
On the Prediction of Chaotic Time Series using Neural
Networks
Josué Alexis Martínez-García ID ∗,1, Astrid Maritza González-Zapata ID α,2, Ericka Janet Rechy-Ramírez ID ∗,3 and Esteban
Tlelo-Cuautle ID α,4

∗University of Veracruz, Artificial Intelligence Research Institute, 91907, Veracruz, Mexico, αInstituto Nacional de Astrofisica, Optica y Electronica, Electronics
Department, 72840, Puebla, Mexico.

ABSTRACT Prediction techniques have the challenge of guaranteeing large horizons for chaotic time series.
For instance, this paper shows that the majority of techniques can predict one step ahead with relatively
low root-mean-square error (RMSE) and Symmetric Mean Absolute Percentage Error (SMAPE). However,
some techniques based on neural networks can predict more steps with similar RMSE and SMAPE values.
In this manner, this work provides a summary of prediction techniques, including the type of chaotic time
series, predicted steps ahead, and the prediction error. Among those techniques, the echo state network
(ESN), long short-term memory, artificial neural network and convolutional neural network are compared with
similar conditions to predict up to ten steps ahead of Lorenz-chaotic time series. The comparison among
these prediction techniques include RMSE and SMAPE values, training and testing times, and required
memory in each case. Finally, considering RMSE and SMAPE, with relatively few neurons in the reservoir, the
performance comparison shows that an ESN is a good technique to predict five to fifteen steps ahead using
thirty neurons and taking the lowest time for the tracking and testing cases.
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INTRODUCTION

Chaos has been a research area that includes several physical phe-
nomena that can be modeled by deterministic mathematical equa-
tions, applied to real life problems and predicted applying artificial
intelligence based techniques. For example: one can take a chaotic
system as the well-known Lorenz oscillator to generate chaotic
time series; afterwards, one can use the time series to try to predict
several steps ahead applying prediction techniques. In this predic-
tion problem one has the challenge of choosing the appropriate
technique, which depends on the nature of the data to validate the
prediction, e.g. some data can have slow variations and others fast
changes in their dynamics. Some examples of chaotic time series
in the real world are for example: sunspots, water run-off, electric
changes, temperature, rainfalls, voice signals Lau and Wu (2008);
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Yang et al. (2005); Dhanya and Nagesh Kumar (2010); Jingjing et al.
(2018), and so on. Clearly, these data is different and therefore
the challenge is the development or application of known pre-
diction techniques that guarantee a large prediction horizon with
minimum error.

Some of the main characteristics that try to quantify chaotic
behavior was introduced by Li and Yorke (1975). From this seminal
work, one understand important concepts as fractal dimension,
Lyapunov exponents, Fourier transform, Hilbert transform and the
reconstruction of an attractor Liu (2010). Another seminal work
was introduced by Wolf et al. (1985), for determining Lyapunov
exponents from a time series, where the chaotic time series can be
experimental or taken from simulation. In this manner, one can
evaluate the Lyapunov exponent of a chaotic time series to validate
if it is chaotic or not, and therefore, it is chaotic if the Lyapunov
exponent is positive. On another point of view, it is said that
chaotic time series present characteristics seemingly unpredictable
due to their complexity Han et al. (2019c), and due to their high
sensitivity to the initial conditions, as shown by Wolf et al. (1985).
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One can find a huge number of chaotic time series from phys-
ical phenomena or generated from mathematical models. For
instance, the authors in Liu (2010) talk about tornadoes and hu-
man brain, in which the challenge is predicting the future behavior,
thus requiring the development of prediction techniques. Fortu-
nately, nowadays one can find contributions to chaotic time series
prediction applying artificial intelligence, statistics, mathematics,
electronics among other research areas. On this direction, some
authors have shown the usefulness of applying Artificial Neural
Networks (ANN) Ong and Zainuddin (2019); Chen and Han (2013);
Pano-Azucena et al. (2021), fuzzy logic Miranian and Abdollahzade
(2013); Heydari et al. (2016); Goudarzi et al. (2016), Bayes theoremLi
et al. (2016); Wang et al. (2020b), Machine Learning (ML) Alemu
(2018); Gromov and Borisenko (2015), multilayer Perceptrons Dalia
Pano-Azucena et al. (2018); Zhao et al. (2014), recurrent neural net-
works (RNN) Li et al. (2012); Ardalani-Farsa and Zolfaghari (2010);
Chandra and Zhang (2012); Xu et al. (2019), linear and nonlinear
filters Wu and Song (2013); Ma et al. (2017); Yumei et al. (2019), op-
timization by evolutionary computation Samanta (2011); Chandra
et al. (2017); Guo et al. (2016b), approximation by recursion Wang
et al. (2017); Li-yun (2010); Han et al. (2019b), statistical methods
Kurogi et al. (2018); Xu et al. (2019); Jokar et al. (2019), Wavelet
transform Zhongda et al. (2017); Feng et al. (2019b), Lyapunov ex-
ponents Yong (2013), computer algorithms Guo et al. (2020); Hua
et al. (2013); Jingjing et al. (2018); Zhou et al. (2017) and hybrid
architectures Xiao et al. (2019); Fu et al. (2010); Han et al. (2017).

