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Abstract 

The wire electrical discharge machining (WEDM) process is extremely important in the fabrication of complex 

electrodes with delicate structures. Identifying optimal operating combinations is a challenge in industry due 

to the large number of process variables. To overcome this difficulty, neuro-regression analysis was used and 

optimization was carried out. In this study, the six-parameter WEDM process was first modeled in twelve 

different regression models using a neuro-regression analysis. These parameters are discharge current, pulse 

duration, pulse frequency, wire speed, wire tension and dielectric flow rate. In addition, multiple regression 

model types including linear, quadratic, trigonometric and rational forms were tested in twelve different 

regression models. Then, optimization study was carried out with four different algorithms to obtain minimum 

kerf and surface roughness. These algorithms are Nelder-Mead Algorithm, Differential Evolution Algorithm, 

Simulated Annealing Algorithm and Random Search Algorithm. The study shows that WEDM process 

parameters can be adjusted to achieve better surface finish and cutting width at the same time. The process is 

optimized by minimizing kerf and surface roughness. Optimization results are 0.17044 mm for kerf and 

3.60393 µm for surface roughness. It is seen that the processing model is suitable and the optimization 

technique meets the practical requirements.  

Keywords: Kerf; neuro-regression analysis; optimization; surface roughness; WEDM. 

1. Introduction 

WEDM technology is based on the principle of electro-erosion. During this process, metals corrode each other. 

With the control of the electro-erosion process, it may be possible to manufacture conductive materials of complex 

shapes. It is a very popular and widely used technology for cutting and manufacturing plastic molds, which is also 

used in the production of gear wheels and machine parts. WEDM is preferred by researchers/industry to save 

time, energy and money with the spread of mechanization and the development of technology [1]. 

 Many investigations have been performed in the field of WEDM, which include process modeling studies. 

Mouralova et al. [2] investigated it is important that the kerf width is as small as possible to ensure precision 

machining. For this reason, the slit was investigated in metallographic sections using light and electron 

microscopy. Surface roughness is important for the finishing cut of WEDM. Han et al. [3] experimentally 

investigated the effects of WEDM parameters including pulse time, discharge current, continuous pulse time, 

pulse interval time, polarity effect, material and dielectric or surface roughness in finishing. Saha and Mondal [4] 

examined the influence of WEDM parameters such as discharge pulse time, discharge stop time, servo voltage. 

In addition to experimental studies, combination of Taguchi's robust design concept and principal component 

analysis were applied to optimize those process parameters. Kumar et al. [5] analyzed the analytical hierarchy 

process and genetic algorithm studies to determine the best WEDM conditions for hybrid composites. In that 

research, three response parameters such as metal removal rate, surface roughness and spark gap were considered 

for process optimization. Shihab [6] used the Box-Behnken design to maximize metal removal rate while 

achieving low kerf and surface roughness in optimization. He realized the optimum process parameters. A new 

approach to determinate cutting parameters in WEDM, integrated artificial neural network (ANN), and wolf pack 

algorithm based on the strategy of the leader (LWPA) proposed by Ming et al. [7]. He presented an ANN-LWPA 

integration system with multiple fitness functions to solve the modeling problems. Two smart prediction tools, 

namely general regression neural network (GRNN) and multiple regression analysis (MRA) models, were 

developed in the research of Majumder and Maity [8]. In that study they predicted and compared some key 

machinability properties such as average notch width, average surface roughness, and material removal rate. 

Analysis of variance was performed by Phate et al. [9] to understand the effect of WEDM process parameters on 

overall WEDM efficiency. WEDM response properties such as surface roughness (Ra), material removal rate and 

kerf width were considered in that study. The ANN was employed for enhancing the performance of the process. 

Manjaiah et al. [10] used multi-objective optimization by using Taguchi-based utility approach to optimize Ra.  
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In this study it is aimed to optimize kerf (cutting width) and surface roughness. Taguchi design and neuro-

regression method were used during optimization process. Neuro-regression analysis were performed 

methodically, including linear, quadratic, trigonometric, logarithmic, and their rational forms. 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 

𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔
2  and  𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

2  values were checked for the validity of the models. Stochastic optimization methods 

were used to maximize or minimize the objective functions to optimum values. Finally, different direct search 

methods (modified differential evaluation, Nelder-Mead [11], random search and simulated annealing algorithms) 

are methodically performed. 

2. Materials and Methods 

2.1 Modeling 

In the modeling phase, a method combining the use of neuro-regression analysis and ANN was used. In order 

to apply this method, two different data separation was used. In the first one, all data were divided into three parts. 

80% of the data was used for training, 15% for testing, and 5% for validation. In the second one, the same data 

set were split into two parts as 80% for training and 20% for testing. Moreover 5% validation data was selected 

from the second part of the data whose percentage was determined as 20% before. Both splitting methods 

mentioned above were applied and the most suitable method for modeling was chosen. The second is more likely 

to pass stages. If we explain these stages briefly, the training stage aims to minimize the error between the 

experimental and predicted values by changing the given regression models and coefficients. The test stage is 

performed to obtain the prediction results by minimizing the effects of regression model mismatches. It is crucial 

to check the boundary values with the predicted ones to show whether the model is realistic or not. After obtaining 

suitable models for training and testing, the maximum and minimum values of the given models were calculated 

for each design variable. Equations of twelve different regression models are given in Table 1. Multiple regression 

models and types were used including linear, quadratic, trigonometric, logarithmic and rational forms [12]. 

