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Ulaştırma Modellerinde Can'ın Yaklaşım Metodunda Uygun Ortalama Seçimi 

İçin Simülasyona 
 

Naciye Tuba Yılmazb c, Ahmet Mete Çilingirtürkd, Tuncay Cane 
 

Özet  Anahtar Kelimeler 

Klasik ulaştırma modelleri birim taşıma maliyetlerini göz önüne alarak 

homojen malların arz noktalarından talep noktalarına taşınma maliyeti 

toplamını minimize etmeyi amaçlamaktadır. Ulaştırma problemi, ağ 

modellerinin özel bir halidir ve doğrusal programlama temelli bir tekniktir. 

Başlangıç dağıtım yöntemlerinden Tuncay Can yaklaşım metodu 2015 yılında 

geliştirilmiş bir metottur. Yöntem, birim taşıma maliyetlerinin geometrik 

ortalamalarının alınması esasına dayanmakla birlikte teoremde yöntem 

uygulanırken geometrik ortalamalar yerine farklı ortalamaların da 

kullanılabileceği belirtilmiştir. Bu çalışmanın amacı, Tuncay Can Yaklaşım 

Metodunu (TCYM) temel alarak, yöntemin belirttiği şekilde birim maliyetlerin 

geometrik ortalamalarının alınması ve ayrıca aritmetik, kareli ve harmonik 

ortalama kullanılarak da yöntemin uygulanması ile elde edilen toplam 

maliyetleri minimize eden başlangıç dağıtım planı incelenerek hangi 

ortalamada optimal sonuç verdiğini ortaya koymaktır. Bu amaca yönelik 

olarak kurulan ulaştırma modelinin katsayıları simülasyon yardımıyla rassal 

olarak değiştirilmiş ve yöntem farklı ortalamalara göre problem üzerinde 

tekrarlanarak, optimal toplam maliyet değerleri karşılaştırılmış ve uygun 

ortalama tespit edilmiştir.  
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Abstract  Keywords 

Classical transportation models aim to minimize the total costs of 

homogeneous goods transport from supply points to demand points, taking 

into account unit transportation costs. They constitute a special case of network 

models and employ a technique based on linear programming. Suggested in 

2015 and one of the early distribution methods, Tuncay Can’s Approximation 

Method (TCAM) is based on the geometric averages of unit transportation 

costs, although it is stated in the theorem that other means than geometric can 

be used. The aim of this study is to compare the total costs of a transportation 

model by solving a problem using geometric, arithmetic, square, and harmonic 

means based on TCAM. The coefficients of the transportation model were 

obtained randomly by simulation, and the method was repeated on the 

problem according to the different means and the appropriate means 

determined. 
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Introduction 

Computer-based simulation and analysis are extensively used in the field of engineering for a 

varirty og purposes. The computational cost of complex engineering analysis and simulations 

maintains significant in terms of the amount and cost of computing notwithstanding the 

increase in the computational power and speed of computers. High computational costs in this 

context restrict problem variables, so the use of experimental design and approximation to 

optimal solution methods have become widespread in the solution of logistics problems. Such 

approximation approaches simplify real-life problems with long computation time and high 

coding costs. Approach models created for purposes such as optimization, design space 

exploration, and reliability analysis are also called metamodels (Simpson et al., 2001; 

Barthelemy and Haftka, 1993). 

The growing number of dimensions according to the number of variables causes issues in 

optimization problems (Koch et al., 1999). Visual examination of the solution hypersurface 

becomes more difficult with the increase in the number of input variables. As a solution, 

reducing the number of variables has been suggested either with statistical methods and 

experiments (Box and Draper, 1969) or to observe the effect of variables on results with linear 

models (Plackett and Burman, 1946). 

