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ABSTRACT. The rational meromorphic functions on C\R are studied. We consider the some classes of one, as the
generalized Nevanlinna N, and generalized Stieltjes N% classes. By Euclidean algorithm, we can find indices x and
k, i.e. determine which class the function belongs to N%.
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1. INTRODUCTION
Recall a generalized Nevalinna class N, and a generalized Stieltjes class N,

Definition 1.1. A function f meromorphic on C\R with the set of holomorphy b is said to be in the
generalized Nevanlinna class N, (k € N), if for every set z; € C. Nhy (j =1,...,n) the form

3 uc )afj

1,5=1
has at most k and for some choice of z; (i = 1,...,n) it has exactly x negative squares. For f € N,,, let
us write k_(f) = k. In particular, if k = 0 then the class N coincides with the class N of Nevanlinna
functions. A function f € N, is said to belong to the class N} (see [8, 9]) if zf € Ny, and to the class
Nk (k € N) if zf € N (see [3], [4]). In particular, if k = 0, then N© := N} The function f € N_*

if f € N and %f € Ny, (see [5]).

Recall some properties of the generalized Nevanlinna functions and generalized Stieltjes
functions.

Proposition 1.1. ([8]) Let f € Ny, f1 € Ny, fo € Ny,. Then
(1) —f~' € N,.
(2) f1+ f2 € N, where k' < k1 + ka.
(3) If, in addition, f1(iy) = o(y) as y — oo and f, is a polynomial, then

(11) fl + f2 € NK1+N2'

(4) Every real polynomial P(t) = p,t" + p,—1t" "1 + ...+ pit + po of degree v belongs to a class
N, where the index k = k_(P) can be evaluated by (see [8, Lemma 3.5])
(12) K_(P)—{ I 2 |, ifp, <0; and v is odd ;

(%],  otherwise .
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Proposition 1.2. ([2]) Let f € NX. Then the following equivalences hold:
(1) feNi <= —5 e N,
(2) feNF < 2f(z) e N, "

Lemma 1.1 ([7, Lemma 3.2]). Let P(z) be a polynomial of the degree v and let o € R. Then:
(1) if zP(z) € N, then

(1.3) (z —a)P(z) € Ng;
(2) if P(z) € Ny, then

(1.4) @P(z) € N, where k' =K+ k_ (— aP(O)) ;

(3) if (z — a@)P(2) — g(2)) € N, then

(1.5) (—aP(0) — g()) € N and - (aP(0) + (=) € N %5,

where k1 = k_(2P(2)) and k1 = k_(P(2)).

The indefinite Hamburger moment in the generalized Nevanlinna class N,, was studied in
[10]. The indefinite Stieltjes moment problem in the generalized Stieltjes class N* was studied
in [11], [1], [2], [6] and [7]. One is based on the Schur algorithm, i.e. the description of the
solutions are found in terms of the continued fractions. In the present paper, the rational gen-
eralized Stieltjes functions are investigated. The goal is to determine class N¥, such that the
some rational generalized Stieltjes function f belongs to one (i.e. find the indices ~ and k).

2. FINDING THE INDEX

2.1. Euclidean algorithm. Let us recall an Euclidean algorithm. Let Py and @y be the polyno-
mials, such that deg(Fy) = no and deg(Qo) = mo, where ng,mg € Z, and let my < ng. By
Euclidean algorithm, we obtain

Py(z) = Qo(2)ao(2) +r1(2),
Qo(z) = ri(2)a1(z) + r2(2),
r1(2) = ra(2)az(2) + r3(2),

(2.6)

Tn-2(2) = Tn-1(2)an-1(2) + rn(2),

Tn-1(2) = rn(2)an(z),

P
where r; are polynomials. Consequently, the ratio 0%/ can be represented as a continued

0(2)
fraction
Po(Z) — anlz 1
@7 Qo(z) o)+ a1(z) + ! i
as(z) 4+ -+
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2.2. Rational generalized Nevanlinna function and its index .