Table 1.  Regression models name with nomenclature – formula. 

Model Name Nomenclature Formula 
Multiple 

Linear 
L a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x4 + a[6] x5 + a[7] x6 

Multiple 

Linear 

Rational 

LR (a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x4 + a[6] x5 +  a[7] x6)/(b[1] +      b[2] x1 + b[3] x2 + 

b[4] x3 + b[5] x4 + b[6] x5 + b[7] x6) 

Second-Order 
Multiple 
Nonlinear 

SON a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x4 + a[6] x5 + a[7] x6 +  a[8] x1^2 + a[9] x2^2 + a[10] x3^2 
+ a[11] x4^2 + a[12] x5^2 + a[13] x6^2+ 2 a[14] x1 x2 + 2 a[15] x1 x3 + 2 a[16] x1 x4 + 2 a[17] x1 
x5 + 2 a[18] x1 x6 + 2 a[19] x2 x3 + 2 a[20] x2 x4 + 2 a[21] x2 x5 

Second-Order 
Multiple 
Nonlinear 
Rational 

SONR (a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x4 + a[6] x5 + a[7] x6 +  a[8] x1^2 + a[9] x2^2 + a[10] x3^2 
+ a[11] x4^2 + a[12] x5^2 + a[13] x6^2 + 2 a[14] x1 x2 + 2 a[15] x1 x3 + 2 a[16] x1 x4 + 2 a[17] x1 
x5 + 2a[18] x1 x6 + 2 a[19] x2 x3 + 2 a[20] x2 x4 + 2 a[21] x2 x5)/( b[1] + b[2] x1 + b[3] x2 + b[4] x3 
+ b[5] x4 + b[6] x5 + b[7] x6 + b[8] x1^2 + b[9] x2^2 + b[10] x3^2 + b[11] x4^2 + b[12] x5^2 +  
b[13] x6^2 + 2 b[14] x1 x2 + 2 b[15] x1 x3 + 2 b[16] x1 x4 +  2 b[17] x1 x5 + 2 b[18] x1 x6 + 2 b[19] 
x2 x3 + 2 b[20] x2 x4 + 2 b[21] x2 x5) 

First-Order 
Trigonometric 
Multiple 
Nonlinear 

FOTN a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Sin[x4] + a[6] Sin[x5] + a[7] Sin[x6] + a[8] 
Cos[x1] + a[9] Cos[x2] +  a[10] Cos[x3] + a[11] Cos[x4] + a[12] Cos[x5] + a[13] Cos[x6] 

First-Order 
Trigonometric 
Multiple 
Nonlinear 
Rational 

FOTNR a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Sin[x4] + a[6] Sin[x5] + a[7] Sin[x6] + a[8] 
Cos[x1] + a[9] Cos[x2] + a[10] Cos[x3] + a[11] Cos[x4] + a[12] Cos[x5] + a[13] Cos[x6])/(b[1] + b[2] 
Sin[x1] + b[3] Sin[x2] + b[4] Sin[x3] + b[5] Sin[x4] + b[6] Sin[x5] + b[7] Sin[x6] + b[8] Cos[x1] + b[9] 
Cos[x2] + b[10] Cos[x3] + b[11] Cos[x4] + b[12] Cos[x5] + b[13] Cos[x6]) 

Second-Order 
Trigonometric 
Multiple 
Nonlinear 

SOTN a[1] + a[2] Sin[x1] + a[3] Sin[x3]^2 + a[4]  Sin[x3]^2 +  a[5] Sin[x4]^2 + a[6] Sin[x5]^2 + a[7] 
Sin[x6]^2 + a[8] Cos[x1] + a[9] Cos[x2] + a[10] Cos[x3] + a[11] Cos[x4] + a[12] Cos[x5] + a[13] 
Cos[x6] + a[14] Sin[x1] + a[15] Sin[x2] + a[16] Sin[x3] +  a[17] Sin[x4] + a[18] Sin[x5] + a[19] 
Sin[x6] + a[20] Cos[x1]^2 +  a[21] Cos[x2]^2 + a[22]  Cos[x3]^2 + a[23] Cos[x4]^2 + a[24]  
Cos[x5]^2 + a[25]  Cos[x6]^2 

