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Abstract

The outline of this research article is that, δ -Lorentzian trans Sasakian manifolds with a semi-symmetric-metric connection (briefly say
SSM) have been investigated. Indeed, we obtain the expressions for Riemannian curvature tensor R̄, Ricci curvature tensors R̄ic and scalar
curvature r̄ of the δ -Lorentzian trans-Sasakian manifolds with a SSM connection. Mainly, we discuss the generalized Wintgen inequalities
for submanifolds in δ -Lorentzian trans-Sasakian space form with a SSM connection. Furthermore, we examine the generalized Wintgen
inequality for submanifolds of δ -Lorentzian trans-Sasakian space form.
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1. Introduction

The conception of manifolds with indefinite metrics has fruitful applications in mathematical physics and general theory of relatively. The
study of differentiable manifolds with Lorentzian metric is a natural and interesting topic in differential geometry and physics. In 1969,
Takahashi [1] has introduced the notion of almost contact metric manifolds equipped with pseudo Riemannian metric. These indefinite
almost contact metric manifolds and indefinite Sasakian manifolds are known as (ε)-almost contact metric manifolds. The concept of
(ε)-Sasakian manifolds is initiated by Bejancu and Duggal [2].
Notion of Lorentzian para-contact manifolds were introduced by Matsumoto [3]. CR-Submanifolds of Trans Lorentzian para Sasakian
manifolds were investigated by Gill and Dube [4]. In [5], Pujar and Khairnar discussed some axioms of the Lorentzian trans-Sasakian
manifolds and studied the some basic results. Siddiqi et al.[6] also studied some properties of trans-Sasakian manifolds with indefinite metric
which are closely related to this topic. Semi-Riemannian manifolds has the index 1 and the structure vector field ξ is always a time like. This
idea inspired to the Tripathi and others [7] to reveal (ε)-almost para-contact structure, in this circumstances the vector filed ξ is space like or
time like according as (ε) = 1 or (ε) =−1.
In fact, if M has a Lorentzian metric g, that is a symmetric non-degenerate (0,2) tensor field of index 1, then M is known as a Lorentzian
manifold. Since the Lorentzian metric is of index 1, Lorentzian manifold M has exhibits three kind of vector fields (1) spacelike vector fields
(2) timelike vector fields and (3) lightlike vector fields. This is the major difference with the Riemannian case gives interesting properties on
the Lorentzian manifold. A differentiable manifold M has a Lorentzian metric if and only if M has a 1- dimensional distribution. Hence
odd dimensional manifold is able to have a Lorentzian metric. Motivated by the above researches and remarks Bhati [8] developed the
conception of δ -Lorentzian trans-Sasakian manifolds. Follow by Siddiqi et al. [9] who studied the contact CR-submanifold of a δ -Lorentzian
trans-Sasakian manifold.
In 1924, the central idea of semi-symmetric linear connection on a differentiable manifold was initiated by Friedmann and Schouten [10]. In
1930, Bartolotti [11] gave a geometrical meaning of such a connection. In 1932, Hayden [12] devolved the discourse of semi-symmetric
metric connection. In 1970, Yano [13], further enhance a systematic study of the semi-symmetric metric connection in a Riemannian manifold
and this was more extensively studied by several geometers such as for more details (see [14], [15], [16], [17], [18], [19] ). Semi-symmetric
connections (SSM) play an important role in the study of Riemannian manifolds. There are various physical problems involving the
semi-symmetric metric connection. For example, During the mathematical congress in Moscow in 1934, one evening mathematicians
invented the ”Moscow displacement.” The streets of Moscow are approximately straight lines through the Kremlin and concentric circles
around it. If a person walks in the street always facing the Kremlin, then this displacement is semi-symmetric and metric [10].
Let ∇ be a linear connection in an n-dimensional differentiable manifold M. The torsion tensor T and the curvature tensor R of ∇ are given
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respectively by

T (E,F) = ∇E F−∇F E− [E,F ],

R(E,F)G = ∇E ∇F G−∇F ∇E Z−∇[E,F ]G.