Among these techniques, the optimization by evolutionary com-
putation and hybrid architectures have shown good results. In the
case of optimization by evolutionary computation, one can find
the application of Particle Swarm Optimization (PSO) Eberhart
and Kennedy (1995), Differential Evolution (DE) Price et al. (2006),
Cuckoo Search Yang and Deb (2010), Ant Colony Optimization
(ACO) Dorigo et al. (2006), Fruit Fly Optimization Algorithm Xing
and Gao (2014), Whale Optimization Algorithm Mirjalili and Lewis
(2016), grey wolf optimizer Mirjalili et al. (2014) and co-evolution,
where different optimization methods work together.

In the case of hybrid architectures for chaotic time series predic-
tion, the most known are: Bayes theorem Swinburne (2004), Echo
State Network (ESN) Jaeger (2007), ANN Drew and Monson (2000),
Wavelet transform Zhang (2019a), long short-term memory (LSTM)
and Least Square Support Vector Machine (LSSVM) Suykens and
Vandewalle (1999).

In this manner, this paper provides a summary on chaotic time
series prediction techniques and compares the performance of
four techniques based on neural networks to predict chaotic time
series from Lorenz chaotic system. The next section shows the
most used models of Lorenz system and Mackey-Glass, and others,
and shows a Table summarizing different prediction techniques,
comparing the predicted steps, data used for the prediction and
the associated root-mean-square error (RMSE) for each case. Af-
terwards, this paper compares four prediction techniques based
on neural networks, namely: ESN, LSTM, ANN and 1-Dimension
Convolutional Neural Network (1D-CNN). The prediction results
are shown in the section before concluding this work.

TECHNIQUES FOR CHAOTIC TIME SERIES PREDICTION

In the current state of the art, one can find different techniques
oriented to predict chaotic time series. The following papers were
used for the classification of prediction techniques, predicted steps,
number of points used for the prediction, and the associated RMSE:
Alemu (2018); Shinozaki et al. (2020); Zhang and Jiang (2020); Su
and Yang (2021); Zhang et al. (2020). The chaotic time series data

was mainly taken from two chaotic systems: Lorenz and Mackey-
Glass.

1. Lorenz:
This is a deterministic system modeled by three ordinary
differential equations (ODEs) introduced by Lorenz (1963),
and given by (1), where chaotic behavior exists by setting
σ = 10, ρ = 28 and β = 8

3 .

dx(t)
dt = σ[y(t)− x(t)]

dy(t)
dt = x(t)[ρ − z(t)]− y(t)

dz(t)
dt = x(t)y(t)− βz(t)

(1)

2. Mackey-Glass:
This chaotic system was introduced by Mackey and Glass
(1977), and denoted by (2), where τ is a delay parameter, and it
can be set to τ ≤ 4.43 to produce a fixed point, 4.43 ≤ τ ≤ 13.3
to produce a stable limit cycle, 13.3 ≤ τ ≤ 16.8 to produce
a double limit attraction, and 16.8 ≤ τ to generate chaotic
behavior.

dx(t)
dt

=
ax(t − τ)

1 + xc(t − τ)
− bx(t) (2)

When simulating a chaotic system, the amplitudes of the state
variables can be as large as possible, however, for hardware imple-
mentation, it is desired to have amplitudes within the range [−1, 1]
or [0, 1]. In the validation of the steps predicted by each technique,
the authors use different errors, such as: RMSE, Mean Square Error
(MSE), Mean Absolute Error (MAE), Normalized RMSE (NRMSE),
R2, among others. However, in the majority of works, the most
used measure is RMSE, which is defined by (3), where N is the
total of attributes, ỹn is the predicted value and ytarget

n the reference
value.