Second-Order 
Trigonometric 
Multiple 
Nonlinear 
Rational 

SOTNR a[1] + a[2] Sin[x1] + a[3] Sin[x3]^2 + a[4]  Sin[x3]^2 +  a[5] Sin[x4]^2 + a[6] Sin[x5]^2 + a[7] 
Sin[x6]^2 + a[8] Cos[x1] + a[9] Cos[x2] + a[10] Cos[x3] + a[11] Cos[x4] + a[12] Cos[x5] +  a[13] 
Cos[x6] + a[14] Sin[x1] + a[15] Sin[x2] + a[16] Sin[x3] +  a[17] Sin[x4] + a[18] Sin[x5] + a[19] 
Sin[x6] + a[20] Cos[x1]^2 +  a[21] Cos[x2]^2 + a[22]  Cos[x3]^2 + a[23] Cos[x4]^2 +  a[24]  
Cos[x5]^2 + a[25]  Cos[x6]^2)/(b[1] + b[2] Sin[x1] + b[3] Sin[x3]^2 + b[4]  Sin[x3]^2 + b[5] 
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Sin[x4]^2 + b[6] Sin[x5]^2 + b[7] Sin[x6]^2 + b[8] Cos[x1] + b[9] Cos[x2] +  b[10] Cos[x3] + b[11] 
Cos[x4] + b[12] Cos[x5] + b[13] Cos[x6] +   b[14] Sin[x1] + b[15] Sin[x2] + b[16] Sin[x3] + b[17] 
Sin[x4] + b[18] Sin[x5] + b[19] Sin[x6] + b[20] Cos[x1]^2 + b[21] Cos[x2]^2 +b[22]  Cos[x3]^2 + 
b[23] Cos[x4]^2 + b[24]  Cos[x5]^2 +  b[25]  Cos[x6]^2) 

First-Order 
Logarithmic 
Multiple 
Nonlinear 

FOLN a[1] + a[2] Log[x1] + a[3] Log[x2] + a[4] Log[x3] + a[5]Log[x4] + a[6] Log[x5] + a[7] Log[x6] 

First-Order 
Logarithmic 
Multiple 
Nonlinear 
Rational 

FOLNR (a[1] + a[2] Log[x1] + a[3] Log[x2] + a[4] Log[x3] + a[5] Log[x4] + a[6] Log[x5] + a[7] Log[x6])/(b[1] 
+ b[2] Log[x1] + b[3] Log[x2] +  b[4] Log[x3] + b[5] Log[x4] + b[6] Log[x5] + b[7] Log[x6]) 

Second-Order 
Logarithmic 
Multiple 
Nonlinear 

SOLN a[1] + a[2] Log[x1] + a[3] Log[x2] + a[4] Log[x3] + a[5] Log[x4] +  a[6] Log[x5] + a[7] Log[x6] + a[8] 
Log[x1 x2] + a[9] Log[x1 x3] + a[10] Log[x1 x4] + a[11] Log[x1 x5] + a[12] Log[x1 x6] + a[13] Log[x2 
x3] + a[14] Log[x2 x4] + a[15] Log[x2 x5] + a[16] Log[x2 x6] + a[17] Log[x3 x4] + a[18] Log[x3 x5] + 
a[19] Log[x3 x5] + a[20] Log[x3 x6] + a[21] Log[x4 x5] +  a[22] Log[x4 x6] + a[23] Log[x5 x6] + a[24] 
Log[x1]^2 + a[25] Log[x2]^2 + a[26] Log[x3]^2 + a[27] Log[x4]^2 + a[28] Log[x5]^2 + a[29] 
Log[x6]^2 

Second-Order 
Logarithmic 
Multiple 
Nonlinear 

SOLNR a[1] + a[2] Log[x1] + a[3] Log[x2] + a[4] Log[x3] + a[5] Log[x4] +  a[6] Log[x5] + a[7] Log[x6] + a[8] 
Log[x1 x2] + a[9] Log[x1 x3] +  a[10] Log[x1 x4] + a[11] Log[x1 x5] + a[12] Log[x1 x6] + a[13] 
Log[x2 x3] + a[14] Log[x2 x4] + a[15] Log[x2 x5] + a[16] Log[x2 x6] + a[17] Log[x3 x4] + a[18] 
Log[x3 x5] + a[19] Log[x3 x5] + a[20] Log[x3 x6] + a[21] Log[x4 x5] + a[22] Log[x4 x6] + a[23] 
Log[x5 x6] + a[24] Log[x1]^2 +   a[25] Log[x2]^2 + a[26] Log[x3]^2 + a[27] Log[x4]^2 + 
a[28]Log[x5]^2 + a[29] Log[x6]^2)/(b[1] + b[2] Log[x1] +   b[3] Log[x2] + b[4] Log[x3] + b[5] 
Log[x4] + b[6] Log[x5] +  b[7] Log[x6] + b[8] Log[x1 x2] + b[9] Log[x1 x3] +   b[10] Log[x1 x4] + 
b[11] Log[x1 x5] + b[12] Log[x1 x6] + b[13] Log[x2 x3] + b[14] Log[x2 x4] + b[15] Log[x2 x5] +  
b[16] Log[x2 x6] + b[17] Log[x3 x4] + b[18] Log[x3 x5] +   b[19] Log[x3 x5] + b[20] Log[x3 x6] + 
b[21] Log[x4 x5] +  b[22] Log[x4 x6] + b[23] Log[x5 x6] + b[24] Log[x1]^2 +  b[25] Log[x2]^2 + 
b[26] Log[x3]^2 + b[27] Log[x4]^2 +  b[28] Log[x5]^2 + b[29] Log[x6]^2)*) 

2.2 Optimization 

 Optimization means achieving results and fixing problems after making the best use of available resources. 

Optimization techniques can be classified as conventional and non-conventional. Conventional optimization 

techniques are only used for continuous and differentiable functions, such as limited variation and Lagrange 

multipliers. In the present study, Nelder-Mead Algorithm, Differential Evolution Algorithm, Simulated Annealing 

Algorithm and Random Search Algorithm were chosen to solve the optimization scenarios [13-14]. 