Theorem 2.1. Let Py and Qo be the polynomials, such that deg(Py) = no, deg(Qo) = mq and

mo < ng. Let the rational function f(z) = ?DO((Z; be meromorphic on C\R. Then f belongs to the class
(114
N,, and the index « is calculated by
(2.8) k=Y r((=1)"a;(2)).
=0
Qo(2)

Proof. Assume, the rational function f(z) = is meromorphic function on C\R, where the

P()(Z )
P, and Qg are the polynomials of the power deg(P;) = no and deg(Qo) = my, respectively. By
Definition 1.1, f € N.

Calculating index . Due to (2.7), we can rewrite f as follows

(2.9) )= e = - S
Qo(z) —ap(z) — T
a1(z) — i
_ag(Z)—-.._W

By Proposition 1.1 (see (1.2))

kj = k- ((=1)*a;(2)), j=0,m,
ie (=1)7Tla;(z) € N, . Moreover, by Proposition 1.1 (see items (1) and (3)), we obtain
o
(=1)7*+1a;(2)

(=1)"an-1(2) =

€Ny, forallj=0,n,

(2.10) .

—— - € Nran+nn, .
(=1)"*lan(2) '
Let us construct a recursive sequence as

1

fn(2) :=(=1)"an-1(2) — m,
1
_ =(—1)""ta,_ -
In 1(2) ( ) an 2(2) fn(z)’
(2.11)
Faa() =1 P () - T
n—2 . n—3 fnfl(z),
1
z) = —ao(z .
fl( ) 0( ) fQ(Z)
Hence (see Proposition 1.1)
(2'12) fn S Nﬁn“r"'ﬂn,fl? fn—l S Nnn+;<,n,1+;<,n,27 ey fl S Nnn+nn,1+...+no-
By the recursive sequence, the rational function f(z) = }QDO((ZZ)) can be rewritten as
0
1

(2.13) F(2) =~
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Therefore f € N, where the index k = Z —((—1)7"1a;(z)). This completes the proof. O
§=0

Corollary 2.1. Let Py and Qg be the polynomials, such that deg(Py) = no, deg(Qo) = myg and

P
mo < ng. Let f(z) = QO ((z)) be meromorphic on C\R. Then f belongs to the class N, and the index x
0
is calculated by
(2.14) K= k- ((=1)a;(2)).
7=0
) . Po(z) . ) .
Proof. Let the rational function f(z) = Qo(2) is meromorphic function on C\R, where the nu-
0

merator Py and denominator () are the polynomials of the power deg(Py) = ng and deg(Qo) =
my, respectively. Hence, f belongs to the generalized Nevanlinna class N, (see Definition 1.1).
Let us find the index ~. By the representation (2.7), we obtain

P 1
(2.15) f(z) = QO((ZZ)) = ap(2) — 1
0 —a1(z) — T
CLQ(Z) - (_1)nan(z)
By Theorem 2.1 (see (2.10)-(2.13)), f € N, and the index  is calculated by (2.14). This completes
the proof. O

3. RATIONAL GENERALIZED STIELTJES FUNCTION AND ITS INDICES &, k
First of all, we study the simple case of the rational functions, which belong to the general-

ized Stieltjes classes N;** and find the formulas for the indices x and k.

3.1. Rational function of the generalized Stieltjes class N*.

QO( )) be meromorphic on C\R, where deg(FPy) = no,

Theorem 3.2. Let the rational function f(z) =

deg(Qo) = mo and my < no. Let f admit the representatzon (2.9) and let ay;(z) vanish at zero for all
i =0,[n/2] (ie. az(0) = 0). Then f belongs to the class N¥, where the index k is calculated by (2.8)
and index k is found by

[n/2]-

(/2] o -
> ﬁ_( a2i(2) )+ z K (zazj41(2)),  if s even;
(3.16) k={ i=

[n/2] any(2) n/2] o
ZK‘( = )+Z —(zagj41(2)),  ifnisodd.