RMSE =

√
ΣN

n=1(ỹn − ytarget
n )

2

N
(3)

In addition, Symmetric Mean Absolute Percentage Error (SMAPE)
is implemented like an accuracy measure based on percentage
errors. This error is described in equation (4) and indicates the
percent of accuracy of the real value versus the forecast value
in descendent form, where N is the total of attributes, Fn is the
predicted value and An is the actual value.

SMAPE =
100%

n
ΣN

n=1
|Fn − An|
(|Fn |+|An |)

2

(4)

In Table 1, we list some prediction techniques including the
type of chaotic data used by the associated technique, the pre-
dicted steps ahead, number of test points, and RMSE. It can be
appreciated that hybrid and optimized techniques have low RMSE,
and also, the low errors are associated to the techniques predicting
1 step ahead of chaotic time series. The minimum number of points
for testing each technique is 500.
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■ Table 1 Prediction techniques for chaotic time series, ordered from the lowest to the highest RMSE value.
Technique Chaotic serie Prediction Test data RMSE
Combining the phase space
reconstruction and fuzzy
logic Gholizade-Narm and
Shafiee-Chafi (2015)

Mackey-Glass 1 step 600 2.26E-10

Hybrid Empirical Mode De-
composition - Neural Net-
works (HEMD-NN) Tang
et al. (2020)

Mackey-Glass 1 step 2,000 5.31E-08

Efficient Extreme Learning
Machine - Differential Evo-
lution (EELM-DE) Guo et al.
(2016b)

Lorenz 1 step 500 7.67E-08

Kernel Local Polynomial co-
efficient autoregressive Pre-
diction (KLPP) Su and Li
(2015b)

Henon 1 step 500 8.44E-07

Hybrid Elman-NARX neu-
ral networks Ardalani-Farsa
and Zolfaghari (2010)

Mackey-Glass 1 step 1,000 3.72E-05

Radial Basis Function
(RBF) neural network
Zhang et al. (2013)

Drift sensor 2 step 4,000 4.87E-05

ESN optimized by Selec-
tive Opposition Grey Wolf
Optimizer (SOGWO-ESN)
Chen and Wei (2021)

Mackey-Glass 25 step 800 1.46E-04

Artificial Neural Networks
(ANNs), Adaptive Neuro-
Fuzzy Inference System
(ANFIS) and Least-Squares
Support Vector Machines
(LSSVM) Dalia Pano-
Azucena et al. (2018)

Chaotic system 6 step 2,000 2.98E-04

Local Neuro-Fuzzy (LNF)
- Least-Squares Support
Vector Machines (LSSVMs)
Miranian and Abdollahzade
(2013)

Mackey-Glass 6 step 500 7.90E-04

Local Functional Coefficient
Autoregressive (LFAR) Su
and Li (2015a)

Mackey-Glass 500 step 500 1.30E-03

Structured Manifold - Broad
Learning System (SM-BLS)
Han et al. (2019a)

Lorenz 10 step ≈ 4,400 2.45E-03

Hierarchical Delay-Memory
Echo State Network
(HDESN) Na et al. (2021)

Lorenz 12 step 2,000 2.65E-03

The Elman recurrent net-
workChandra and Zhang
(2012)

Mackey-Glass 500 step 500 6.33E-03

Local Volterra model based
on phase points clustering
Han et al. (2018)

Lorenz 50 step 4,976 8.10E-03
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PREDICTION TECHNIQUES BASED ON NEURAL NET-
WORKS

This section shows a comparison among prediction techniques
based on most used neural networks.