The connection ∇ is said to be symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is said to
be metric connection if there is a Riemannian metric g in M such that ∇g = 0, otherwise it is non-metric. It is well known that a linear
connection is symmetric and metric if it is the Levi-Civita connection.
A linear connection ∇ is said to be semi-symmetric connection if its torsion tensor T is of the form

T (E,F) = u(F)E−u(E)F,

where u is a 1-form.
In contrast, in the year 1979, for any surface M2 in E4, the following inequality involving the Gauss curvature K , the normal curvature K ⊥

and the squared mean curvature ||H ||2 was obtained by P. Wintgen [20]

||H ||2 ≥K + |K ⊥|.

Moreover, equality holds in the above relation if and only if the ellipse of curvature of M2 in E4 is a circle. Later on, an extension for
arbitrary codimension m in real space forms Mm+2

(c) was given in [21]

||H ||2 + c≥K + |K ⊥|.

De Smet, Dillen, Verstraelen and Vrancken conjectured the generalized Wintgen inequality for submanifolds in real space form. This
conjecture is also known as DDVV conjecture and it was also proved by Ge and Tang [22]. In the recent years, DDVV inequality has been
obtained by distinct researchers for different classes of submanifolds in different ambient manifolds (see [23]-[28]). So, in this manuscript
we study generalized Wintgen inequalities for submanifolds in δ -Lorentzian trans-Sasakian space form with a semi-symmetric metric
connection.

2. Preliminaries

Let M be a δ -almost contact metric manifold equipped with δ -almost contact metric structure (φ ,ξ ,η ,g,δ ) consisting of a (1,1) tensor field
φ , a vector field ξ , a 1-form η and an indefinite metric g such that

φ
2 = E +η(E)ξ , η ◦φ = 0, φξ = 0, (2.1)

η(ξ ) =−1, (2.2)

g(ξ ,ξ ) =−δ , (2.3)

η(E) = δg(E,ξ ), (2.4)

g(φE,φF) = g(E,F)+δη(E)η(F), (2.5)

for all E,F ∈M, where δ is such that δ 2 = 1 so that δ =±1. The above structure (φ ,ξ ,η ,g,δ ) on M is called the δ Lorentzian structure on
M. If δ = 1 and this is usual Lorentzian structure [8] on M, the vector field ξ is the time like [3], that is M contains a time like vector field.
In [29] Tanno provided the classification of connected almost contact metric manifold. For such a manifold the sectional curvature of the
plane section containing ξ is constant, say c. Tanno proved that they can be divided into three classes. (1) is homogeneous normal contact
Riemannian manifolds with c > 0. Other two classes can be observe in [29].
In the classification of almost Hermitian manifolds, there develop a class W4 of Hermitian manifolds which are merely related to the conformal
Kaehler manifolds [30]. The class C6⊕C5 consist the structure namely trans-Sasakian of type (α,β ) [31] and this class completely explain
the characteristics of trans-Sasakian structures.
An almost contact metric structure [32] on M is called a trans-Sasakian [33] if (M×R,J,G) belongs to the class W4, where J is the almost
complex structure on M×R defined by

J
(

E,ψ
d
dt

)
=

(
φ(E)−ψξ ,η(E)

d
dt

)
,

for all vector fields E on M and smooth functions ψ on M×R and G is the product metric on M×R. This may be expressed by the condition

(∇E φ)F = α(g(E,F)ξ −η(F)E)+β (g(φE,F)ξ −η(F)φE), (2.6)

for any vector fields E and F on M, ∇ denotes the Levi-Civita connection with respect to g, α and β are smooth functions on M. The
existence of condition (2.3) is ensured by the above discussion.
With the above literature, we recall the δ -Lorentzian trans-Sasakian manifolds [8] as follows.
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Definition 2.1. A δ -Lorentzian manifold with structure (φ ,ξ ,η ,g,δ ) is said to be δ -Lorentzian trans-Sasakian manifold of type (α,β ) if it
satisfies the condition

(∇E φ)F = α(g(E,F)ξ −δη(F)E)+β (g(φE,F)ξ −δη(F)φE), (2.7)

for any vector fields E,F ∈M.

