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Abstract 

Ultrasonic-stationary shoulder-assisted friction stir welding is a novel hybrid welding technique that reveals 

promising prospects in joining Al/Mg dissimilar alloys. This study aims to develop a design procedure for 

optimizing the mechanical property of the Al/Mg hybrid friction stir welding joint. For this purpose, firstly, 

different nonlinear neuro-regression analysis has been performed in order to overcome insufficient approaches 

for modeling, designing, and optimizing mechanical property in Friction stir welding joint. Then, stochastic 

optimization methods were performed to model the friction stir welding process. Ultrasonic Power, Welding 

Speed, and Rotational Velocity are the three most essential criteria that have been used as indicators of process 

performance. The response characteristic can be predicted as ultimate tensile strength. After calculating the 

𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , 𝑎𝑛𝑑 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2  values, the limits of the nonlinear models are examined to see whether 

the model is acceptable for optimization. The best approach model was the second-order trigonometric multiple 

nonlinear (SOTN) model. In the optimization step, four different Modified Stochastic Optimization 

Algorithms, including Random Search (MRS), Simulated Annealing (MSA), Nelder Mead (MNM), and 

differential equations (MDE) methods, were used. It has been observed that the different scenario types and 

the constraints chosen for the design variables are effective in the optimization results obtained using three 

different scenarios. Results showed that the maximum tensile strength was 182.301 MPa when ultrasonic 

power was selected as 186.938 W, 40.6854 mm/min for welding speed, and 1075.34 rpm for rotation speed.   

Keywords: Friction stir welding; tensile strength; neuro-regression analysis; stochastic optimization.  

1. Introduction 

In the current production technology, the demand for high-strength and low-weight structures has increased 

the need for lightweight hybrid materials. Aluminum (Al) and Magnesium (Mg) alloys, known as commercial 

metals, play a critical role in the automotive, aerospace, and shipbuilding industries because these materials have 

high specific strength and formability [1,2]. The widespread use of Al / Mg alloys has increased the importance 

of the reliable coupling of these alloys. However, due to the formation of intermetallic compounds (IMCs) caused 

by mental melting and re-solidification during the welding process, it is problematic to combine Al / Mg alloys 

with standard fusion welding [3-6]. Intermetallic compounds (IMCs) are ordered phases with distinct crystal 

structures and characteristics than elemental metals. They can be binary, ternary, or polymetallic. Because 

dissimilar alloys usually have differing atom diameters, crystal structures, and electronegativities, IMCs quickly 

develop in joints when they are joined. In addition, the ductility and brittleness of IMC are generally poor. When 

a joint is subjected to external stresses, a fracture can quickly form and spread within the IMC, causing the joint's 

mechanical qualities to weaken [7]. As a result, when combining different alloys, IMC formation must be avoided. 

Friction stir welding has been extensively researched as a solid-state welding technology for joining dissimilar 

materials, such as Ti/Al, Al/St, Al/thermoplastic, and different polymer matrix composites [8-11]. Because of the 

low peak welding temperature, since it can prevent the development of Al-Mg IMCs, Friction Stir Welding (FSW) 

is proven to be superior in connecting Al/Mg alloys. 

Nonetheless, FSW cannot entirely remove IMCs, limiting the amount of joint tensile strength that may be 

increased. Therefore, FSW weldability, which is improved by using an additional tool or extra energy, has recently 

been a growing trend. Stationary Shoulder Friction Stir Welding (SSFSW) is a novel branch of FSW that uses 

external stationery [12]. By reducing flash and shoulder markings, the outer stationary shoulder optimizes joint 

formation, increases material flow, and reduces heat input through its heat sink effect. As mechanical energy, the 

composition and size of Al-Mg IMCs are influenced by ultrasonic vibration. Lv et al. [13] investigated the 

intermetallic compound layers of friction stir welded Al-Mg joints without and with ultrasonic vibrations. Results 

showed that during welding Al/Mg dissimilar alloys, ultrasonic may also enhance material flow and reduce 

material adherence [14]. A novel hybrid welding process of ultrasonic aided SSFSW (U-SSFSW) is created based 

on the previous two approaches to accomplish the combined benefits of the ultrasonic and stationary shoulder 
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[15]. Thus, in ultrasonic welding of Al/Mg dissimilar alloys, it can improve material flow while reducing material 

adhesion. 