Echo State Network
The prediction technique based on ESN was introduced by Jaeger
(2007). It becomes to behave as a recurrent neural network and
includes a reservoir that assigns random weights while a certain
percentage or neurons are connected by accomplishing the prop-
erty of echo, as shown by Lukoševičius (2012). The update equa-
tions are given in equations (5) and (6). In these equations x(n)
denotes the activation vector of the neurons in the reservoir, where
n is the value of each neuron in the reservoir, α is the leaking rate
denoted by ∈ (0, 1] for the training. x̌(n) is the update for each n,
where tanh(·) holds the vertical concatenation of matrix Win and
W represents the inputs and recurrent weights of the matrices. The
output layer is defined by equations (7) and (8).

x̃(n) = tanh(Win[1; u(n)] + W × (n − 1)) (5)

x(n) = (1 − α)× (n − 1) + αx̃(n) (6)

Wout = YtargetXT(XXT + βI)−1 (7)

y(n) = Wout[1; u(n); x(n)] (8)

In equation (8), y(n) is the output layer, Wout is the weights output
matrix determined by Ridge regression or also known as Tikhonov
regularization, where β it’s regularization coefficient. On other
hand, [·; ·; ·] holds the verticality in the concatenation of the vector
as mentioned above; X is the collect data of W (it mean the percent
of connection in the reservoir).The simulation of this prediction
technique includes a reservoir of 30 neurons and a spectral radius
(SP) of 2.5.

Long Short-Term Memory
The technique known as Long Short-Term Memory (LSTM) is a
kind of recurrent neural network that was introduced by Hochre-
iter and Schmidhuber (1997). Its main characteristic is the ability
to retain one state of a sequence in a long term. An LSTM has three
inputs and two outputs: xt is the current input value as denoted
by equations (10) and (11); while at the same time shares the input
with ht−1, that is the previous output value of the net, as described
by equations (10) and (11). ct−1 denotes the input to the cell state;
the outputs ht are denoted by equations (13) and (14), and Ct is the
unitary state of the current LSTM net given by equation (12). This
LSTM in addition includes update gates of information to forget
and update the cell state values. The description of the forget gate
is given in ft by equation (9) and the update gate is given in Ct by
(12).

ft = σ(W f · [ht−1, xt] + b f ) (9)

it = σ(Wi · [ht−1, xt] + bi) (10)

C̃t = tanh(WC · [ht−1, xt] + bC) (11)

Ct = ft ∗ Ct−1 + it ∗ C̃t (12)

ot = σ(Wo[ht−1, xt] + bo) (13)

ht = ot ∗ tanh(Ct) (14)

In these equations σ is a sigmoid function scaled within the val-
ues [0, 1] for the updating of the Ct (cell state) for the consumption

of the next time step LSTM. tanh denotes the activation function,
W[·] is the weight matrix for learning, b[·] is the bias or every neu-
ronal network in the LSTM, and xt denotes the inputs to the LSTM
net, ht−1 and ct−1 are the inputs from the previous time step and
ft means the forget gate. The simulation of this technique consists
of the series connection of four LSTM.

Artificial Neural Network

The ANN was introduced by McCulloch and Pitts (1943), as a
mathematical model described by a bio-inspiration of the neurons
in the human brain. An ANN consists of an array of artificial
neurons connected in a feed forward way. In this manner, it consists
of at least three layers, namely: input layer, hidden layer and
output layer. The input layer can be described by vector xi; in the
hidden layer take place the operations evaluated by the weights
wi and bias b, it includes the activation functions to each neuron
denoted as f . The hidden layer operates on equation (15), and
it can include more than one layer. In the output layer, the last
evaluations take place to provide the learned data. The training
of an ANN consists of epochs, and the most used training method
is known as Backpropagation that is denoted by equations (16) and
(17).

i=n

∑
i=1

(wi ∗ xi) + b (15)

E =
∑i=n

i=1 (ti − ai)
2

2
(16)

∆W = −α
∂EW
∂W

(17)

In this case, equation (16) evaluates the mean square error of the
target ti and the output of the neuron ai, which updates the weights
by (17) when the net is back-propagated to learn in each epoch.
The simulation of this technique was performed considering a
hidden layer of 20, 15 and 10 neurons.