§=0

Proof. By Definition 1.1, the rational function f(z) = C]io((z)) meromorphic on C\R belongs to
(114

the generalized Stiektjes class N¥ (i.e. f € N, and zf € Nj) and by Theorem 2.1, the index  is

calculated by (2.8).
Let us find an index k. Assume f admits the representation (2.9) and a9;(0) = 0 for all
i =0, [n/2]. Hence, we get the two cases, where n is even or odd.
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First of all we consider the even case (i.e. n = 2m, m € Z.), we obtain

KA TE R e
2Qo(2)
(3.17) o 1 ) 1 - 1 ) 1
ao(z Aom(2)
’ _ Oi ) Z(ll(Z) Za2m71(z) ‘ _ 2 Z( )
The terms —(1217(2) are polynomials, i.e. ag;(0) = 0 for all ¢ = 0, [n/2]. By Theorem 2.1 , we get
/ as; ) [n/2]_1
Z < eI\ ) + Z K_ (za2j+1(z)).
§=0
The next step, let n is odd (1.e. n=2m+ 1, m € Z,). Consequently
1 1 1 1
(3.18) z2f(z) = — | — L | - |
— ao(2) za1(2) — @2m(2) za (2)
2 1 2 2m—+1
.. aQi(z) . . .
Similarly, ————= are the polynomials and the index k is
z

S () 4 3 e

=0 =0

This completes the proof. O

Qo(2)
P()(Z)
deg(Qo) = mo and ng < mg. Then f belongs to the class N and admits the representation (2.15).

Moreover, the index k is calculated by (2.14). In addition, if the all polynomials ag;41(z) vanish at
zero in the representation (2.15), then the index k is found by

Corollary 3.2. Let the rational function f(z) = be meromorphic on C\R, where deg(Py) = no,

[n/2] [n/2]—1 azsa1(2)
> ko (zagi(z)) + Z K (==2E222),  if nis even;
_ Jj=0
(3.19) k=14 10y o . o
> k- (za25(2)) + E (=22 ifnis odd.
3=0

Qo(2)
Po (Z)
class N* and by Corollary 2.1, f admits the representation (2.15) and the index & is calculated
by (2.14). By Theorem 3.2, the index k can be found by (3.19). This completes the proof. O

Proof. By Definition 1.1, the rational function f(z) = belongs to the generalized Stieltjes

Corollary 3.3. Let the rational function f(z) = i?)o(( )) be meromorphic on C\R, where deg(Py) = no,
0
deg(Qo) = mo and mqy+1 < ng. Then the rational function z f (z) admits the following representation
1 1 1
3.20 f(e) = ——
20 M= T%0  me T e

and f belongs to the class N¥.
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Furthermore, in addition, if ap;41 vanish at zero for all i = 0, [n/2], then the indices x and k can be
found by

(3.21) k= s ((-1)"a;(2)),

[n/2] B e

> k- (—zaz;(z)) + Z K (%) ., if niseven;
(3.22) k=g 770

/2] ~ w0 Tarr () o
IR (T2 i nis odd,
=0

Proof. By Euclidean algorithm, the rational function zf(z) = zg) 0( admits the representa-

tion (3.20). By Theorem 3.2, the rational function f belongs to the generahzed Stieltjes class
N¥, where the indices k and  are found by (3.21) and (3.22), respectively. This completes the
proof. O

Qo(2)

Corollary 3.4. Let the rational function f(z) = be meromorphic on C\R, where deg(Py) = no,

Po(z)
deg(Qo) = mo and ng < mo+ 1. Then the rational function z f(z) admits the following representation
. 1] 1] 1|
(3.23) 2f(z) =doz) — ——— - — — — L
N O e R e e

and f belongs to the class N¥.
Furthermore, if Go; vanish at zero for all i = 1, [n/2|, then the indices x and k can be found by