Classical transportation models aim to minimize the total costs of homogeneous goods 

transported from supply points to demand points, taking unit transportation costs into 

account. Supply and demand quantities predetermine transportation models, with the model 

considered balanced if supply and demand are in equilibrium. They constitute a special case 

of network models and employ a technique based on linear programming. However, a 

degeneration problem occurs due to the nature of the problem during the minimization of the 

objective function when using the solution methods of linear programming. For this reason, 

the North-West Corner Method, Least Cost Method, Vogel's Approximation Method (VAM), 

Russel's Approximation Method, and Tuncay Can's Approximation Method (TCAM) have all 

been developed (i.e., to address the degeneration).  

These methods aim at minimizing the total transportation cost and testits optimality with 

either the Stepping Stone or Modi Method. In a balanced transportation problem, the primary 

aim is to obtain an initial basis feasible solution vector (corner point) or distribution plan. The 

optimum solution value is the result that will provide the minimum total cost. It is important 

to determine the initial distribution as close to this minimum value. The aim of this study is to 

present an approximation method that gives an initial distribution plan close to the optimal 

solution. The study is based on a balanced transportation problem of size m×n, representing a 

total of m supply centers (source) and n demand centers (destination). The simple structure of 

a transportation problem is shown in Table 1. 
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Table 1. Standard Transportation Problem Table 

 
Demand Centers (n) 

D1 D2 ... Dn 
Total 

supply (si) 

Supply 

Centers 

(m) 

S1 
C11 

X11 

C12 

X12 

 

... 

C1n 

X1n 

 

s1 

S2 
C21 

X21 

C22 

X22 

 

... 
C2n 

X2n 

 

s2 

... ... ... ... ... ... 

Sm 
Cm1 

Xm1 

Cm2 

Xm2 

 

... 

Cmn 

Xmn 

 

sm 

Total 

demand 

(dj) 
d1 d2 ... dn  

 

The transportation costs Cij (i=1,2,...,m; j=1,2,...,n) present per unit good transportation costs 

from the supply center (i) to the demand center (j). The total of Xij (i=1,2,...,m ; j=1,2,...,n) 

decision variables constitutes the amount of goods transported from i to j. This classical 

problem indicates a balanced transportation problem, where the total supply is equal to the 

total demand; otherwise, it is an unbalanced transportation problem. The following equation 

system (1) represents the linear programming model of the classical transportation problem: 
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The equation ∑ 𝑠𝑖
𝑚
𝑖=1  =  ∑ 𝑑𝑗

𝑛
𝑗=1  =  𝑡 ;  𝑠𝑖  𝑎𝑛𝑑 𝑑𝑗 ≥ 0 provides the balance between supply and 

demand. The equation system (1) has m supply constraints and n demand constraints (m+n) 

in total, along with the nonnegativity constraint (xij≥0). The existence of (m+n) constraints 

involves a convex polyhedral geometric shaping of the linear programming problem, which 

reflects a convex polytope in special cases. 

Finding a basic feasible solution requries one of the (m+n) vertices. This forces the (m+n) 

variable to be nonzero positive and the other variables to be equal to zero. One of the 

constraints becomes redundant in a balanced transportation problem due to structure of a 

system in which nonzero positive variables are the basic variables and variables with a value 

of zero are the non-basic variables. The rank of the system decreases by one from (m+n), and 

(m+n-1) nonzero positive basic variables remain in the system. This fact causes degenerate 

solutions to balanced transportation problems when solving with the simplex algorithm 

because it inhibits acquisition of the desired number of (m+n) basic variables. 



Simulation For Appropriate Mean Selection For Can's Approximation Method In 

Transportation Models 

 

 

2023; 21 (1); Beşerî Bilimler Sayısı | Sayfa 192 

 

Approximation methods ensure an initial basic feasible solution without the simplex 

algorithm preventing the degeneration problem. Thus, the various methods listed above, 

including Can’s Approximation Method (Can, 2015; Can and Koçak, 2016) have been 

developed. Various studies have made improvements on the structure and algorithm of the 

problem to the majority of the methods listed, but VAM remains the most commonly studied. 

One of the versions of VAM improved the minimization of the total costs by counting the 

opportunity costs through the alternative allocation costs (Korukoğlu and Ballı, 2011). 