Convolutional Neural Network

The Convolutional Neural Network (CNN) is a kind of ANN
introduced by Fukushima (1980). The difference with an ANN
is the application devoted to bidirectional matrices, being quite
effective for artificial vision tasks. However, its application is also
suitable for time series prediction, plain images and signals from
functional magnetic resonance images. The CNN consists of the
main layers: Convolutional layer, which performs the convolution
of the inputs with a kernel given in equation (18); the Max-pooling
layer, which extracts the main characteristics form the convolution;
and the third layer is a fully connected network (feed forward).

Yj = g(bj + ∑
i

Kij ⊗ Yi) (18)

In equation (18), Yj is the output of neuron j evaluated through
a linear combination of the outputs Yi of the neurons in the pre-
vious layer, each one operated with the convolutional core Kij
corresponding to that connection. This value is added to bj and af-
terwards send to an activation function g(·) of non-linear type. For
chaotic time series prediction, the CNN has a kernel that moves in
one direction, i.e. guided by the time series. The simulation of this
technique was performed using a Max-pooling layer (MP) and 50
neurons that are full-connected among them.
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SIMULATION RESULTS

The simulation of the four prediction techniques described in the
previous section, was performed using a personal computer with
Intel i5-11400H processor of 64 bit at 2.70 GHz, with 8 Gb of RAM.
The four techniques have similar characteristics to perform the
prediction and was executed each one five times. In this manner,
the training was executed using a random seed trying to get similar
results. In all the cases, the Lorenz and Mackey-Glass systems was
simulated to generate a data of 1500 points that were used for the
training and 800 points for the test during the prediction, omitting
the first 200 points that are the transitory state of the chaotic system.
The four techniques were executed using a leaking rate of 0.001
with 180 epochs for the learning, except for the ESN. The prediction
of the steps ahead was performed in an adjacent way with respect
to the inputs and predicted steps.

The prediction capabilities of the four techniques is given con-
sidering four characteristics: (I) predicted steps, (II) errors (RMSE
and SMAPE), (III) training and test time, and (IV) memory required
during the training and test, as listed in Tables 2 and 3. In each pre-
diction technique, five runs were executed for each step prediction,
reporting the best result of this five executed. The RMSE is the total
over the 800 test data of the predicted values. As one can see, the
lowest RMSE at one step is provided by LSTM, while the lowest
RMSE with the highest predicted steps ahead (15) was provided by
CNN. However, the ESN provides the results in general with low
RMSE for the prediction with different steps ahead, in addition the
SMAPE presents de low variance that others models. Figures 1, 2,
3 and 4 show the better prediction for the chaotic time series results
reaching 15 steps ahead applying ESN, LSTM, ANN and CNN
techniques, respectively. In the experiments, considering Lorenz
time series the techniques reported lower RMSE and SMAPE than
when using Mackey-Glass time series, as shown in Tables 2 and 3.

The determination of the maximum predicted steps ahead given
in Tables 2 and 3 was done according to the steps ahead (1, 3, 5, 10
and 15 steps). Details of the topologies of each prediction technique
are also given in the Tables. For example, one can see the quantity
of layers and neurons in each case. It is worth noting the stability
of ESN, considering the RMSE and SMAPE, it has low execution
time and memory requirement with respect to the results provided
by the other prediction techniques. From the results shown in
Figures 1, 2, 3, and 4, one can see that some models present high
variance in the prediction, as reported in Tables 2 and 3, where
SMAPE presents high values. One can also see that the prediction
using Lorenz time series is much better providing low RMSE and
SMAPE for ESN. However, when using the Mackey-Glass time
series the prediction techniques present a similar RMSE result, as
shown Table 3. ESN presented a low accuracy in Mackey-Glass
with respect to the Lorenz time series. The reason for this are the
values of the parameters, since it is a time series with a different
behavior. Parameters such as number of neurons, spectral radius,
among others, must be adjusted to obtain good results, compared
to the other three models, since they adapt to the series with the
passage of time. Finally, in Table 4 we show the best results of our
experiments with each prediction technique and compared with
results in the state of the art.
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Figure 1 Lorenz time series prediction results by ESN reaching 15
steps ahead.
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Figure 2 Lorenz time series prediction results by LSTM reaching 15
steps ahead.
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■ Table 2 Comparison of the best executions in the four prediction techniques with Lorenz time series, listing the predicted steps
ahead, RMSE, SMAPE, training and testing times, and training and testing memory.
ESN: Step ahead Training-time Testing-time Training-