If δ = 1, then the δ -Lorentzian trans-Sasakian manifold is the usual Lorentzian trans-Sasakian manifold of type (α,β ) [33]. δ -Lorentzian
trans-Sasakian manifold of type (0,0), (0,β ) (α,0) are the Lorentzian cosymplectic, Lorentzian β -Kenmotsu and Lorentzian α-Sasakian
manifolds respectively. In particular if α = 1, β = 0 and α = 0, β = 1, the δ -Lorentzian trans-Sasakian manifolds reduces to δ -Lorentzian
Sasakian and δ -Lorentzian Kenmotsu manifolds respectively.
Form (2.4), we have

∇E ξ = δ {−αφ(E)−β (E +η(E)ξ} , (2.8)

and

(∇E η)F = αg(φE,F)+β [g(E,F)+δη(E)η(F)]. (2.9)

In a δ -Lorentzian trans-Sasakian manifold M, we have the following relations:

R(E,F)ξ = (α2 +β
2)[η(F)E−η(E)F ]+2αβ [η(F)φE−η(E)φF ]+δ [(Fα)φE− (Eα)φF +(Y β )φ 2E− (Eβ )φ 2F ],(2.10)

R(ξ ,F)E = (α2 +β
2)[δg(E,F)ξ −η(E)F ]+δ (Eα)φF +δg(φE,F)(gradα)

+ δ (Eβ )(F +η(F)ξ )−δg(φF,φE))(gradβ )+2αβ [δg(φE,F)ξ +η(E)φF ], (2.11)

η(R(E,F)G) = δ (α2 +β
2)[η(E)g(F,G)−η(F)g(E,G)+2δαβ [−η(E)g(φF,G)+η(F)g(φE,G)]

− [(Fα)g(φE,G)+(Eα)g(F,φG)]− (Fβ )g(φ 2E,G)+(Eβ )g(φ 2F,G)], (2.12)

Ric(E,ξ ) = [((n−1)(α2 +β
2)− (ξ β )]η(E)+δ ((φE)α)+(n−2)δ (Eβ ), (2.13)

Ric(ξ ,ξ ) = (n−1)(α2 +β
2)−δ (n−1)(ξ β ), (2.14)

where R is Riemannian curvature tensor and Ric is the Ricci curvature tensor.
Furthermore in an δ -Lorentzian trans-Sasakian manifold , we have

δφ(gradα) = δ (n−2)(gradβ ), (2.15)

and

2αβ −δ (ξ α) = 0. (2.16)

The ξ -sectional curvature Kξ of M is the sectional curvature of the plane spanned by ξ and a unit vector field E. From (2.11), we have

Kξ = g(R(ξ ,E),ξ ,E) = (α2 +β
2)−δ (ξ β ). (2.17)

It follows from (2.16) that ξ -sectional curvature does not depend on E. From (2.11)

g(R(ξ ,F)G,ξ ) = [(α2 +β
2)−δ (ξ β )]g(F,G)+ [(ξ β )−δ (α2 +β

2)]η(F)η(G)+ [2αβ +δ (δα)]g(φF,G), (2.18)

An affine connection ∇̄ in M is called semi-symmetric connection [10], it is torsion tensor satisfies the following relations

T̄ (E,F) = ∇̄E F− ∇̄E F− [E,F ], (2.19)

and

T̄ (E,F) = η(E)F−η(F)E. (2.20)

Moreover, a semi-symmetric connection is called semi-symmetric metric connection (SSM) if

(∇̄g)(E,F) = 0. (2.21)

If ∇ is metric connection and ∇̄ is the semi-symmetric metric connection with non-vanishing torsion tensor T in M, then we have

T (E,F) = η(F)E−η(E)F, (2.22)

∇̄E F−∇E F =
1
2
[T (E,F)+T

′
(E,F)+T

′
(E,F)], (2.23)

where

g(T (G,E),F) = g(T
′
(E,F),G). (2.24)

By using (2.4), (2.21) and (2.22), we get

g(T
′
(E,F),G) = g(η(E)G−η(G)E,F),
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g(T
′
(E,F),G) = η(E)g(G,F)−δg(E,F)g(ξ ,G),

T
′
(E,F) = η(E)F−δg(E,F)ξ ,

T
′
(F,E) = η(F)E−δg(E,F)ξ . (2.25)

From (2.20), (2.21),(2.23) and (2.24), we get

∇̄E F = ∇E F +η(F)E−δg(E,F)ξ .