2.2.1 Nelder Mead Algorithm 

Nelder Mead is a simplex method for finding the local minimum point(s) of a function containing several 

variables. The Nelder Mead method creates a simplex triangle for two variables and compares the function values 

of this triangle at the vertices. Thus, the optimum point is found. It is an easy and practical method applied in 

engineering problems [13]. 

2.2.2 Differential Evolution Algorithm 

This technique is based on genetic algorithm. It is an intuitive optimization technique and has a random nature. 

The productive parameters of this algorithm are population size, crossover and scaling factor. This indicates that 

you are dealing with a population of solutions rather than repeating them. Among other approaches, differential 

evolution algorithm is a simple yet powerful technique [14]. 

2.2.3 Simulated Annealing Algorithm 

In this technique, the global optimum value of the function ıs determined. The purpose of the algorithm is to 

achieve a global optimization and generally used in the computing applications [15]. 

2.2.4 Random Search Algorithm 

Random Search Algorithm can be expressed as a kind of local random search in which each iteration depends 

on the candidate solution of the previous iteration. It takes samples from the entire search space. In this technique 
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random search methods are available such as pure random search or uniform general random search. For example, 

it is known that random search is used for hyper parameter optimization in ANN [16]. 

2.3 Problem Definition 

The wire is arranged as follows to ensure optimum working conditions in WEDM. 

• The levels for the various control factors are given in Table 2. 

• Electrical discharge process input parameters were modeled with Taguchi design and regression analysis 

was performed. In Table 3, the parameters related with the reference [17] are given. 

• Design variables, where A: Discharge Current, B: Pulse Duration, C: Pulse Frequency, D: Wire Speed, 

E: Wire Tension, F: Dielectric Flow Rate. These variables have three different levels and given in Table 

2. That table is provided from the reference source [17]. 

• 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 
2 ,  𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2    and  𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2   must be greater than 0.90,0.85 and 0.85 respectively . When these 

conditions are satisfied, it can be concluded that the model is appropriate. 

• The validity of the obtained models was checked, and then the suitable models were solved by four 

different optimization algorithm methods. 

2.4 Optimization Scenario 

   In this optimization problem, the objective function contained kerf (cutting gap) and surface roughness. All 

design variables are assumed to be real numbers and the search space is continuous. For this case, 16 Amp < 

Discharge Current (A) < 32 Amp, 3.20 µs < Pulse Duration (B) <12.80µs, 40KHz < Pulse Frequency (C) < 60 

KHz, 7.60 m/min < Wire Speed (D) < 9.20 m/min, 1000 g <Wire Tension (E) < 1200 g, 1.20 Bars < Dielectric 

Flow Rate (F) < 1.40 Bars. The main purpose is to operate the WEDM at an optimal level. Therefore, kerf and 

surface roughness parameters should be minimized. Mathematically, the boundaries of the objective function can 

also be obtained with this approach. 

Table 2.  Levels for various control factors [17] 

 

  

 

 

 

 

 

Table 3.  Taguchi Experimental Design, input parameters and experimental results [17] 

Expt. No. A B F C D E 𝑹𝒂(µm) Kerf(mm) 

1 1 1 1 1 1 1 3.68 0.236 

2 1 1 2 2 2 2 3.61 0.190 

3 1 1 3 3 2 3 3.53 0.161 

4 1 2 1 2 2 2 3.82 0.286 

5 1 2 2 3 3 3 3.77 0.224 

6 1 2 3 1 1 1 3.70 0.217 

7 1 3 1 3 3 3 3.86 0.308 

8 1 3 2 1 1 1 3.83 0.248 

9 1 3 3 2 2 2 3.77 0.204 

10 2 1 1 1 2 3 3.64 0.211 

11 2 1 2 2 3 1 3.63 0.184 

12 2 1 3 3 1 2 3.67 0.256 

13 2 2 1 2 3 1 3.89 0.332 

14 2 2 2 3 1 2 3.87 0.306 

15 2 2 3 1 2 3 3.90 0.372 

16 2 3 1 3 1 2 3.86 0.246 

17 2 3 2 1 2 3 3.83 0.218 

18 2 3 3 2 3 1 3.86 0.278 

19 3 1 1 1 3 2 3.73 0.234 

20 3 1 2 2 1 3 3.75 0.294 

21 3 1 3 3 2 1 3.73 0.254 

22 3 2 1 2 1 3 3.80 0.225 

Control Factor I II III 

A. Discharge Current (Amp) 16.00 24.00 32.00 

B. Pulse Duration (µs) 3.20 6.40 12.80 

C. Pulse Frequency (KHz) 40 50 60 

D. Wire Speed (m/min) 7.60 8.60 9.20 

E. Wire Tension (g) 1000 1100 1200 

F. Dielectric Flow Rate (Bars) 1.20 1.30 1.40 



BAŞTÜRK / JAIDA vol (2022) 43-52 

47 
 

23 3 2 2 3 2 1 3.84 0.285 

24 3 2 3 1 3 2 3.83 0.253 

25 3 3 1 3 2 1 3.99 0.263 

26 3 3 2 1 3 2 3.89 0.262 

27 3 3 3 2 1 3 3.89 0.259 

 

3. Results and Discussion 

It was desired to minimize the surface roughness and kerf values in the wire electrical discharge machine. 