memory
Testing-
memory

RMSE SMAPE

Train=1,500 1 0.0156 Sec. 0.0625 Sec. 1.7728 Mb 0.2901 Mb 2.86E-02 12.52%
Test=800 3 0.0375 Sec. 0.0531 Sec. 1.8654 Mb 0.3746 Mb 2.11E-03 4.69%
Neurons=30 5 0.0317 Sec. 0.2157 Sec. 1.9689 Mb 0.5094 Mb 8.21E-04 0.75%
SP=2.5 10 0.0312 Sec. 0.0562 Sec. 2.1878 Mb 0.9013 Mb 1.30E-03 0.86%
Leaking
rate=0.001

15 0.0316 Sec. 0.0467 Sec. 2.3818 Mb 1.2797 Mb 5.76E-03 1.47%

LSTM: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 364.0543 Sec. 0.9687 Sec. 5.2716 Mb 1.9529 Mb 2.22E-02 11.63%
Test=800 3 404.6772 Sec. 0.9218 Sec. 5.5292 Mb 1.9757 Mb 3.04E-02 4.71%
LSTMs=4 5 446.3018 Sec. 0.9278 Sec. 5.3843 Mb 1.9955 Mb 4.51E-03 3.17%
Epochs=180 10 556.7754 Sec. 0.9322 Sec. 5.2363 Mb 2.2375 Mb 6.89E-03 7.64%
Leaking
rate=0.001

15 365.8241 Sec. 0.9443 Sec. 5.2806 Mb 1.9483 Mb 1.50E-02 7.86%

ANN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 265.9227 Sec. 0.1718 Sec. 1.7933 Mb 0.5118 Mb 2.59E-02 14.91%
Test=800 3 266.1119 Sec. 0.1812 Sec. 1.7667 Mb 0.6770 Mb 5.02E-03 11.63%
Layers=20,15,10 5 262.3324 Sec. 0.1624 Sec. 1.7926 Mb 0.7977 Mb 5.85E-03 3.65%
Epochs=180 10 263.9948 Sec. 0.1673 Sec. 1.8077 Mb 1.1445 Mb 6.28E-03 8.65%
Leaking
rate=0.001

15 263.7734 Sec. 0.1685 Sec. 1.7948 Mb 1.4987 Mb 7.07E-03 6.81%

CNN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 268.1515 Sec. 0.1781 Sec. 1.8653 Mb 0.5576 Mb 2.27E-02 12.01%
Test=800 3 265.2860 Sec. 0.1875 Sec. 1.8602 Mb 0.6726 Mb 4.72E-03 6.76%
Layers=1MP,50 5 269.0973 Sec. 0.1866 Sec. 1.7919 Mb 0.8411Mb 6.64E-03 6.72%
Epochs=180 10 274.2548 Sec. 0.1875 Sec. 1.8689 Mb 1.1925 Mb 7.41E-03 8.92%
Leaking
rate=0.001

15 274.9681 Sec. 0.1866 Sec. 1.8156 Mb 1.5433 Mb 5.45E-03 6.32%
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Figure 3 Lorenz time series prediction results by ANN reaching 15
steps ahead.
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Figure 4 Lorenz time series prediction results by CNN reaching 15
steps ahead.
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■ Table 3 Comparison of the best executions in the four prediction techniques with Mackey-Glass time series, listing the predicted
steps ahead, RMSE, SMAPE, training and testing times, and training and testing memory.
ESN: Step ahead Training-time Testing-time Training-

memory
Testing-
memory

RMSE SMAPE

Train=1,500 1 0.2656 Sec. 0.3125 Sec. 2.9410 Mb 0.3280 Mb 3.74E-02 8.23%
Test=800 3 0.0468 Sec. 0.0624 Sec. 3.0219 Mb 0.3865 Mb 1.49E-02 2.76%
Neurons=30 5 0.0312 Sec. 0.0468 Sec. 3.1151 Mb 0.5333 Mb 1.96E-02 3.14%
SP=2.5 10 0.0312 Sec. 0.0624 Sec. 3.3470 Mb 0.9001 Mb 8.47E-02 12.01%
Leaking
rate=0.001