(3.24) k= ki ((=1)4;(2)),
7=0
In/2] ) - ©) i
%m_ (—zagj41(2)) + Z k_(2L2),  ifnis even;
_ ) =
(3.25) k= [n/2] A [n/2 83 (2) o
ZO fie (—2a9541(2)) + Z ~(F£=),  ifnisodd.
j:

3.2. Rational function of the generalized Stieltjes class N_*.

Qo(2)
Po(z)
deg(Qo) = mg and mo < ng. Let f admits the representation (2.9) and let the all odd polynomials
agi+1(z) vanish at zero (i.e. as;+1(0) = 0). Then f belongs to the class N_*, where the index r is
calculated by (2.8) and index k is found by

[n/2] [n/2]—1 o)
Mo ko (—zagi(2))+ > kK- (Lﬁ; = ) , if nis even;
(3.26) = i=0 i=0

/2] /2] a (2) . .

> we (s () + 3 e (B2E) i nisodd.

=0

Theorem 3.3. Let the rational function f(z) =

be meromorphic on C\R, where deg(Fy) = no,

Qo(2)
Po(z)
the generalized Stieltjes class N * (i.e. f € N, and g € Nj) and by Theorem 2.1, the index & is
calculated by (2.8).

Proof. By Definition 1.1, the rational function f(z) = meromorphic on C\R belongs to
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Suppose f admits representation (2.9) and the all odd polynomials as;(0) vanish at zero (i.e.

CL2,;+1(0) = 0)
If niseven (i.e. n = 2m, m € Z,), then

1) _ Q)
z 2Py(z)
1
(3.27) ZC; 0((;))
_ 1 v 3 1] 3 1]
— zap(2) () ‘ — zas(z) ag,n%l(z) ‘ — 2aom (2)

z
Due to the all odd polynomials as;+1(0) = 0, a"’]zé are polynomials and by Theorem 2.1, we

obtain
[n/2] [n/2]—1 021 (2)
k= Z K_ (—zazj(z)) —+ Z K <]Z> )
7=0 7=0
If nis odd (i.e. n = 2m + 1, m € Z, ), then
1GNNS N (R | M |
: ’ — za9(2) o(z) am-1(2) | _ 2o (2) 2m+1(2)
z z P

Obviously, a2;+1(0) =0, azf—z“ are polynomials and by Theorem 2.1, we find index k as follow

[n/2] [n/2] " 2)
k‘:Zl’i —zag,;(z —|—Z <2J+1 )

This completes the proof. O

Qo(2)
Py(z)
deg(Qo) = mo and ng < myg. Then f belongs to the class N, and admits the representation (2.15).

Moreover, the index & is calculated by (2.14). In addition, if the all polynomials as; (%) vanish at zero
in the representation (2.15), then the index k is culculated by

[n/2]- [n/2]

Corollary 3.5. Let the rational function f(z) =

be meromorphic on C\R, where deg(Py) = no,

z i (2o () + 3 ~(“2), ifnis even;
(3.28) =Y i WA
Y n (&) + 3w (S0, ifnisodd
j=0
Proof. By Definition 1.1, the rational function f(z) = ?)0((;) belongs to N;* and by Corol-
0
lary 2.1, f admits representation (2.15) and the index  can be calculated by (2.14). By Theo-
rem 3.3, the index k can be found by (3.19). This completes the proof. O

Corollary 3.6. Let the rational function f(z) = QO( )

be meromorphic on C\R, where deg(Py) = no,

deg(Qo) = mo and mqy < ng+ 1. Then the mtzonal functzon z f (z) admits the following representation
f(z) _ Qo(2) 1 1 1

3.29 = =1 ——ee—

02 S ARG el me )
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and f belongs to the class N .
Furthermore, if ag; vanish at zero for all i = 0, [n/2], then the indices k and k can be found by