Mathirajan and Meenakshi (2004) applied VAM to an opportunity cost matrix considering just 

the maximum three penalty costs. This improved VAM (IVAM) method also calculates the 

alternative product assignments to idle sources. The Karagül and Şahin (2019) Approximation 

Method (KSAM) suggests a feasible solution close to optimal by weighting the cost matrix 

with relative supply and demand amounts. In that study, they compared initial solution 

methods, which are North-West Corner (NWC), the Matrix Mimina (MM), the Row-Minima 

(RM), the Column Minima (CLM), Vogel’s Approximation Method (VAM), Russel’s 

Approximation Method (RAM), Can’s Approximation Method (TCAM) and Karagül and 

Şahin Approximation Method (KSAM), using twenty-four test problems for the solution 

values and solution time. Avoid Maximum Cost Method (AMCM) was proposed by Mutlu, 

Karagül and Şahin at 2021 and they also compared the method with six well-known methods 

which are North-West Corner (NWC), Least Cost Method (LCM), Vogel’s Approximation 

Method (VAM), Russel’s Approximation Method (RAM), Can’s Approximation Method 

(TCAM), Row-Minima (RM), Column Minima (CLM), Total Opportunity Cost Matrix – SUM 

(TOCM-SUM). As a result of the analysis, the solution values of the methods were found as in 

the table below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Solution Values of the Methods (Karagul and Sahin (2019)) 
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Figure 2: Solution Values of the Methods (Mutlu, Karagul and Sahin (2021)) 

Theorems 

Theorem 1 ensures that the approximation method employed guarantees a basic feasible 

solution for the transportation problem. 

Theorem 1: A balanced transportation problem has a feasible solution of the variable 𝑥𝑖𝑗 =
𝑠𝑖𝑑𝑗

𝑡
, 

providing that 0  xij  min {si, dj} for every i and j. 

Proof (Can, 2015): The equation system (1) actualizes the subsequent inferences under the 

inequality related to the variables 𝑥𝑖𝑗 =
𝑠𝑖𝑑𝑖

𝑡
 ; 0  xij  min {si, dj}: 

 

∑ 𝑥𝑖𝑗 = ∑
𝑠𝑖𝑑𝑗

𝑡
=

1

𝑡
𝑠𝑖 ∑ 𝑑𝑗 =

1

𝑡
𝑠𝑖𝑡 = 𝑠𝑖

𝑛

𝑗=1

𝑛

𝑗=1

𝑛

𝑗=1

 

                              (2) 

∑ 𝑥𝑖𝑗 = ∑
𝑠𝑖𝑑𝑗

𝑡
=

1

𝑡
𝑑𝑗 ∑ 𝑠𝑖 =

1

𝑡
𝑑𝑗𝑡 = 𝑑𝑗

𝑚

𝑖=1

𝑚

𝑖=1

𝑚

𝑖=1

 

 

The preceding equations ensure each other. As a result, the following equalities are acquired: 

∑ 𝑥𝑖𝑗 = 𝑠𝑖

𝑛

𝑗=1

 

                              (3) 

∑ 𝑥𝑖𝑗 = 𝑑𝑗

𝑚

𝑖=1
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Thus a balanced transportation model always has a feasible solution. We should notice the 

principle that “if there is a feasible solution, then there has to be also an optimal solution.” 

Points within the convex structure are a feasible solution according to TCAM. Thus, statistical 

means determines the key column or row. The algorithm explains the TCAM within two steps. 

Step 1: The unit transportation costs Cij > 0 (i=1,2,...,m and j=1,2,...,n) are averaged with a 

determined statistical mean in the classical transportation problem with m sources and n 

destinations. The closest unit cost to the average value marks the key transportation cost. The 

key value is selected arbitrarily if there is more than one equal unit cost close to average. The 

minimum quantity of the selected supply and demand allocated to the cell with the specified 

unit transport cost. Columns and rows are deleted in the allocation table when the allocated 

quantity fully covers the supply/demand unless their amounts are equal. In this case, just one 

row or column will be excluded. Step 1 results in the corresponding xij axis in Rmn+1 

dimensional space. The remaining unit transport costs Cij 1i,kj are averaged to repeat the 

instructions in Step 1, as the terms in the objective function are independent from each other. 