15 0.0312 Sec. 0.0624 Sec. 2.5823 Mb 1.2691 Mb 7.79E-02 11.41%

LSTM: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 363.7754 Sec. 0.9218 Sec. 5.2639 Mb 1.9470 Mb 3.49E-02 7.46%
Test=800 3 412.3002 Sec. 0.9446 Sec. 5.1749 Mb 1.9738 Mb 1.27E-02 2.26%
LSTMs=4 5 462.1199 Sec. 1.2499 Sec. 7.9011 Mb 2.4232 Mb 2.52E-02 3.96%
Epochs=180 10 555.2916 Sec. 0.9218 Sec. 5.1964 Mb 2.2387 Mb 2.38E-02 4.72%
Leaking
rate=0.001

15 647.9304 Sec. 1.2812 Sec. 5.1711 Mb 2.6389 Mb 1.82E-02 3.60%

ANN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 266.2632 Sec. 0.1562 Sec. 1.7642 Mb 0.5119 Mb 3.59E-02 7.86%
Test=800 3 263.4166 Sec. 0.1562 Sec. 1.7559 Mb 0.6515 Mb 1.58E-02 2.37%
Layers=20,15,10 5 268.1604 Sec. 0.1874 Sec. 1.7469 Mb 0.7927 Mb 3.30E-02 4.65%
Epochs=180 10 266.1194 Sec. 0.1562 Sec. 1.7969 Mb 1.1753 Mb 1.52E-02 2.58%
Leaking
rate=0.001

15 268.1438 Sec. 0.1528 Sec. 2.0190 Mb 0.1528 Mb 1.04E-02 2.00%

CNN: Step ahead Training-time Testing-time Training-
memory

Testing-
memory

RMSE SMAPE

Train=1,500 1 267.5832 Sec. 0.1875 Sec. 1.8019 Mb 0.5631 Mb 3.51E-02 8.45%
Test=800 3 264.8904 Sec. 0.1875 Sec. 1.8881 Mb 0.7009 Mb 2.14E-02 4.37%
Layers=1MP,50 5 269.0176 Sec. 0.2031 Sec. 1.7811 Mb 0.8507 Mb 3.63E-02 6.83%
Epochs=180 10 272.9374 Sec. 0.1718 Sec. 1.7973 Mb 1.1921 Mb 1.61E-02 2.89%
Leaking
rate=0.001

15 272.2324 Sec. 0.1875 Sec. 1.7894 Mb 1.5429 Mb 9.52E-03 2.14%

■ Table 4 Comparison of our better results with the state of the art
Technique Chaotic serie Prediction RMSE
Our approach with LSTM Lorenz 1 step 2.22E-02
Deep Hybrid Neural Network with
Differential Neuroevolution Huang
et al. (2020)

Lorenz 1 step 7.56E-02

Our approach with ESN Lorenz 5 steps 8.21E-04
Adaptive Sparse Quantization Ker-
nel Least Mean Square Algorithm
Zhao et al. (2021)

Beijing PM 2.5 5 steps 3.15E-02

Improved Kernel Recursive Least
Squares Algorithm Han et al.
(2019b)

Lorenz 5 steps 4.41E-02

Co-evolutionary predictive algo-
rithm Chandra et al. (2017)

Mackey-Glass 5 steps 5.90E-02

Our approach with ESN Lorenz 10 steps 1.30E-03
Structured Manifold - Broad Learn-
ing System (SM-BLS) Han et al.
(2019a)

Lorenz 10 steps 2.45E-03

Robust manifold broad learning
system for large-scale noisy
chaotic time series prediction Feng
et al. (2019a)

Lorenz 10 steps 1.82E-01
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CONCLUSION

This paper showed the state of the art in chaotic time series pre-
diction using different prediction techniques. From Table 1, it was
observed the usefulness of neural networks, so that four techniques
were chosen to perform the prediction of time series taken data
from Lorenz and Mackey-Glass systems. Tables 2 and 3 summa-
rizes the prediction results provided by applying four techniques
that are based on ESN, LSTM, ANN and CNN. As a result, one
can see that the ESN is the technique providing better prediction
results in its stability of results in the five executions realized. In
addition, ESN obtained the low RMSE and SMAPE values. This
means that the results provided by ESN have the lower variance in
average compared to the other prediction technqiues, and it also
requires lower computing resources.
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