Many experiment methodologies, such as response surface methodology [16] and the Taguchi method [17], 

have been included in the modeling and parameter optimization of the FSW process in recent years. Because of 

its self-learning and prediction skills, artificial neural networks (ANN) are frequently used in mathematical 

modeling for monitoring and assessment applications. ANN is more suited to constructing nonlinear mathematical 

techniques to simulate and determine outputs by inputs than the response surface approach and Taguchi method 

[18]. A training step is required to complete self-learning and ANN predicting. Backpropagation (BP) is now the 

most common training algorithm utilized in ANN, according to published research, based on accuracy and quick 

response [19]. However, this algorithm's gradient approach for weight correcting may result in a local optimum, 

where the searching space cannot leap off during the training step [20]. This problem is solved through algorithm 

optimization. Therefore, several society intelligence algorithms have been developed to ensure the suitability of 

existing optimization techniques and to provide practical simulation in complex multi-parameter optimizations, 

such as Particle Swarm optimization [21], Artificial Bee Colony algorithm [22], Imperial Competitive Algorithm 

[23] and Brainstorm optimization [24]. Verma et al. [25] used an Artificial Neural Network to investigate the 

influence of FSW parameters which are rotational speed and travel speed, and artificial aging of the characteristics 

of AA7004 alloy for the first time. The results show that a 320 rpm and 1 mm/s travel speed gives 341 MPa 

maximum strength and joint efficiency of 80 percent. Also, they have caused re-precipitation of precipitates in 

the weld zone, which has improved joint efficiency by 59 to 80 percent when as-welded samples are aged under 

150 °C for 24 hours. Medhi et al. [26] tried to find the best welding inputs for combining two different materials 

using the FSW method to produce high-quality joints. They worked on a theory that combines the exploration and 

exploitation capabilities of the non-dominated sorting genetic algorithm-II (NSGA-II) with the Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) technique. They observed the increase in ultimate 

tensile strength, hardness, and impact energy. Liu et al. [27] used ultrasonic-assisted friction stir welding (UaFSW) 

based on a fixed shoulder system to join 6061-T6 aluminum alloy with AZ31B magnesium alloy to reduce or 

eliminate the disadvantages caused by continuous IMCs. Their studies determined the maximum tensile strength 

and elongation of the UaFSW joint were 152.4 MPa and 1.9 percent, respectively. These values were 17 MPa and 

0.8 percent higher than the conventional joints. Song et al. [28] worked to combine the dissimilar alloys of AZ31B 

Mg and 6061-T6 Al, and U-SSFSW was utilized. The correlations between the design parameters of welding and 

rotating speeds and ultrasonic power and the objectives of ultimate tensile strength of US-SSFSW joints were 

modeled using a Radial Basis Function Neural Network (RBFNN). The results showed that the RBFNN-GWO 

system's enhanced design inputs provide the highest ult. tensile strength of 158 MPa. 

This study aims to obtain the optimal process parameters that give the maximum ultimate tensile strength in 

the friction stir welding joints with a novel optimization approach. The design variables were selected as 

Ultrasonic Power, Welding Speed, and Rotational Velocity; the objective function of the introduced mathematical 

optimization problems was also ultimate tensile strength. We used the experimental data from the study [30] to 

carry out this approach.  First, ten different regression models were performed, and the validity of the models was 

evaluated using 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , and 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2  values. Then optimization process was applied using modified 

Random Search (MRS), Simulated Annealing (MSA), Nelder Mead (MNM), and Differential Equations (MDE) 

Algorithms for three different optimization scenarios. 