Let M be an n-dimensional δ -Lorentzian trans-Sasakian manifold and ∇ be the metric connection on M. The relation between the
semi-symmetric metric connection ∇̄ and the metric connection ∇ on M is given by

∇̄E F = ∇E F +η(F)E−δg(E,F)ξ . (2.26)

3. Characteristics of Curvature on δ -Lorentzian trans-Sasakian manifold with a SSM connection

Let M be an n-dimensional δ -Lorentzian trans-Sasakian manifold. The curvature tensor R̄ of M with respect to the SSM connection ∇̄ is
defined by

R̄(E,F)G = ∇̄E ∇̄F G− ∇̄F ∇̄E G− ∇̄[E,F ]G. (3.1)

By using (2.1), (2.4), (2.25) and (3.1), we get

R̄(E,F)G = R(E,F)G+(δ )[g(E,G)F−g(F,G)E]+ (β +δ )[g(F,G)η(E)−g(E,G)η(F)]ξ

− (βδ −1)[η(F)E−η(E)F ]η(G),+α[g(φE,G)F−g(φF,G)φE−g(E,G)φF +g(F,G)φE], (3.2)

where

R(E,F)G = ∇E ∇F G−∇F ∇E G−∇[E,F ]G

is the Riemannian curvature tensor of connection ∇.

Lemma 3.1. Let M be n-dimensional δ -Lorentzian trans-Sasakian manifold with a SSM connection, then

(∇̄E φ)(F) = αg(φE,F)ξ −δη(F)E +β (g(φE,F)ξ − (δβ +δ )η(F)φE, (3.3)

∇̄E ξ =−(1+δβ )E− (1+δβ )η(E)ξ −δαφE, (3.4)

(∇̄E η)F = αg(φE,F)ξ +(β +δ )g(E,F)− (1+βδ )η(E)η(F). (3.5)

Proof. By the covariant differentiation of φF with respect to E, we have

∇̄E φF = (∇̄E φ)+φ(∇̄E F).

By using (2.1) and (2.25), we have

(∇̄E φ)F = (∇E φ)F−η(F)φE.

In view of (2.8), the last equation gives

(∇̄E φ)(F) = α(g(φE,F)ξ −δη(F)E +β (g(φE,F)ξ − (δβ +δ )η(F)φE.

To prove (3.4), we replace F = ξ in (2.25) and we have

∇̄E ξ = ∇E ξ +η(ξ )E−δg(E,ξ )ξ .

By using (2.2), (2.4) and (2.9), the above equation gives

∇̄E ξ =−(1+δβ )E− (1+δβ )η(E)ξ −δαφE.

In order to prove (3.5), we differentiate η(F) covariantly with respect to E and using (2.25), we have

∇̄E η(Y ) = (∇E η)F +g(E,F)−η(E)η(F).

Using (2.10) in above equation, we get

(∇̄E η)F = αg(φE,F)ξ +(β +δ )g(E,F)− (1+βδ )η(E)η(F).
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Lemma 3.2. Let M be n-dimensional δ -Lorentzian trans-Sasakian manifold with a SSM connection, then

R̄(E,F)ξ = (α2 +β
2−δβ )[η(E)F−η(F)E]+ (2αβ +δα)[η(F)φE−η(E)φF ]

+ δ [(Fα)φE− (Eα)φF− (Eβ )φ 2F +(Fβ )φ 2E]. (3.6)

Proof. By replacing G = ξ in (3.2), we have

R̄(E,F)ξ = R(E,F)ξ +(δ )[g(E,ξ )F−g(F,ξ )E]+ (β +δ )[g(F,ξ )η(E)−g(E,ξ )η(F)]ξ

− (βδ −1)[η(F)E−η(E)F ]η(ξ )+α[g(φE,ξ )F−g(φF,ξ )φE−g(E,ξ )φF +g(F,ξ )φE] (3.7)

In view of (2.2), (2.4) and (2.10), the above equation reduces to

R̄(E,F)ξ = (α2 +β
2−δβ )[η(E)F−η(F)E]+ (2αβ +δα)[η(F)φE−η(E)φF ]+δ [(Fα)φE− (Eα)φF− (Eβ )φ 2F +(Fβ )φ 2E].