Various regression models were tested in the literature using 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2  ,   𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2  ,  𝑎𝑛𝑑  𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2 . Multiple 

regression model types including linear, quadratic, trigonometric, and rational forms were tested. Taguchi design 

and regression analysis were used to test output-input models in the reference work. In this study, twelve 

regression models with six parameters were tested. The models are given in Table 1 in detail. In addition, the 

outputs for the models are given in Table 4 and Table 6. Optimization results and suggested designs are given in 

Table 5 and Table 7. 

    Table 5 and Table 7 show that four different optimization algorithms are used. These algorithms are Nelder-

Mead Algorithm, Differential Evolution Algorithm, Simulated Annealing Algorithm and Random Search 

Algorithm. Mathematically, the limits of the objective function can also be obtained with this approach. This 

approach gives evidence of correct modeling and limitations in optimization after applying twelve different 

regression models. The results for all algorithms seem close to each other. However, these differences should be 

analyzed well in sensitive interpretations. The scope of the study is to see the effect of the results of these 

optimization algorithms on the optimization. Based on this, it can be said that the optimization algorithms in this 

study give similar values for different algorithms in the results. However, in experimental studies with different 

data, algorithms can give different results, so it is easier to interpret the effect of the algorithm on optimization. 

However, it is difficult to explain the difference between optimization algorithms by looking at the results in this 

study. 

    The kerf value is minimized for optimum operating conditions. Kerf value is 0.17044 mm. SOLN (Second 

Order Logarithmic Multiple Nonlinear) as a model. The simulated annealing algorithm was used as a method. 

Optimal conditions are Discharge Current :32 Amp, Pulse Duration: 3.2 µs, Dielectric Flow Rate: 1.26657 Bars, 

Pulse Frequency: 60 KHz, Wire Speed:9.2 m/min, Wire Tension: 1200 g. 

Table 4. The results of the regression models and limitation are for kerf. 

Models 𝑹𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
𝟐  𝑹𝒕𝒆𝒔𝒕𝒊𝒏𝒈

𝟐    𝑹𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏
𝟐  Maximum Minimum 

Y=0.345525 + 0.00227546 x1 + 

0.00170305 x2 +0.0106114 x3 -

0.00111863 x4 - 0.00218462 x5 - 

0.0000948113 x6 

0.96762 -1.55346 -1.04871 0.298836 0.199127 

Y= (-156.984 + 2.91334 x1 + 4.70894 

x2 - 155.444 x3 + 1.88426 x4 - 1.54588 

x5 + 0.172973 x6)/(-814.977 + 11.7874 

x1 + 21.5156 x2 - 679.797 x3 + 

7.04886 x4 + 5.43501 x5 + 0.83685 x6) 

0.99741 -278.943 -1.0293 178469. -1.16373*1012 

Y=3.02691 + 0.0852935 x1 - 

0.000278251 x1^2 + 0.0220959 x2 - 

0.000478143 x1 x2 - 0.00253284 x2^2 

- 3.72551 x3 + 0.0299919 x1 x3 - 

0.0269791 x2 x3 + 1.2682 x3^2 + 

0.0349188 x4 - 0.000104581 x1 x4 + 

0.000716035 x2 x4 - 0.000415591 x4^2 

+ 0.0622959 x5 - 0.00214178 x1 x5 + 

0.00365543 x2 x5 - 0.00495281 x5^2 - 

0.00414701 x6 - 0.0000749325 x1 x6 

+2.64107*10^-6 x6^2 

0.987461 -4.64949 -0.0116655 0.512067 -0.0131406 

Y=(1.00142 + 1.02142 x1 - 0.363206 

x1^2 + 1.01119 x2 + 2.51615 x1 x2 -  

2.03674 x2^2 + 0.996731 x3 + 2.02719 

x1 x3 + 1.87877 x2 x3 +   0.989473 

x3^2 + 1.00466 x4 + 8.66948 x1 x4 + 

5.29075 x2 x4 - 2.41314 x4^2 + 1.0293 

x5 + 3.7472 x1 x5 + 3.58219 x2 x5 + 

1.39927 x5^2 + 1.65865 x6 + 5.41413 

0.969526 -0.310494 -0.880369 0.269572 0.179999 
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x1 x6 - 0.0653058 x6^2)/(0.999656 + 

0.998974 x1 + 1.55153 x1^2 + 1.00405 

x2 + 2.47433 x1 x2 + 1.82439 x2^2 + 

1.0005 x3 + 1.99323 x1 x3 + 2.05869 

x2 x3 + 1.0018 x3^2 + 0.991958 x4 + 

0.534298 x1 x4 + 2.55489 x2 x4 + 

1.13551 x4^2 + 0.993309 x5 +  1.74626 

x1 x5 + 1.8483 x2 x5 + 0.910865 x5^2 

+ 0.842715 x6 + 21.4831 x1 x6 - 

0.239944 x6^2) 

Y=2.6147 + 0.0248117 Cos[x1] + 

0.0767145 Cos[x2] - 0.695018 Cos[x3] 

+ 0.00804462 Cos[x4] + 0.00206104 

Cos[x5] - 0.0623113 Cos[x6] - 

0.0158866 Sin[x1] - 0.485028 Sin[x2] - 

2.23478 Sin[x3] + 0.0179596 Sin[x4] + 

0.0467603 Sin[x5] + 0.00575167 

Sin[x6] 