G20 = A ((-17a(2)),
7=0
[n/2] ) [n/2]—1 B -
2 H’( 2 ) + Z K (zagj41(2)), ifnis even;
(331) U =
/2] a I o
2 Kﬁ( 2] >+ Z —(za2541(2)),  ifnisodd.
§=0
Proof. By Euclidean algorithm, the rational function [z — oni((z)) admits the representa-
z 2P (2

tion (3.29). By Theorem 3.3, the rational function f belongs to the generalized Stieltjes class
%, the indices k and x are found by (3.30) and (3.31), respectively. This completes the
proof. O

Qo(z)
Py(2)
no, deg(Qo) = mg and ng + 1 < mg. Then the rational function z f (z) admits the following represen-
tation

Corollary 3.7. Let the rational function f(z) =

be the meromorphic on C\R, where deg(P) =

Fo o
(3:32) A RO [ETNES

and f belongs to the class N .
Furthermore, if G2;41 vanish at zero, then the indices x and k can be found by

(3.33) k= Z”—((—l)jdj(Z)),
=0
[n/2] ) [n/2]—1
> nf( Gag41(2) ) + Z k—(za24(2)), ifnis even;
(3.34) k= =0
n/2) . ) o
2 K- ( fan) )+ Z _(zag4(z)),  ifnisodd.
Jj=0 j=

4. GENERAL CASES

4.1. General case in the class N,

Qo(z)
Po(z)
no, deg(Qo) = mo and mg < ng, let f admits representation (2.9). Then f belongs to the class NF,
such that

Proposition 4.3. Let the rational function f(z) =

be the meromorphic on C\R, where deg(Py) =

n [TL/2

(4.35) /ifZ/ijandk<Zk + )R,

7=0 1=0



162 Ivan Kovalyov

where the indices k;, k; and kY can be found by

ki = ko (1) ai(2)),  kai = ki (—“2(2)_‘”(0)) :

z

(4.36) 1, ifa(0) <0
) I a2 )
kait1 = k- (za2i4+1(2)), k? = { 0 ifa;(O) > 0.
Proof. (i) The first case. Let n = 2m + 1, m € Z, then the rational function f(z) = 32)0((2)) can
(11¥4
be rewritten by formula (2.9) as follows
| | |
(4.37) f(z)__‘_a(z)_ - _’_a(z)_ - _..._’_a . -
’ a1(2) ’ az(2) o azm+1(2)
Setting
1
fm(z) = 1 ,
—a2m(Z) - a2m+1(z)

2fm(2) = — :
~o2m{®) - az2m+1(2)
_ 1
- 7(127”(2’) — an(O) B a27n(0) _ 1
z z 22m+1(2)

By Proposition 1.1 and Proposition 1.2, f,, € NE’ZL, where

Rm = H—(_a2m) + K—(a2m+1) and Em < kom + k2m+1 + k',?n,

0, if agm(O) > 0.
The next step. Let us define the function f,,—; by

z

where
m(2) — a2m (0
Kom 1= K_ <_CL2(Z)ZG/2()> , k2m+1 = 57(2a2m+1)7
(4.38) |
ko = K (GQm(O)) — { ]., lf an(O) < 07

fa(2) = — L

—a2m_2(2) - anil(Z) +fm(z)

Consequently, z f,—1 takes the following form
1
2fm-a(2) = = _a2m—2(2) — azm—2(0)  azm—2(0) 1

z z 2a2m-11(2) + 2 fm(2)

Hence f,,—1 € N%”:ll (see Propositions 1.1 and 1.2), where the indices k,,—1 and Em_l are

f’%m—l = %wrz + H—(_a2m—2) + K (a2m—1) and f];m—l S k2m—2 + ka—l + k%_1 + %ma
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where
m B m 0
P (_M) o = R (22me1),
(4.39) .
. (_agm(O)) _ { L, if az,(0) < 0;

0, ifas,(0)>0.
Step-by-step, we obtain that f € N* and (4.35)—(4.36) hold.

z

(#4) The second case. Let n = 2m+2, m € Z,U{—1}, then the rational function f(z) = CIQDS((;)
can be rewritten by
| | |
(4.40) f(z)=— = 7 -
‘ —ao(2) — a1 (2) ‘ — agm(z) — m ‘ — azm+2(2)