Remark 1. Replace F = ξ and using (3.2), (2.11), (2.2) and (2.4), we find

R̄(E,ξ )ξ = (α2 +β
2−δβ )[−E−η(E)F ]+ (2αβ +δα +δ (ξ α))[φE +δ (ξ β )φ 2F ]. (3.8)

Remark 2. Now, again replace E = ξ in (3.6), using (2.1), (2.2) and (2.4), we find

R̄(ξ ,F)ξ = (α2 +β
2−δβ )[−η(F)ξ −F ]− (2αβ +δα +δ (ξ α))[φF−δ (ξ β )φ 2F ]. (3.9)

Remark 3. Replace F = E in (3.9), we get

R̄(ξ ,E)ξ =−(α2 +β
2−δβ )[−E−η(E)ξ ].− (2αβ +δα +δ (ξ α))[φE−δ (ξ β )φ 2E]. (3.10)

From (3.9) and (3.10), we obtain

R̄(E,ξ )ξ =−R̄(ξ ,E)ξ . (3.11)

Now, using contraction on E in (3.2), we get

R̄ic(F,G) = Ric(E,G)− [(δ )(n−2)+β ]g(F,G)− (βδ −1)(n−2)η(Z)η(Y )−α(n−2)g(φF,G), (3.12)

where R̄ic and Ric are the Ricci tensors of the connections ∇̄ and ∇, respectively on M.
Putting F =G= ei and taking summation over i, 1≤ i≤ n−1 in (3.12), using (2.14) and also the relations r =Ric(ei,ei)=∑

n
i=1 δiR(ei,ei,ei,ei),

we get

r̄ = r− (n−1)[(δ )(n−2)+2β ], (3.13)

where r̄ and r are the scalar curvatures of the connections ∇̄ and ∇, respectively on M.
Now, we have the following lemmas.

Lemma 3.3. Let M be n-dimensional δ -Lorentzian trans-Sasakian manifold with the SSM connection, then the scalar curvature is constant.

Lemma 3.4. Let M be n-dimensional δ -Lorentzian trans-Sasakian manifold with the SSM connection, then

R̄ic(φF,G) =−δ (φ 2F)α−δ (n−2)(φF)β −α(n−2)g(φF,φG), (3.14)

R̄ic(F,ξ ) = [(n−1)(α2 +β
2−δ (ξ β )−δβ (n−1)]η(F)+δ (n−2)(Fβ )+δ (φF)β , (3.15)

R̄ic(ξ ,ξ ) = [(n−1)(α2 +β
2−δ (ξ β )−δβ (n−1)]η(F). (3.16)

Proof. Substituting F = φY in equation (3.12) and using (2.13) and (2.6), we have (3.14). Taking F = ξ in (3.12) and using (2.13) we get
(3.15). (3.16) follows from assuming F = ξ in (3.15) we get (2.18).

Now, we provide a non trivial example of δ -Lorentzian trans-Sasakian manifold with a SSM connection.