0.983099 0.922505 -4.75779 0.943884 -0.320025 

Y=2.6147 + 0.0248117 Cos[x1] + 

0.0767145 Cos[x2] - 0.695018 Cos[x3] 

+ 0.00804462 Cos[x4] + 0.00206104 

Cos[x5] - 0.0623113 Cos[x6] - 

0.0158866 Sin[x1] - 0.485028 Sin[x2] - 

2.23478 Sin[x3] + 0.0179596 Sin[x4] + 

0.0467603 Sin[x5] + 0.00575167 

Sin[x6] 

0.992522 -5.13909 -8.59265 3.7212*107 -5.94437*106 

Y=0.0328006 + 0.035645 Cos[x1] + 

0.0325077 Cos[x1]^2 + 0.0757116 

Cos[x2] + 0.0400001 Cos[x2]^2 - 

0.741854 Cos[x3] + 1.31834 Cos[x3]^2 

+ 0.00877994 Cos[x4] + 0.0394002 

Cos[x4]^2 - 0.000300729 Cos[x5] + 

0.0403801 Cos[x5]^2 + 0.0301413 

Cos[x6] + 0.0290802 Cos[x6]^2 - 

0.0304481 Sin[x1] - 0.471283 Sin[x2] 

+ 0.027312 Sin[x3] + 0.0506393 

Sin[x3]^2 + 0.00332714 Sin[x4] + 

0.0721788 Sin[x4]^2 + 0.0377993 

Sin[x5] + 0.0511693 Sin[x5]^2 - 

0.000961744 Sin[x6] + 0.097492 

Sin[x6]^2 

0.983099 0.92225 -4.75779 0.838918 -0.433362 

Y=(-0.143231 + 1.02503 Cos[x1] + 

0.319877 Cos[x1]^2 + 1.33965 Cos[x2] 

+ 1.64897 Cos[x2]^2 - 0.686355 

Cos[x3] + 0.626178 Cos[x3]^2 + 

0.337058 Cos[x4] + 0.442023 

Cos[x4]^2 + 0.667737 Cos[x5] + 

0.198311 Cos[x5]^2 + 0.172114 

Cos[x6] + 0.375179 Cos[x6]^2 +  

2.71112 Sin[x1] - 4.19607 Sin[x2] + 

0.0334958 Sin[x3] +  0.461181 

Sin[x3]^2 + 0.187331 Sin[x4] + 

0.414746 Sin[x4]^2 +   0.783651 

Sin[x5] + 0.658458 Sin[x5]^2 + 

0.190198 Sin[x6] +  0.48159 

Sin[x6]^2)/(1.50951 + 3.28362 Cos[x1] 

+ 2.51938 Cos[x1]^2 + 2.60966 

Cos[x2] + 1.00835 Cos[x2]^2 +   

2.13008 Cos[x3] + 1.45514 Cos[x3]^2 

+ 1.24312 Cos[x4] +  1.49287 

Cos[x4]^2 + 2.84951 Cos[x5] + 

0.669053 Cos[x5]^2 + 1.64504 Cos[x6] 

+ 1.67608 Cos[x6]^2 + 10.5281 Sin[x1] 

+  2.57822 Sin[x2] + 1.27688 Sin[x3] + 

2.10872 Sin[x3]^2 +  0.812532 Sin[x4] 

+ 1.01664 Sin[x4]^2 + 1.47664 Sin[x5] 

+  1.84045 Sin[x5]^2 + 1.11108 

Sin[x6] + 0.83343 Sin[x6]^2) 

0.99487 -2.43018 -4.29465 7.71308*106 -2.57775*107 
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2.6147 + 0.0248117 Cos[x1] + 

0.0767145 Cos[x2] - 0.695018 Cos[x3] 

+ 0.00804462 Cos[x4] + 0.00206104 

Cos[x5] - 0.0623113 Cos[x6] - 

0.0158866 Sin[x1] - 0.485028 Sin[x2] - 

2.23478 Sin[x3] + 0.0179596 Sin[x4] + 

0.0467603 Sin[x5] + 0.00575167 

Sin[x6] 

0.969421 -1.71268 -0.755777 0.304101 0.191605 

(-410.542 + 505.756 Log[x1] + 86.3088 

Log[x2] + 137.106 Log[x3] +  

 168.48 Log[x4] - 1260.57 Log[x5] + 

104.764 Log[x6])/(-100.648 +  

 2029.13 Log[x1] + 468.664 Log[x2] - 

344.646 Log[x3] + 358.247 Log[x4] - 

4832.5 Log[x5] + 299.616 Log[x6]) 

0.996957 -17.7241 -2966.27 12704.9 -307377. 