Let us set the function f,,,1 by

1
ma1(2) = ——m——.
f +1( ) —om 42 (Z)
Hence, the function z f,,,+1 takes the form
z 1
2fma1(2) = — = — )
S ) = T T amea(®) — Gamsa(0)  damra(0)

z z

m+1

T where the indices K,,+1 and k11 are

By Proposition 1.1 and Proposition 1.2, fy,+1 € Ng
defined by

%m+1 = K- (_a2m+2)7

. (_a2m+g<z> - a2m+2<o>> o (_ az2m+2(0) ) .

z z

By the first case (i), we obtain f € N¥, where the indices x and k satisfy the formulas (4.35)-

(4.36). This completes the proof. O
Corollary 4.8. Let the rational function f(z) = io((i) be the meromorphic on C\R, where deg(Py) =
olZ
no, deg(Qo) = mg and ng < mg. Then f admits representation
1 1 1
441 z)=a_1(z) — - —
A A T R T R (e )

Furthermore, f belongs to the class Nﬁ, such that
[n/2]

(4.42) K= Xn: Kjand k < zn: kit YK,

j=—1 i=—1 i=—1
where the indices k;, k; and kY can be found by

kaiv1 = k- (202i11(2)), ki = ko ((—1)"ai(2)),

1, ifag(0) <O0; azi(z) — a2;(0)

(4.43) :
K = { 0, ifas(0)>0. N r- (_ 2 ) '



164 Ivan Kovalyov

Qo(2)
Py(2)
no, deg(Qo) = mo and ny < my. By Euclidean algorithm, the function f admits representation
(4.41).

By Proposition 1.1, a_; € Nﬁ’l, where indices x_; and k_; are defined by (4.43).

By Proposition 4.3, (f —a_1) € NE

K 7

Proof. Assume the rational function f(z) = be the meromorphic on C\R, where deg(Fy) =

where the indices % and k are defined by formu-

las (4.35)—(4.36). Therefore, the rational function f(z) = CF?)O(( )) belongs to the class N* and the
0
formulas (4.42)—(4.43) hold. This completes the proof. ]
Theorem 4.4. Let 7 € N*_ and let f(2) = ?30(( )) + 7(2), where the Py and Qo are polynomials, such
0
that deg(Py) = no, deg(Qo) = mq and mo < ng. Then f € N¥, where
n [n/2]
(4.44) k< K* +Zn]andk<k*+2k +Zk
where the indices k;, k; and kY can be found by (4.43).
Proof. This proof is based on Proposition 4.3 and Proposition 1.1. O
4.2. General case in the class N_*.
Proposition 4.4. Let the rational function f(z) = ?30((;) be the meromorphic on C\R, where deg(P) =
0

no, deg(Qo) = mg and mqy < ng and let f admits representation (2.9). Then f belongs to the class
N ¥, such that

[n/2]

(4.45) H_anandk<2k +Zk

where the indices k;, k; and kY can be found by

pi= k() ai(2)), ko = he (aw(z) - a2i+1(0)) |

(4.46) :

ke (—za0 o_ | 1, ifazi1(0)>0;
koy = KJ,( Za2z(z)), kz = { 07 lfa%_,'_l(O) <0

Qo(2)
Py(2)
(2.9) and by Theorem (2.1), f € N, where the index & are calculated by

H:Zl{j Zn 1)t ta;(z2)).
7=0

By Defenition (1.1), the function f is the meromorphlc on C\R, then f € N*. Find index k.
(1) The first case. Let n = 2m + 1 in (2.9), then

Proof. By Euclidean algorithm, the rational function f(z) = admits the representation