2. Materials and Method 

2.1 Modelling 

In the current research approach, neuro-regression approach has been applied to obtain the most efficient 

values for the parameters and the best mathematical model [29]. In this method, all data is divided into three 

sections, each containing 80%, 15%, and 5% of the total data, respectively—the first section is used for training, 

the second for testing, and the third for validation. The training process minimizes experimental and predicted 

value errors, modifying the regression models and their coefficients, as given in Table 1. First, this procedure 

provides information about the predictive capacity of the candidate models. Second, the adherence of candidate 

models to predicted values should be checked to determine whether the model is exact. In this section, the 

maximum and minimum values of models in the given range for each design variable are calculated after obtaining 

appropriate models from 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , and 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2 . Furthermore, this technique examines if the chosen 

models satisfy various realistic requirements. 

 



AYDIN and GÜLTÜRK / JAIDA vol (2022) 31-42 

33 
 

Table 1. Multiple Regression Model Types[29] 

 

Model Name Nomenclature Formula 

Multiple Linear L Y = a[1] + a[2] x1 + a[3] x2 + a[4] x3 

Multiple Linear 

Rational 
LR 

Y = (a[1] + a[2] x1 + a[3] x2 + a[4] x3)/(b[1] + b[2] x1 + b[3] x2 + 

b[4] x3)  

Second Order  

Multiple Linear 
SON 

Y = a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x1^2 + a[6] x1 x2 + a[7] 

x2^2 + a[8] x1 x3 + a[9] x2 x3 + a[10] x3^2  

Second-Order Multiple  

Nonlinear Rational 
SONR 

Y = (a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x1^2 + a[6] x2^2 + a[7] 

x3^2 + a[8] x1 x2 + a[9] x1 x3 + a[10] x2 x3)/(b[1] + b[2] x1 + b[3] x2 + 

b[4] x3 + b[5] x1^2 + b[6] x2^2 + b[7] x3^2 + b[8] x1 x2 + b[9] x1 x3 + 

b[10] x2 x3)  

Third Order Multiple 

 Nonlinear 
TON 

Y = a[1] + a[2] x1 + a[3] x2 + a[4] x3 + a[5] x1^2 + a[6] x2^2 + a[7] 

x3^2 + a[8] x1 x2 + a[9] x1 x3 + a[10] x2 x3 + a[11] x1^3 +  

 a[12] x2^3 + a[13] x3^3 + a[14] x1^2 x2 + a[15] x2^2 x3 + a[16] x3^2 

x1 + a[17] x3^2 x2 + a[18] x1 x2 x3  

First Order Trigonometric 

 Multiple Nonlinear 
FOTN 

Y = a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Cos[x1] + 

a[6] Cos[x2] + a[7] Cos[x3]  

First Order Trigonometric Multiple 

 Nonlinear Rational 
FOTNR 

Y = (a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Cos[x1] 

+ a[6] Cos[x2] + a[7] Cos[x3])/(b[1] + b[2] Sin[x1] + b[3] Sin[x2] + b[4] 

Sin[x3] + b[5] Cos[x1] + b[6] Cos[x2] + b[7] Cos[x3])  

Second Order Trigonometric  

Multiple Non-linear 
SOTN 

Y = a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Cos[x1] + 

a[6] Cos[x2] + a[7] Cos[x3] + a[8] Sin[x1]^2 + a[9] Sin[x2]^2 + a[10] 

Sin[x3]^2 + a[11] Cos[x1]^2 + a[12] Cos[x2]^2 + a[13] Cos[x3]^2  

Second Order Trigonometric  

Multiple Nonlinear Rational 
SOTNR 

Y = (a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Cos[x1] 

+ a[6] Cos[x2] + a[7] Cos[x3] + a[8] Sin[x1]^2 + a[9] Sin[x2]^2 + a[10] 

Sin[x3]^2 + a[11] Cos[x1]^2 + a[12] Cos[x2]^2 + a[13] Cos[x3]^2)/(b[1] 

