| + N |v′ − w′|.

Moreover, we have

M
Γ(ν)

(
1

νν/(ν−1) −
1

ν(2ν−1)/(ν−1)

)
(b − a)ν +

N
Γ(ν)

(b − a)ν−1

ν
≈ 0.863698 < 1,

and therefore (3) is agreed. Now by the applications of Theorem 1.7, we prove that (6)-(7) has a unique solution.
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Conclusion

In this section, we have generalized a classical-order boundary value problem into a fractional-order problem. We
have demonstrated the existence of the unique solution, subject to the Caputo fractional derivative. We recalled some
important results and then proved our main simulations with the support of the given theorems. We have analyzed the
correctness of our results by solving an illustrative example.

2. Problem-2: Solvability and uniqueness results for the sequential Caputo fractional double-derivative bound-
ary value problem

In recent years, numerous studies have been produced about the fractional boundary value problems and especially
on Caputo fractional derivative type boundary value problems. Different scientific and technological phenomena
related to many domains like engineering, biology, physics, chemistry, image processing, signal analysis, and control
theory have been studied in the sense of fractional boundary value problems, for the reading, see in ref. [12, 13, 14,
15, 16].

Also, in the last few years, new problems have emerged about sequential fractional derivative boundary value
problems related to sequential Riemann-Liouville and Caputo fractional derivatives, see in [17, 18, 19]. We can
find some definitions and concepts about the sequential fractional derivative in ref. [20, 21]. Several authors have
gone to study these issues with different mathematical methodologies and in a variety of ways. Some of them used
Banach, Leray-Schauder, Krasnoselskii fixed point theorems, and the Banach contraction mapping principle. Several
researchers worked by applying the Krein-Rutman theorem, fixed point theorem of Darbo-type, and Lyapunov-type
inequality, to know more, see the studies [22, 23, 24, 25, 26, 27] and references therein.

In this portion of the study, we consider the following Sequential fractional boundary value problem

(C
ζ Dγ C

ζ Dδχ)(τ) + p(τ)χ(τ) = 0, ζ < τ < η, (8)

χ(ζ) = χ(η) = 0, (9)

here γ > 0, δ ≤ 1, 1 < γ + δ ≤ 2, p ∈ C[ζ, η], χ is a continuous function and C
ζ D represents the Caputo fractional

derivative. Our focus is on the generalisation of the following result mentioned in [28].

Theorem 2.1. Suppose that Ψ : [ζ, η]×R −→ R is a continuous function which satisfies a uniform Lipschitz property
for the second variable on [ζ, η] × R and let Lipschitz constant ξ > 0, that is

| Ψ(τ, χ) − Ψ(τ, φ) |≤ ξ | χ − φ |,

∀ (τ, χ), (τ, φ) ∈ [ζ, η] × R. If

η − ζ <

 Γ(γ + δ + 1)(γ + δ)
γ+δ+1
γ+δ−1

ξ
(
(γ + δ)

γ+δ
γ+δ−1 − (γ + δ)

1
γ+δ−1

)


1
γ+δ

, (10)

so the problem (8)-(9) admits a unique solution.

We arrange the sections of the article as follows: In Section 2.1, we remember the result. Section 2.2 contains the
singularity result, while at the end a conclusion that summarizes our findings.

2.1. Basic notions

Proposition 2.2. ([4, 29]) The general solution v of the following fractional differential equation

CDνζv(τ) = Ψ(τ), τ ≥ ζ, 0 < ν ≤ 1,

is v(τ) = m + (ζ IνΨ)(τ), m ∈ R.
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2.2. Main Results

We consider now the BVP (8)-(9) with (C
ζ Dγ C

ζ Dδχ)(τ) = (C
ζ Dγ+δχ)(τ) does not take in general (see [30]),

Lemma 2.3. Let 0 < γ, δ > 1 be such that 1 < γ + δ ≤ 2 and p ∈ C[ζ, η] for some ζ < η. Then χ ∈ C[ζ, η] is a
solution of the fractional boundary value problem (8)-(9), if and only if, it satisfies the integral equation

χ(τ) =
∫ η

ζ
ℏ(τ, s) p(s) χ(s)ds, (11)

where

ℏ(τ, s) =
1

Γ(γ + δ)


(η−s)γ+δ−1(τ−ζ)δ

(η−ζ)δ − (τ − s)γ+δ−1, ζ ≤ s ≤ τ ≤ η,

(η−s)γ+δ−1(τ−ζ)δ

(η−ζ)δ , ζ ≤ τ ≤ s ≤ η.

Proof. The guide is merely an iterative application of Proposition 2.2 with the uses of boundary conditions. We have

(C
ζ Dγ C

ζ Dδχ)(τ) = −p(τ)χ(τ),

(C
ζ Iγ C

ζ Dγ C
ζ Dδχ)(τ) = −C

ζ Iγp(τ)χ(τ).