1! 1l

' ~ () - o
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Setting
1
Pm(z) = — 1
_Zagm(Z) — a2m+1(2)
z
_ 1
() 1 |
—zaom (%) —
? a2m+1(2) = G2m+1(0) | G2m41(2)
z z

by Proposition 1.1, ¢y, € Nh,’ where the index %m is defined by

%m, S k2m, + k2m+1 + kgn,

where the indices ko, k211 and k9, can be calculated by

agm11(2) — a2m+1(0)>

kom = k—(—za2m(2)), kams1 = K- <
ko _ 1, 1f a2m+1(0) > 0,
m 0, if a2m+1(0) < 0.
So, let ¢,,—1 is defined by
1

Gm—1(2) = — 1
_Za,gm_g(z) — ag 11(2)
Zem— 1 \") + ¢m(z)
B 1
- 1
—2a2m—2(2) - —a a 2
azm—1(%) . 2m—1(0) n Zm;l( ) ()

Due to Proposition 1.1, ¢, 1 € Nx L where the index Em,l is

E’m S k2m—2 + ka—lleWL + k2’m+1 + k'?n—l + k70n7

where the indices ko, 2, kom—1 and kO, are defined by

aom_1(2) — azml(o)) ’

kam—o = K*(_Za2m72(z))v kam—1=K_ ( >

B0 1, if agm—1(0) > 0;
m o 0, if agm,l(O) < 0.
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By induction, we obtain the sequence ¢, ¢m—1, ..., o1, Where ¢1(2) = @ and ¢; € Ny and
k is defined by (4.45)—(4.46). Therefore, the function f € N.*, where the indices x and k are

generated by (4.45)—(4.46).
(#4) The second case. Let n = 2m + 2 in (2.9), then

1‘ ] 1’

1

a2m+1(2’
z z

j ’ — 202m12(2)
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Let us set
1

¢m+1(2) = —Z(sz+2(2) .

By Proposition 1.1, ¢, 11 € Ny, ,,, where Koy o = k_(—2a2m+2(2)). The next step, we apply
the first case (i) and obtain f € N_*, where the indices x and k satisfy (4.45)—(4.46). This

completes the proof. O
Corollary 4.9. Let the rational function f(z) = ?DO((Z)) be the meromorphic on C\R, where deg(Py) =
olZ
no, deg(Qo) = mg and ng < mg. Then f admits representation
1 1 1

(4.47) fz) =a-(2) - | —ao(z) a(z)

Furthermore, f belongs to the class N_*, such that

(—1)”"‘1an(z) .

[n/2]

(4.48) ﬁ—Zm]andk<Zk+Zk

j=—1 1=—1 1=—1
where the indices k;, k; and kY can be found by

i 1, a9; 0) > 0;
s = - (s (2), s = (1) (e, 1 = { ezt 20

klznl<a1@%ﬂzmw (@Hw@—amHmWQ

z z

(4.49)

> , koip1 =Ko

Qo(z)
Po(2)
ng, deg(Qo) = mo and ng < myp. By Euclidean algorithm, the function f admits representation
(4.41).

We can rewrite the ratio

Proof. Suppose the rational function f(z) =

is the meromorphic on C\R, where deg(P;) =

a-1(2) 4
z

a_1(z)  a_1(z) —a_1(0) n a_l(O).

z z z

By Proposition 1.1 and Proposition 1.2, a_; € N,j;l, where %_1 <k 1+k,andk_q, k_1, K,
are defined by (4.49).

By Proposition 4.3, (f —a_1) € NE , where the indices % and k are defined by formu-

las (4.45)—(4.46). Therefore, the rational function f(z) = C;O(( )) belongs to the class N, * and
0
the formulas (4.48)—(4.49) hold. This completes the proof. O
Qo(2)

Theorem 4.5. Let 7 € NF" and let f(z) =

+ 7(z), where the Py and Qo are polynomials,

Py(z)
such that deg(Py) = no, deg(Qo) = mo and mo < ng. Then f € N ¥, where
[n/2]
(4.50) ;<;</£+anandk<k:* Zk + ) R,

7=0 1=0 =0

where the indices k;, k; and kY can be found by (4.46)
Proof. This proof is based on Proposition 4.4 and Proposition 1.1. O
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