+ b[2] Sin[x1] + b[3] Sin[x2] + b[4] Sin[x3] + b[5] Cos[x1] + b[6] Cos[x2] 

+ b[7] Cos[x3] + b[8] Sin[x1]^2 + b[9] Sin[x2]^2 + b[10] Sin[x3]^2 + 

b[11] Cos[x1]^2 + b[12] Cos[x2]^2 + b[13] Cos[x3]^2)  

Third Order Multiple  

Nonlinear Trigonometric 
TOTN 

Y = a[1] + a[2] Sin[x1] + a[3] Sin[x2] + a[4] Sin[x3] + a[5] Sin[x1]^2 

+ a[6] Sin[x2]^2 + a[7] Sin[x3]^2 + a[8] Sin[x1 x2] + a[9] Sin[x1 x3] + 

a[10] Sin[x2 x3] + a[11] Sin[x1]^3 + a[12] Sin[x2]^3 + a[13] Sin[x3]^3 + 

a[14] Sin[x1^2 x2] + a[15] Sin[x2^2 x3] + a[16] Sin[x3^2 x1] + a[17] 

Sin[x3^2 x2] + a[18] Sin[x1 x2 x3] 

 2.2 Optimization  

Optimization is obtaining the most appropriate design by minimizing or maximizing the specified single or 

multi-objective that corresponds to all constraints. 

There are two types of optimization techniques: traditional and non-traditional. Only continuous and 

differentiable functions are suitable for traditional optimization approaches. Traditional optimization techniques 

cannot be used in their specificity in engineering designs because they work on continuous and differentiable 

functions. Therefore, stochastic optimization methods such as genetic algorithms (GA), simulated annealing (SA), 

and particle swarm (PS) are more convenient for engineering applications. However, due to the characteristics of 

stochastic methods, correct solutions cannot be reached. Using more than one method with different principles 

for the same optimization problem enhances the dependableness of the solution. In this study, different 

optimization scenarios, including some problems of optimization problems, were used. Four different stochastic 

optimization algorithms were used to determine optimal process parameters. These algorithms are the Modified 

Nelder-Mead (MNM), Modified Differential Evolution (MDE), Modified Simulated Annealing (MSA), and 

Modified Random Search (MRS) [29]. 
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2.2.1. Nelder-Mead Algorithm 

The Nelder-Mead optimization technique is a fundamental direct search approach. As a result, no derivative 

information is required, and the function's reduction begins with simplex. The iteration continues until the simplex 

is reached, which becomes flat. It signifies that the function's outcome is almost identical at all vertices. The 

Nelder-Mead algorithm's iteration phases include ordering, centroid, and transformation [29].  

2.2.2. Differential Evolution Algorithm 

The differential evolution optimization method is one of the appropriate stochastic optimizations. It may 

determine the best solution in complex structured composite design challenges. Instead of iterating over solutions, 

it deals with a population of them. As a result, even if the differential evolution technique does not attain globally 

optimal points with all optimization problems, it is considered resilient and efficient [29]. 

2.2.3. Simulated Annealing 

The simulated annealing optimization technique is another common search technique based on the actual 

annealing of metals. During the melting process, the material transfers to a lower energy level and becomes stiff. 

The algorithm is superior at finding the global optimum because of its inherent structure. In addition, it can handle 

optimization problems that are continuous, mixed-integer, or discrete [29]. 

2.2.4. Random Search Algorithm 

The random search optimization technique is a standard random reach algorithm to generate a population of 

unpredictably placed starting spots. It utilizes a local optimization strategy to reach a local extremum point from 

each starting position. As a solution, the best local minimum is chosen. Specific booster subroutines, like the 

conjugate gradient, main axis, Levenberg-Marquardt, Newton, Quasi-Newton, and nonlinear interior-point 

approach, are utilized in the recommended version of the algorithm to optimize the values of all parameters for 

the objective function. In this stage, the fitness function is evaluated with symbolic variables, and then the method 

is repeated [29].  