Example: We consider the three dimensional manifold M = [(x,y,z) ∈ R3 | z 6= 0], where (x,y,z) are the Cartesian coordinates in R3.
Choosing the vector fields

v1 = z
∂

∂x
, v2 = z

∂

∂y
, v3 =−z

∂

∂ z
,

which are linearly independent at each point of M. Let g be the Riemannian metric define by

g(v1,v3) = g(v2,v3) = g(v2,v2) = 0, g(v1,v1) = g(v2,v2) = g(v3,v3) = δ ,
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where δ =±1. Let η be the 1-form defined by η(Z) = εg(Z,v3) for any vector field Z on T M. Let φ be the (1,1) tensor field defined by
φ(v1) =−v2, φ(v2) = e1, φ(v3) = 0. Then by the linearity property of φ and g, we have

φ
2G = Z +η(G)v3, η(v3) = 1 and g(φG,φH) = g(G,H)−δη(G)η(H)

for any vector fields G,H on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[v1,v2] = 0, [v1,v3] = δv1, [v2,v3] = δv2.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇E F,G) = Eg(F,G)+Fg(G,E)−Gg(E,F)+g([E,F ],G)−g([F,G],E)+g([G,E],F).

From above equation which is known as Koszul’s formula, we have

∇v1 v3 = δv1, ∇v2 v3 = δv2, ∇v3 v3 = 0, (3.17)

∇v1 v2 = 0, ∇v2 v2 =−δv3, ∇v3 v2 = 0,

∇v1 v1 =−δv3, ∇v2 v1 = 0, ∇v3 v1 = 0.

Using the above relations, for any vector field E on M, we have

∇E ξ = δ (E +η(X)ξ )

for ξ ∈ v3, α = 0 and β = 1. Hence the manifold M under consideration is an δ -Lorentzian trans-Sasakian of type (0,1) manifold of
dimension three.
Now, we consider this structure for semi-symmetric metric connection, from (2.29), we obtain:

∇̄v1 v3 = (1+δ )v1, ∇̄v2 v3 = (1+δ )v2, ∇̄v3 v3 = 0, (3.18)

∇̄v1 v2 = 0, ∇̄v2 v2 =−(1+δ )v3, ∇̄v3 v2 = 0,

∇̄v1 v1 =−(1+δ )v3, ∇̄v2 v1 = 0, ∇̄v3 v1 = 0.

Then the Riemannian, Ricci curvature tensor and scalar curvature tensor with respect to SSM connection are given by:

R̄(v1,v2)v2 =−(1+δ )2v1, R̄(v1,v3)v3 =−δ (1+δ )v2, R̄(v2,v1)v1 =−(1+δ )2v2,

R̄(v2,v3)v3 =−δ (1+δ )v2, R̄(v3,v1)v1 = δ (1+δ )v3, R̄(v3,v2)v2 =−δ (1+δ )v3,

R̄ic(v1,v1) = R̄ic(v2,v2) =−(1+δ )(1+2δ ), R̄ic(v3,v3,) = 2δ (1+δ ).

r̄ =−2(1+δ )2.

4. Wintgen inequalities for submanifolds in δ -Lorentzian trans-Sasakian space form with a SSM
connection

The present section is devoted to obtain generalized Wintgen inequalities for submanifolds in δ -Lorentzian trans-Sasakian space form with a
SSM connection.
From equation (3.2), recall that for an n-dimensional δ -Lorentzian trans-Sasakian manifold M, the curvature tensor R̄ with respect to the
semi-symmetric metric connection ∇̄ is defined by

R̄(E,F)G = R(E,F)G+(δ )[g(E,G)F−g(F,G)E]+ (β +δ )[g(F,G)η(E)−g(E,G)η(F)]ξ − (βδ −1)[η(F)E−η(E)F ]η(G)

+ α[g(φE,G)F−g(φF,G)φE−g(E,G)φF +g(F,G)φE]. (4.1)

Let M′ be m-dimensional submanifold of n-dimensional δ -Lorentzian trans-Sasakian manifold M with a SSM connection and induced
metric g. Let ∇ and ∇⊥ represent the induced connections on the tangent bundle T M′ and T M′⊥ of M′, respectively and h be the second
fundamental form of M′. For all X ,Y ∈ Γ(T M′) and N ∈ Γ(T⊥M′), we recall the Gauss and Weingarten formulas by