So,
(C
ζ Dδχ)(τ) = −C

ζ Iγp(τ)χ(τ) + m0 + m1τ, m0,m1 are constants,

we repeat the integration
(C
ζ Iδ C

ζ Dδχ)(τ) = −C
ζ Iγp(τ)χ(τ) + m0 + m1τ.

We get
χ(τ) = −C

ζ Iγ C
ζ Iδp(τ)χ(τ) + m0 + m1(τ − ζ)δ

i.e.
χ(τ) = −C

ζ Iγ+δp(τ)χ(τ) + m0 + m1(τ − ζ)δ,

using the conditions (9)
χ(ζ) = 0 =⇒ m0 = 0,

and
χ(η) = 0 =⇒ −C

ζ Iγ+δp(η)χ(η) + m1(η − ζ)δ = 0

i.e.
m1 =

1
(η − ζ)δ

C
ζ Iγ+δp(η)χ(η).

So the solution is given by

χ(τ) = −C
ζ Iγ+δp(τ)χ(τ) +

(τ − ζ)δ

(η − ζ)δ
C
ζ Iγ+δp(η)χ(η).

Therefore,

χ(τ) =
1

Γ(γ + δ)

∫ τ

ζ

(
(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ
− (τ − s)γ+δ−1

)
p(s)χ(s)ds

+
1

Γ(γ + δ)

∫ η

τ

(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ
p(s)χ(s)ds,

and the proof is finish. □
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Now, we start with defining the first part of the function h by

h(τ, s) =
(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ
− (τ − s)γ+δ−1, ζ ≤ s ≤ τ ≤ η,

for all τ ∈ (ζ, η). Then, h(τ, s) < 0 is equivalent to the following formula

(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ
− (τ − s)γ+δ−1 < 0,

which is equivalent to (
τ − ζ

η − ζ

)δ
<

(
τ − s
η − s

)γ+δ−1

.

We put some arrangements on the previous inequality, we get(
τ − ζ

η − ζ

) δ
γ+δ−1

η − τ < s

(τ − ζη − ζ

) δ
γ+δ−1

− 1

 .
Since (

τ − ζ

η − ζ

) δ
γ+δ−1

− 1 < 0,

finally we find

s <

(
τ−ζ
η−ζ

) δ
γ+δ−1 η − τ(

τ−ζ
η−ζ

) δ
γ+δ−1
− 1
.

We define a function Φ by

Φ(τ) =

(
τ−ζ
η−ζ

) δ
γ+δ−1 η − τ(

τ−ζ
η−ζ

) δ
γ+δ−1
− 1
, τ ∈ [ζ, η)

Φ(η) = lim
τ−→η

(
τ−ζ
η−ζ

) δ
γ+δ−1 η − τ(

τ−ζ
η−ζ

) δ
γ+δ−1
− 1

= η −
(γ + δ − 1)
δ

(η − ζ).

Now we show it ζ < Φ(τ) < τ on (ζ, η), we have

ζ <

(
τ−ζ
η−ζ

) δ
γ+δ−1 η − τ(

τ−ζ
η−ζ

) δ
γ+δ−1
− 1

⇐⇒

(
τ − ζ

η − ζ

) δ
γ+δ−1

ζ − ζ <

(
τ − ζ

η − ζ

) δ
γ+δ−1

η − τ

⇐⇒ (τ − ζ) >
(
τ − ζ

η − ζ

) δ
γ+δ−1

(η − ζ)

⇐⇒ 1 >
(
τ − ζ

η − ζ

) 1−γ
γ+δ−1

⇐⇒ τ < η.

Now we establish the following result which is necessary to prove our main results.
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Proposition 2.4. Consider ℏ be the Green function mentioned in Lemma 2.3 . Then,∫ η

ζ
|ℏ(τ, s)|ds =

1
Γ(γ + δ)

(
−2(τ − Φ(τ))γ+δ + 2

(τ − ζ)δ

(η − ζ)δ
(η − Φ(τ))γ+δ

+(τ − ζ)γ+δ − (τ − ζ)δ(η − ζ)γ
)
. (12)

Proof. In general, we have to prove that ℏ(τ, s) < 0 for every τ ∈ (ζ, η) in which ζ ≤ s ≤ Φ(τ). Therefore, to get on
the quantity value

max
τ∈[ζ,η]

∫ η

ζ
|ℏ(τ, s)|ds, (13)

we need to do the following∫ η

ζ
|ℏ(τ, s)|ds =

1
Γ(γ + δ)

{∫ Φ(τ)

ζ

[
(τ − s)γ+δ−1 −

(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ

]
ds

+

∫ τ

Φ(τ)

[
(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ
− (τ − s)γ+δ−1

]
ds

+

∫ η

τ

(η − s)γ+δ−1(τ − ζ)δ

(η − ζ)δ
ds

}
.