 2.3 Problem Definition 

The optimal design of ultrasonic power (W), welding speed (mm/min), and rotational speed (rpm) giving the 

maximum tensile strength value in a friction stir welding joint, is realized as follows. Experimental data from the 

reference work [30] to be used in modeling are shown in Table 2. The optimization procedure is conducted by 

Mathematica [49] program. 

 

• Ten different mathematical models are implemented to provide friction stir source data and the limitations 

and suitability of the functions are checked for the values of 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , and 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2 . 

• Optimization was performed using four different modified stochastic optimization algorithms, namely, 

Differential Evolution (DE), Simulated Annealing (SA), Random Search (RS), and Nelder-Mead (NM), 

for three different optimization scenarios using appropriate models.  

2.4 Optimization Scenarios 

Three different design-optimization scenarios have been introduced to define the process. The following logic 

was used while creating the optimization scenarios: 

 

Scenario 1 

In this scenario, the objective function defines the ultimate tensile strength, the ranges of the design variables 

are chosen considering the experimental data, and it was possible for each variable to take any real number. For 

example, 0 < ultrasonic power (W) < 1800, 30 < welding speed (mm/min) <80 and 900 < rotational speed (rpm) 

< 1200. The aim is to maximize the tensile strength of the weld material. In addition, the limits of the objective 

function can be calculated with this approach. 

 

Scenario 2 

Relying on the proposed experimental setup, the more specific optimization problem can also be identified as 

involving the optimization of objective functions, all design constraints are assumed to be real numbers at the 
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intervals: 0 < ultrasonic power (W) < 1800, 30 < welding speed (mm/min) < 80, and 900 < rotational velocity 

(rpm) < 1200. Design variables are forced to be integers, provided they comply with engineering requirements. 

 

Scenario 3 

The more detailed optimization issue may alternatively be stated as maximum tensile strength; design variables 

some values are chosen from experimental data and constraints are ultrasonic power ∈ {0, 600, 1000, 1400, 1800}; 

welding speed ∈ {30, 40, 50, 60, 70, 80}; rotational speed ∈ {900, 1000, 1100, 1200}. This scenario will allow 

seeing the optimum results that the proposed model produces only under certain conditions. 

 
Table 2. Friction Stir Welding Process Parameters[30] 

 

Run Ultrasonic Power (W) Welding Speed (mm/min) 
Rotational velocity 

(rpm) 

Ultimate 

Tensile 

Strength 

(MPa) 

1 0 30 900 71 

2 0 30 1000 77 

3 0 30 1100 53 

4 0 40 900 109 

5 0 40 100 126 

6 0 40 1200 66 

7 0 50 900 122 

8 0 50 100 134 

9 0 50 1100 119 

10 0 60 900 147 

11 0 60 1000 137 

12 0 60 1100 117 

13 0 70 1000 118 

14 0 70 1100 110 

15 0 80 1100 79 

16 600 30 1000 94 

17 600 60 1000 131 

18 600 80 1000 58 

19 1000 30 1000 115 

20 1000 60 1000 133 

21 1000 80 1000 87 

22 1400 30 1000 13 

23 1400 60 1000 152 

24 1400 80 1000 134 

25 1800 30 1000 92 

26 1800 60 1000 120 

27 1800 80 1000 80 

3. Results and Discussion 

 In this study, ten different regression models for ultrasonic power, welding speed, and rotational speed in 

friction stir welding joints were tested with three different 'goodness of the fit' measures, , 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , 

𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2 . Table 3 shows the mathematical models used in the neuro-regression analysis for the related process 

parameters in friction stir welding connections. Optimum parameters x1, x2, and x3 correspond to ultrasonic 

power, welding speed, and rotational speed. Models with the highest R2 values define the relationship between 

response and reality better than other models. When the table is examined, it is seen that 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔
2 , and 

𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2  values in some models are not close to 1 or have negative values. This situation also showed that high 
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𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2  values alone could not describe the phenomenon. In addition, negative coefficients indicate that the 

model cannot be described as statistically significant. Accordingly, the results show that the most reliable model 

is Quadratic Trigonometric Multiple Nonlinear (SOTN), as the values of 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , and 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2 are 

0.995, 0.806, and 0.846, respectively. When the SOTN model is examined in terms of tensile strength, the negative 

minimum tensile strength value may not be considered appropriate. However, considering the models where the 

minimum or maximum ultimate tensile strength values are asymptotically infinite, this can be considered positive 

for the stability of the model. As a result, tensile strength values are acceptable and within reasonable limits. 

Optimization results of the process parameters in ultimate tensile strength according to three different scenarios 

with different constraints are presented in Table 4. Using the SOTN model, design parameters that maximize 

tensile strength were determined for each scenario using four different algorithms: MRS, MDE, MSA, and MNM. 

The intervals of scenario 1 were chosen considering the limits of the experimental study, and each variable took 

a real value. It obtained more successful results in terms of tensile strength in this scenario.   

While the maximum tensile strength was the same in MRS, MNM, and MDE algorithms, MSA was different. 

In addition, it is seen that the design parameters that provide the maximum tensile strength are given within limits 

and as real numbers. In Scenario 2, some design variables were forced to be integers while getting the optimization 

results, provided they comply with the engineering requirements. The results showed that the MDE algorithm for 

scenario 2 gives better results than the other three algorithms. In scenario 3, the optimum results produced by the 

model were values that will be seen only under certain conditions, and the final tensile strength values for all 

algorithms are the same. The optimization results of the ultimate tensile strength parameter show that the 

maximum tensile strength in the three algorithms of scenario 1 (MRS, MNM, MDE) is 182.301 MPa, and in the 

MDE algorithm of the second scenario, 182.237MPa. However, it can be said that the insufficient solutions in the 

2nd and 3rd scenarios are due to the restrictions made compared to the Scenario 1. In general, it can be said that 

all algorithms have acceptable results within limitations, although it is clear that MDE produces more successful 

outcomes in scenarios 1 and 2. Finally, the results reveal that the Ultimate Tensile Strength can be maximized to 

182.301MPa for the following optimal conditions; Ultrasonic Power: 186.938 W, Welding Speed: 40.6854 mm/m 

inch, Rotation Speed: 1075.3. 
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Table 3. Results of the Neuro-regression models in terms of fitting performance and boundedness. 

Models    𝑹𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
𝟐  𝑹𝒕𝒆𝒔𝒕𝒊𝒏𝒈

𝟐  𝑹𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏
𝟐  

Max. Ultimate Tensile 

Strength 

Min. Ultimate Tensile 

Strength 

Y = 231.84 + 0.000495499 x1 + 0.328724 x2 - 

0.133415 x3   
0.977 -0.246 0.352 138.956 65.587 

Y = (2.1144*10^-8 + 3227.18 x1 + 

2.46248*10^-9 x2 - 9.74408*10^-11 

x3)/(1.90369*10^-11 + 27.7249 x1 + 

2.06805*10^-11 x2 - 6.7093*10^-13 x3)   

0.990 -1.753 -0.552 116.4 116.4 

Y = -1140.89 - 0.0163631 x1 + 0.0000410955 

x1^2 + 6.47544 x2 +  

3.00384*10^-6 x1 x2 - 0.0729875 x2^2 + 

2.20297 x3 - 0.0000163631 x1 x3 + 0.00154806 

x2 x3 -0.00114843 x3^2  

 

0.995 -1.2903 0.884 209.015 40.685 

Y = (2.01217 + 12.7823 x1 - 8352.59 x1^2 + 

30.4753 x2 - 50552.6 x1 x2 + 769.567 x2^2 + 

760.715 x3 + 11783.3 x1 x3 + 20432.3 x2 x3 - 

198.539 x3^2)/(46.4385 + 1.09301 x1 - 69.1329 

x1^2 + 2368.52 x2 - 371.918 x1 x2 + 4523.71 

x2^2 - 3777.59 x3 + 94.0089 x1 x3 - 319.732 x2 

x3 + 14.8251 x3^2) 