∇E F = ∇E F +h(E,F),

and

∇E N =−ANE +∇
⊥
E N,

where AN denotes the shape operator of M′ with respect to N. We also have the following relation

g(ANE,F) = g(h(E,F),N)

for all E,F ∈ Γ(T M′) and N ∈ Γ(T⊥M′).
The equation of Gauss is written as

R(E,F,G,H) = R(E,F,G,H)−g(h(E,H),h(F,G))+g(h(E,G),h(F,H)), (4.2)
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for all vector fields E,F,G,H ∈ T M′.
Assume that {e1, . . . ,em} and {em+1, . . . ,en} represent local orthonormal tangent frame of the tangent bundle T M′ of M′ and a local
orthonormal normal frame of the normal bundle T⊥M′ of M′ in M. Recall the mean curvature vector H of M′ by

H =
m

∑
i=1

1
m

h(ei,ei) (4.3)

and squared norm of second fundamental form by

||h||2 =
m

∑
i, j=1

g
(
h(ei,e j),h(ei,e j)

)2
. (4.4)

We write the scalar curvature τ at p ∈M′ as

τ = ∑
1≤i< j≤m

R(ei,e j,e j,ei) (4.5)

and define the normalized scalar curvature ρ of M′ by

ρ =
2τ

m(m−1)
=

2
m(m−1) ∑

1≤i< j≤m
K (ei∧ e j) (4.6)

where K is the sectional curvature function on M′. We define the scalar normal curvature KN in terms of the components of the second
fundamental form by the following expression [23]

KN = ∑
1≤i< j≤m

∑
1≤r<s≤n

(
m

∑
k=1

hr
jkhs

ik−hr
ikhs

jk)
2. (4.7)

Also recall the scalar normal curvature as [23]

ρN =
2

m(m−1)

√
KN . (4.8)

Now, we prove the generalized Wintgen inequality for submanifolds of δ -Lorentzian trans-Sasakian space form M with a SSM connection.

Theorem 4.1. Let M′ be an m-dimensional submanifold of a δ -Lorentzian trans-Sasakian manifold M with a SSM connection. Then

ρN ≤ ||H ||2 +2(α2 +β
2−δξ β )− 2

m
[(δ )(m−2)+2β ]−2ρ. (4.9)

Proof. Assume that {e1, . . . ,em} and {em+1, . . . ,en} denotes the local orthonormal tangent frame and local orthonormal normal frame on
M′ respectively. Then, in view of Gauss equation, we have

∑
1≤i< j≤m

R(ei,e j,e j,ei) = m(m−1)(α2 +β
2−δξ β )− (m−1)[(δ )(m−2)+2β ]

+
n

∑
r=m+1

∑
1≤i< j≤m

[
hr

iih
r
j j− (hr

i j)
2
]
. (4.10)

Also

2τ = ∑
1≤i< j≤m

R(ei,e j,e j,ei). (4.11)

Using (4.10) and (4.11), we obtain

2τ = m(m−1)(α2 +β
2−δξ β )− (m−1)[(δ )(m−2)+2β ]

+
n

∑
r=m+1

∑
1≤i< j≤m

[
hr

iih
r
j j− (hr

i j)
2
]
. (4.12)

We also note that

m2||H ||2 =
n

∑
r=m+1

( m

∑
i=1

hr
ii

)
2 =

1
m−1

n

∑
r=m+1

∑
1≤i< j≤m

(hr
ii−hr

j j)
2

+
2m

m−1

n

∑
r=m+1

∑
1≤i< j≤m

hr
iih

r
j j. (4.13)

But, from [34] it is known

n

∑
r=m+1

∑
1≤i< j≤m

(hr
ii−hr

j j)
2 +2m

n

∑
r=m+1

∑
1≤i< j≤m

(hr
i j)

2 ≥

2m
[

∑
m+1≤r<s≤n

∑
1≤i< j≤m

(
m

∑
k=1

(hr
jkhs

ik−hr
ikhs

jk))
2
]

1
2 (4.14)
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Thanks to (4.13), (4.14) and (4.7), we have

m2||H ||2−m2
ρN ≥

2m
m−1

n

∑
r=m+1

∑
1≤i< j≤m

[hr
iih

r
j j− (hr

i j)
2]. (4.15)

Hence, taking view of (4.8), (4.12) and (4.15), we find

ρN −||H ||2 ≤ 2(α2 +β
2−δξ β )− 2

m
[(δ )(m−2)+2β ]−2ρ

whereby proving the inequality (4.9).