We calculate the primitives∫ η

ζ
|ℏ(τ, s)|ds =

1
Γ(γ + δ)

(
−2(τ − Φ(τ))γ+δ + 2

(τ − ζ)δ

(η − ζ)δ
(η − Φ(τ))γ+δ

+(τ − ζ)γ+δ − (τ − ζ)δ(η − ζ)γ
)
.

The proof is complete. □

It is easy to notice that the original function from the previous equality has a maximum on (ζ, η), but we couldn’t
get it in an analytical form. To define we put

Σ(γ + δ, ζ, η) = max
τ∈[ζ,η]

1
Γ(γ + δ)

(
−2(τ − Φ(τ))γ+δ + 2

(τ − ζ)δ(η − Φ(τ))γ+δ

(η − ζ)δ

+(τ − ζ)γ+δ − (τ − ζ)δ(η − ζ)γ
)
.

Then we get the following value which checks the exact true value (10) generated by formula (13).

Theorem 2.5. Suppose that Ψ : [ζ, η] × R −→ R is a continuous function which verify a uniform Lipschitz property
for the second variable on [ζ, η] × R and let Lipschitz constant be ξ > 0, that is

| Ψ(τ, χ) − Ψ(τ, φ) |≤ ξ | χ − φ |,

∀ (τ, χ), (τ, φ) ∈ [ζ, η] × R. If

Σ(γ + δ, ζ, η) <
1
ξ
, (14)

therefore the problem (8)-(9) admits a unique solution.
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Proof. Assume that Υ is a Banach space contains continuous functions defined on [ζ, η] provided by the norm

∥χ∥ = max
τ∈[ζ,η]

|χ(τ)|.

By Lemma 2.3 , χ ∈ C[ζ, η] is a solution of (8)-(9) iff it satisfies the integral equation (11)
Define the operator Λ : Υ −→ Υ by

Λχ(τ) =
∫ η

ζ
ℏ(τ, s) p(s) χ(s)ds,

is equivalence to

Λχ(τ) =
∫ η

ζ
ℏ(τ, s) ϖ(s, χ(s))ds,

for τ ∈ [ζ, η]. We prove that the operator Λ admits a unique point. Suppose that χ, φ ∈ Υ. Then

|Λχ(τ) − Λφ(τ)| ≤
∫ η

ζ
ℏ(τ, s)|ϖ(s, χ(s)) −ϖ(s, φ(s))|ds

≤

∫ η

ζ
ℏ(τ, s)(ξ|χ(s) − φ(s)|)ds

≤ ξ

∫ η

ζ
ℏ(τ, s)ds∥χ − φ∥

≤ ξΣ(γ + δ, ζ, η)∥χ − φ∥.

In the view of the assumption (10) and by using Proposition 2.4, we have (14). We can conclude thatΛ is a contracting
mapping on Υ and under the light of the Banach contraction mapping theorem, we get the targeted result i.e. we get
that Λ admits a unique fixed point in C[ζ, η], this implies that the problem (8)-(9) admits a unique solution. The proof
is finished. □

Corollary 2.6. Let Ψ : [ζ, η] × R −→ R is a continuous function which verify a uniform Lipschitz property for the
second variable on [ζ, η] × R and let Lipschitz constant ξ > 0, i.e

| Ψ(τ, χ) − Ψ(τ, φ) |≤ ξ | χ − φ |,

∀ (τ, χ), (τ, φ) ∈ [ζ, η] × R. If

η − ζ <
2
√

2
√
ξ
, (15)

therefore the system
χ
′′

(τ) = −Ψ(τ, χ(τ)), ζ < τ < η

χ(ζ) = c, χ(η) = d, c, d ∈ R

admits a unique solution.

Proof. Let 0 < γ = 1, δ = 1 ≤ 1, and γ + δ = 2. Then, it is very easy to achieve our proof with the following result

Σ(2, ζ, η) =
1
Γ(2)

max
τ∈[ζ,η]

(τ − ζ)(η − τ) =
(η − ζ)2

8
.

Therefore, the inequality in (14) is represented by the following

(η − ζ)2

8
<

1
ξ
,

which is equivalent to the formula (15). We completed the proof. □
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Conclusion

In this second half of the study, we have extended Banach’s contraction theorem by applying it to the boundary
value problem of double-sequential fractional order. We have demonstrated the existence of the unique solution
subject to the Caputo fractional derivative of double-sequential fractional order. We have proposed some important
concepts and then proved them by employing some basic theories from the literature. We have established a valid
analysis of our results along with the novel proofs.
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