 

0.995 0.004 0.975 2.289*10^12 -6.644*10^15 

Y = -451.465 + 0.042831 x1 - 0.0000123597 

x1^2 - 4.05251*10^-8 x1^3 - 53.6399 x2 - 

0.00196325 x1 x2 + 2.66068*10^-6 x1^2 x2 - 

0.577702 x2^2 + 0.00234579 x2^3 + 2.77865 x3 

+ 0.000042831 x1 x3 + 0.163982 x2 x3 - 

1.96325*10^-6 x1 x2 x3 + 0.0001186 x2^2 x3 - 

0.0051376 x3^2 + 4.2831*10^-8 x1 x3^2 - 

0.0000818925 x2 x3^2 + 2.38379*10^-6 x3^3 

 

0.999 

 

-1.302 

 

0.983 199.449 -14.859 
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Y = 46.9925 - 10.1483 Cos[x1] - 4.58153 

Cos[x2] + 37.2763 Cos[x3] - 8.31784 Sin[x1] + 

11.8687 Sin[x2] + 77.3452 Sin[x3] 

 

0.982 -0.415 0.436 158.696 -64.711 

Y = (-5372.22 + 102.542 Cos[x1] - 189.613 

Cos[x2] + 5924.52 Cos[x3] + 1.28016 Sin[x1] - 

604.597 Sin[x2] + 1654.09 Sin[x3])/(-42.3369 + 

0.884183 Cos[x1] - 1.73952 Cos[x2] + 47.6956 

Cos[x3] + 0.017317 Sin[x1] - 4.97124 Sin[x2] + 

12.0455 Sin[x3]) 

 

0.999 -0.137 -0.400 1.962*10^13 -4.396*10^11 

Y = 5.11515 + 1.02361 Cos[x1] - 1.76996 

Cos[x1]^2 - 1.41558 Cos[x2] + 27.9902 

Cos[x2]^2 + 11.9876 Cos[x3] + 43.7613 

Cos[x3]^2 - 12.4817 Sin[x1] + 31.5856 

Sin[x1]^2 + 12.1898 Sin[x2] - 10.7053 

Sin[x2]^2 + 114.622 Sin[x3] - 18.5691 

Sin[x3]^2  

 

0.995 0.806 0.846 182.301 -155.226 
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Y = (20.8944 + 7.67565 Cos[x1] + 0.826635 

Cos[x1]^2 + 77.4142 Cos[x2] + 41.7063 

Cos[x2]^2 + 23.7181 Cos[x3] + 25.2186 

Cos[x3]^2 + 12.9568 Sin[x1] + 21.0678 

Sin[x1]^2 + 35.4982 Sin[x2] -19.8119 Sin[x2]^2 

+ 2.71789 Sin[x3] -  3.32416 Sin[x3]^2)/(-

0.204871 + 0.118014 Cos[x1] + 0.312046 

Cos[x1]^2 + 0.637254 Cos[x2] + 0.632187 

Cos[x2]^2 + 0.416064 Cos[x3] + 0.0173435 

Cos[x3]^2 + 0.112826 Sin[x1] + 0.483083 

Sin[x1]^2 + 0.274419 Sin[x2] + 0.162942 

Sin[x2]^2 - 1.06296 Sin[x3] + 0.777785 

Sin[x3]^2) 

 