30.344 + 0.765363 Log[x1] - 0.221966 

Log[x1]^2 + 0.509759 Log[x2] - 

0.130349 Log[x2]^2 + 0.378032 

Log[x1 x2] - 3.01852 Log[x3] + 

2.01673 Log[x3]^2 + 0.639298 Log[x1 

x3] + 0.355116 Log[x2 x3] + 0.616684 

Log[x4] - 0.164074 Log[x4]^2 + 

0.342368 Log[x1 x4] + 0.339301 

Log[x2 x4] + 0.531829 Log[x3 x4] + 

2.07915 Log[x5] - 1.36013 Log[x5]^2 

+ 0.612108 Log[x1 x5] + 0.711383 

Log[x2 x5] + 3.25295 Log[x3 x5] + 

0.518864 Log[x4 x5] - 2.90909 

Log[x6] +  0.805314 Log[x6]^2 - 

1.30757 Log[x1 x6] - 1.802 Log[x2 x6] 

- 2.71383 Log[x3 x6] - 1.12419 Log[x4 

x6] - 1.59307 Log[x5 x6] 

0.983099 0.92225 -4.75779 0.363967 0.139315 

(0.392182 + 2.6288 Log[x1] + 3.23866 

Log[x1]^2 + 7.93825 Log[x2] -  

11.1651 Log[x2]^2 + 9.56705 Log[x1 

x2] + 2.15288 Log[x3] +  1.93372 

Log[x3]^2 + 3.78168 Log[x1 x3] + 

9.09114 Log[x2 x3] - 0.31849 Log[x4] 

- 0.943493 Log[x4]^2 + 1.31031 

Log[x1 x4] + 6.61976 Log[x2 x4] + 

0.834391 Log[x3 x4] - 0.808902 

Log[x5] - 4.41187 Log[x5]^2 + 

0.819894 Log[x1 x5] + 6.12935 Log[x2 

x5] + 0.687958 Log[x3 x5] - 2.12739 

Log[x4 x5] - 1.3626 Log[x6] - 1.6747 

Log[x6]^2 + 0.266192 Log[x1 x6] + 

5.57565 Log[x2 x6] - 0.209723 Log[x3 

x6] - 2.68109 Log[x4 x6] - 3.17151 

Log[x5 x6])/(0.981338 + 3.25945 

Log[x1] +  19.6328 Log[x1]^2 - 

0.569116 Log[x2] + 4.65743 Log[x2]^2 

+ 1.69033 Log[x1 x2] + 0.303267 

Log[x3] + 0.565446 Log[x3]^2 + 

2.56272 Log[x1 x3] - 1.26585 Log[x2 

x3] + 0.769713 Log[x4] - 0.298893 

Log[x4]^2 + 3.02916 Log[x1 x4] - 

0.799403 Log[x2 x4] + 0.0729798 

Log[x3 x4] + 0.432774 Log[x5] - 

1.1629 Log[x5]^2 + 2.69222 Log[x1 

x5] - 1.13634 Log[x2 x5] - 0.527919 

Log[x3 x5] +  0.202487 Log[x4 x5] + 

0.604482 Log[x6] - 3.80114 Log[x6]^2 

+  2.86393 Log[x1 x6] - 0.964634 

Log[x2 x6] - 0.0922513 Log[x3 x6] +   

0.374195 Log[x4 x6] + 0.0372559 

Log[x5 x6]) 

0.984678 0.842674 -11.7328 0.404415 0.0481186 
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Table 5. Results of optimization problems for the four models selected for kerf minimization. 

 
Objective 

Functions 

Constraints Optimization 

Algorithm 

Kerf(mm) 

Minimiza

tion 

Suggested Design 

 

 

FOTN 

 

16 < x1 < 32,  

3.2 < x2 <12.8, 

1.2 < x3 < 1.4 

,40 < x4 < 60,  

7.6 < x5 < 9.2, 

 1000 < x6 < 

1200 

 

 

MDE 

 

MSA 

 

MRS 

 

MNM 

 

 

-0.320025 

 

-0.320025 

 

-0.320025 

 

-0.320025 

 

 

x1 -> 21.4216, x2 -> 8.01085, x3 -> 1.26928, x4 -> 48.2736, x5 

-> 9.2, x6 -> 1200. 

 

x1 -> 27.7048, x2 -> 8.01085, x3 -> 1.26928, x4 -> 54.5567, x5 

-> 9.2, x6 -> 1181.15 

 

x1 -> 27.7048, x2 -> 8.01085, x3 -> 1.26928, x4 -> 41.9904, x5 

-> 9.2, x6 -> 1086.9 

 

x1 -> 27.7048, x2 -> 8.01085, x3 -> 1.26928, x4 -> 54.5567, x5 

-> 9.2, x6 -> 1105.75 

 

 

SOTN 

 

16 < x1 < 32,  

3.2 < x2 < 

12.8,1.2 < x3 < 

1.4 ,40 < x4 < 

60, 7.6 < x5 < 

9.2,1000 < x6 < 

1200 

 

MDE 

 

 

MSA 

 

 

MRS 

 

 

MNM 

 

 

-0.433362 

 

 

-0.433362 

 

 

-0.433362 

 

 

-0.415825 

 

x1 -> 27.0769, x2 -> 7.99065, x3 -> 1.27036, x4 -> 59.735, x5 -

> 9.2, x6 -> 1077.56 

 

x1 -> 27.0769, x2 -> 7.99065, x3 -> 1.27036, x4 -> 47.1687, x5 

-> 9.2, x6 -> 1165.53 

 

x1 -> 27.0769, x2 -> 7.99065, x3 -> 1.27036, x4 -> 59.735, x5 -

> 9.2, x6 -> 1014.73 

 

 

x1 -> 27.0769, x2 -> 7.99065, x3 -> 1.27036, x4 -> 50.2068, x5 

-> 9.2, x6 -> 1064.99 

 

 

SOLN 

 

16 < x1 < 32,  

3.2 < x2 < 12.8, 

1.2 < x3 < 1.4 

,40 < x4 < 60,  

7.6 < x5 < 9.2, 

 1000 < x6 < 

1200 

 

MDE 

 

MSA 

 

MRS 

 

MNM 

 

0.139315 

 

0.17044 

 

0.149927 

 

0.139315 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.26657, x4 -> 60., x5 -> 9.2, x6 -> 

1200. 