As a consequence of theorem 4.1, we give the following results:

Corollary 4.2. Let M′ be an m-dimensional submanifold of a usual Lorentzian trans Sasakian manifold M of type (α,β ) with a SSM
connection. Then

ρN ≤ ||H ||2 +2(α2 +β
2−ξ β )− 2

m
[(m−2)+2β ]−2ρ. (4.16)

Corollary 4.3. Let M be a Lorentzian cosymplectic manifold (δ -Lorentzian trans Sasakian manifold of type (0,0)) with a SSM connection
and M′ be an m-dimensional submanifold of M. Then

ρN ≤ ||H ||2− 2
m
[(δ )(m−2)]−2ρ. (4.17)

Corollary 4.4. Let M be a Lorentzian β -Kenmotsu manifold (δ -Lorentzian trans-Sasakian manifold of type (0,β )) with a SSM connection
and M′ be an m-dimensional submanifold of M. Then

ρN ≤ ||H ||2 +2(β 2−δξ β )− 2
m
[(δ )(m−2)+2β ]−2ρ. (4.18)

Corollary 4.5. Let M be a Lorentzian α-Sasakian manifold (δ -Lorentzian trans-Sasakian manifold of type (α,0)) with a SSM connection
and M′ be an m-dimensional submanifold of M. Then

ρN ≤ ||H ||2 +2α
2− 2

m
[(δ )(m−2)]−2ρ. (4.19)

Corollary 4.6. Let M′ be an m-dimensional submanifold of a δ -Lorentzian Sasakian manifold M with a SSM connection. Then

ρN ≤ ||H ||2 +2− 2
m
[(δ )(m−2)]−2ρ. (4.20)

Corollary 4.7. Let M′ be an m-dimensional submanifold of a δ -Lorentzian Kenmotsu manifolds M with a SSM connection. Then

ρN ≤ ||H ||2 +2(1−δξ )− 2
m
[(δ )(m−2)+2]−2ρ. (4.21)

Next, we derive the generalized Wintgen inequality for submanifolds of δ -Lorentzian trans-Sasakian space form.

Theorem 4.8. For a m-dimensional submanifold M′ of a δ -Lorentzian trans-Sasakian manifold M, we have

ρN ≤ ||H ||2 +2(α2 +β
2−δξ β )−2ρ. (4.22)

As an application of above theorem, we have the following results.

Corollary 4.9. For a m-dimensional submanifold M′ of a usual Lorentzian trans-Sasakian manifold M of type (α,β ), we have

ρN ≤ ||H ||2 +2(α2 +β
2−ξ β )−2ρ. (4.23)

Corollary 4.10. Let M be a Lorentzian cosymplectic manifold (δ -Lorentzian trans Sasakian manifold of type (0,0)) and M′ be an
m-dimensional submanifold of M. Then

ρN ≤ ||H ||2−2ρ. (4.24)

Corollary 4.11. Let M be a Lorentzian β -Kenmotsu manifold (δ -Lorentzian trans-Sasakian manifold of type (0,β )) and M′ be an
m-dimensional submanifold of M. Then

ρN ≤ ||H ||2 +2(β 2−δξ β )−2ρ. (4.25)

Corollary 4.12. Let M be a Lorentzian α-Sasakian manifold (δ -Lorentzian trans-Sasakian manifold of type (α,0)) and M′ be an m-
dimensional submanifold of M. Then

ρN ≤ ||H ||2 +2α
2−2ρ. (4.26)

Corollary 4.13. Let M′ be an m-dimensional submanifold of a δ -Lorentzian Sasakian manifold M. Then

ρN ≤ ||H ||2 +2−2ρ. (4.27)

Corollary 4.14. Let M′ be an m-dimensional submanifold of a δ -Lorentzian Kenmotsu manifolds M. Then

ρN ≤ ||H ||2 +2(1−δξ )−2ρ. (4.28)
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