0.999 -19.814 0.273 2.002*10^13 -2.322*10^15 

Y = 116.852 - 8.06062 Sin[x1] + 13.2376 

Sin[x1]^2 - 12.1903 Sin[x1]^3 + 101.768 

Sin[x2] - 127.618 Sin[x2]^2 - 129.696 

Sin[x2]^3 - 6.4981 Sin[x1 x2] + 24.6749 

Sin[x1^2 x2] + 60.2451 Sin[x3] + 204.718 

Sin[x3]^2 - 232.073 Sin[x3]^3 - 25.3439 Sin[x1 

x3] - 21.149 Sin[x2 x3] - 3.96789 Sin[x1 x2 x3] 

- 16.2345 Sin[x2^2 x3] + 15.4914 Sin[x1 x3^2] 

- 10.6171 Sin[x2 x3^2] 

  

1. -0,405 0.868 577.338 -67.726 
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Table 4. Results of optimization problems for the selected models. 

 

Objective Functions 
Scenario 

Number 
Constraints Optimization Algorithm 

Ultimate 

Tensile 

Strength 

Suggested Design 

      

SOTN 

1 0 < x1 < 1800, 30 < x2 < 80, 900 < x3 < 1200 

MSA 173.611 x1 = 1299.06, x2 = 75.559, x3 = 900. 

MRS 182.301 x1 = 186.938, x2 = 40.685, x3 = 1075.34 

MNM 182.301 x1 = 557.646, x2 = 65.818, x3 = 1100.47 

MDE 182.301 x1 = 903.221, x2 = 59.535, x3 = 1031.36 
    

 

2 
0 < x1 < 1800, 30 < x2 < 80, 900 < x3 < 1200, {x1, x2,  

  x3} \[Element] Integers 

MSA 177.183 x1 = 300, x2 = 47, x3 = 1075 

MRS 143.972 x1 = 590, x2 = 66, x3 = 1100 

MNM 169.919 x1 = 614, x2 = 72, x3 = 1100 

MDE 182.237 x1 = 1054, x2 = 47, x3 = 912 
    

 

3 

x1 == 0 || x1 == 600 || x1 == 1000 || x1 == 1400 || x1 == 1800,  

x2 == 30 || x2 == 40 || x2 == 50 || x2 == 60 || x2 == 70 || x2 == 80, x3 

== 900 || x3 == 1000 || x3 == 1100 || x3 == 1200 

MSA 167.648 1 = 1400., x2 = 50., x3 = 1000. 

MRS 167.648 x1 = 1400, x2 = 60, x3 = 1000 

MNM 167.648 x1 = 1400, x2 = 60, x3 = 1000 

MDE 167.648 x1 = 1400, x2 = 60, x3 = 1000 
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4. Conclusions 

 

This paper aimed to design optimization based on nonlinear multiple neuro regression analysis to maximize 

ultimate tensile strength in friction stir welding joints using Mathematica software. 

After modeling the ultimate tensile strength using process variables, the following conclusions may be drawn: 

 

• This is the first study on the optimal design of the operating parameters of the friction stir welding joint 

with a comprehensive neuro-regression analysis. 

• 10 different regression models were evaluated, and the most suitable one (SOTN) for the output was 

selected. The 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 , 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2 , and 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2  values of the models have acceptable levels. 

• It has been shown that neuro-regression models with only high 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 ,  values are unsuitable and 

reliable in engineering, even if they give reasonable results. For this reason, it is suggested that 𝑅𝑡𝑒𝑠𝑡𝑖𝑛𝑔
2 , 

and 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
2 should be close to 1 for real-life applications. 

• The optimization results were influenced by the different scenario types and the selection of constraints 

for design variables. 

• Although it is clear that MDE produces more successful results in scenarios 1 and 2, it can be said that all 

algorithms have acceptable results. Ultrasonic power: 186.938 W, Welding Speed: 40.685 mm/min, and 

Rotational Velocity: 1075.3 were found for ultimate tensile strength of 182. 301Mpa.  

• It has also been shown that trigonometric models (SOTN) can be used to determine the input parameters 

of friction stir welding joints. Maximizing the ultimate tensile strength with the collaboration of stochastic 

optimization methods (MDE, MNM, MRS, MSA) is appropriate.  
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