 

x1 -> 32., x2 -> 3.2, x3 -> 1.26657, x4 -> 60., x5 -> 9.2, x6 -> 

1200. 

 

x1 -> 16., x2 -> 12.8, x3 -> 1.26657, x4 -> 60., x5 -> 9.2, x6 -> 

\1200. 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.26657, x4 -> 60., x5 -> 9.2, x6 -> 

1200. 

 

SOLNR 

 

16 < x1 < 32,  

3.2 < x2 < 

12.8,1.2 < x3 < 

1.4 ,40 < x4 < 

60, 7.6 < x5 < 

9.2, 1000 < x6 < 

1200 

 

 

MDE 

 

MSA 

 

MRS 

 

MNM 

 

0.0481184 

 

0.0481207 

 

0.0481185 

 

0.0481186 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.2, x4 -> 60., x5 -> 9.2, x6 -> 1200. 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.2, x4 -> 59.9994, x5 -> 9.2, x6 -> 

1200. 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.2, x4 -> 60., x5 -> 9.2, x6 -> 1200. 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.2, x4 -> 60., x5 -> 9.2, x6 -> 1200. 
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Table 6.  The results of the regression models and limitation are for surface roughness. 

Model  Maximum Minimum 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2  𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2   𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2  

4.06381 + 0.104384 Log[x1] + 0.156206 

Log[x2] - 0.218486 Log[x3] - 0.0115373 

Log[x4] + 0.0443204 Log[x5] - 0.126955 

Log[x6] 

0.999779 0.865904 0.89335 3.9628 3.60393 

 

 

Table 7. Results of optimization problems for the one model selected for surface roughness minimization. 

 
Objective 

Functions 

Constraints Optimization 

Algorithm 

Surface 

Rouhness 

(µm) 

Minimization 

Suggested Design 

 

 

FOLN 

 

16 < x1 < 32,  

3.2 < x2 <12.8, 

1.2 < x3 < 1.4 ,40 < x4 < 60,  

7.6 < x5 < 9.2, 

 1000 < x6 < 1200 

 

 

MDE 

 

MSA 

 

MRS 

 

MNM 

 

 

3.60393 

 

3.60394 

 

3.60393 

 

3.60393 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.4, x4 -> 60., x5 -> 7.6, 

x6 -> 1200. 

 

x1 -> 16.0001, x2 -> 3.20001, x3 -> 1.4, x4 -> 

59.9918, x5 -> 7.60005, x6 -> 1199.99 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.4, x4 -> 59.9994, x5 -> 

7.60001, x6 -> 1200. 

 

x1 -> 16., x2 -> 3.2, x3 -> 1.4, x4 -> 59.9999, x5 -> 

7.6, x6 -> 1200. 

 

When the tables are examined, the suitability of the regression models is very important in optimizing. 

Because, in fact, every experiment has a working principle suitable for maximizing or minimizing in accordance 

with the working dynamics. 

The surface roughness value is minimized for optimum operating conditions. Surface roughness value is 

3.60393 µm. FOLN (First Order Logarithmic Multiple Nonlinear) as a model The differential evolution was used 

as a method. Optimal conditions are Discharge Current :16 Amp, Pulse Duration: 3.2 µs, Dielectric Flow Rate: 

1.4 Bars, Pulse Frequency: 60 KHz, Wire Speed: 7.6 m/min, Wire Tension: 1200 g. 

 For surface roughness and kerf, the results fit the input ranges. Provided the training, testing and validation 

phase for surface roughness. Provided the training and testing phase for Kerf. Looking at the tables in general, it 

can be seen that the study was successful (Table 4, Table 5, Table 6 and Table 7). 

 

4. Conclusions 

In this study, important processing parameters were tried to be determined separately for performance 

measurements such as surface roughness and kerf in the WEDM process. It has been seen that factors such as 

discharge current, pulse frequency and pulse duration and their interactions play an important role in rough cutting 

for kerf and surface roughness minimization. 

Taguchi's experimental design method and multiple regression models are used to obtain the optimum 

parameter combination for minimization of kerf and surface roughness. The data separated as 80%, 15% and 5% 

in the modeling were randomly selected. This increased the reliability of the experiment. Thus, there was no 

accumulation in a certain number range. The most important part of the work is to check the accuracy of the limits 

of the proposed input parameters in the minimization results. This gives a great idea of the accuracy of the model. 

After using twelve different regression models, using four different optimization algorithms (Nelder-Mead 

Algorithm, Differential Evolution Algorithm, Simulated Annealing Algorithm and Random Search Algorithm) 

increased the accuracy of the optimization results. 

This work can be extended in the future for different processing parameters and outputs. In addition, the work 

can be further improved with hybrid regression modeling techniques. 
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