Thus, a new variable axis xlk emerges corresponding to the dimensions of the remaining 

matrix. 

Step 2: The maximum supply or demand quantity allocated to the cell with the minimum unit 

transport cost after the deletion of the relevant rows and columns at Step 1 leaves only two 

units of transport costs. Averaging these two numbers gives an equi-distant value and 

selection of the minimum one enables the objective function aim. This results in a new feasible 

xij axis. Thus, the first basic feasible solution to the classical transportation problem is 

achieved.  

The solution vector obtained by TCAM algorithm is a feasible but also a basic feasible solution 

to the problem due to Theorem 1. This vector constitutes a corner point of the convex polytope 

region. The proposition of first basic feasible solution requires the following fundamental 

definitions and theorems. 

Definition: A non-singular square matrix is said to be a triangular matrix when it forms a lower 

triangular matrix through row and column permutations. A non-singular lower triangular matrix 

is clearly a triangular matrix according to this definition. A non-singular upper triangular 

matrix is then also a triangular matrix, because its transposition is an upper triangular matrix 

(Luenberger and Ye, 2008). 

Theorem 2 (Fundamental Theorem): The transportation problem basis is triangular (Dantzig 

and Thapa, 2003). The triangulity rule (algorithm) requirement provides a modest procedure 

to construct an initial basic feasible solution. 

Triangularity Rule (Dantzig and Thapa, 1997): Any arbitrary selection of the variable xij 

candidates for the initial basic feasible variable. Set xij as small as possible (for example, 

Xij=Min{si,dj}) without violating row and column totals. The next candidate for the basis 

variable depends on which of the following criteria occurs. This criterion determines the 

variable by the same procedure through decreasing the rectangular array.  

1. If si<dj, then all the variables in row i are set to zero (0). These variables became non-basic. 

The dj value at column j is reduced to (dj-si) by deleting row i.  

2. If si>dj, then all the variables in column j are set to the zero (0). These variables became non-

basic. The si value at row i is reduced to (si- dj) by deleting column j. 
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3. If si=dj, then either row i or column j is chosen randomly (but not both). 

All the included cells are basic if only one row or one column remains after subsequent 

deletion of a row or column. The residues are assumed to be equal in the remaining row and 

column. Exactly one row and one column remain by the last step. These are realized following 

the evaluation of the last variable. Hence, the aforementioned rule of triangularity selects 

(m+n-1) variables to the basic set. 

Supporting Theorem: The first solution vector calculated by TCAM is a basic feasible solution. 

In other words, it is a corner point of the convex polytope region. 

Proof: A balanced transportation problem always retains a basic feasible solution through 

Theorem 1. Therefore, TCAM always possesses a basic feasible solution for a balanced 

transportation problem. This basic feasible solution is thus a corner point of the convex 

polytope region. 

Numerical Analysis and Findings 

A simulation study was designed to compare TCAM results with Minimum Cost Method 

(MCM) feasible solutions. The statistical (arithmetic, quadratic, geometric, and harmonic) 

means are applied through the TCAM algorithm. MCM obliges a general approach to the 

transportation problem. The R script for the numerical analysis depends on the TransP 

package (Somenath, 2016). The simulation design includes a balanced transportation problem 

with five supply and five demand centres. Here, the supply and demand quantities were kept 

constant through the iterations. The goal was to achieve comparable results after iterations.  

The cost coefficients were randomly derived from a uniform distribution with parameters a=10 

and b=150, assuming that uncertainty can have maximum entropy. The distribution 

parameters were determined arbitrarily to reflect real-world problems in cases of wide-

ranging transport costs dependent on distance and vehicle selection. The highest unit cost 

exceeded the lowest by fifteen times in this case. A wide cost range avoids overly close basic 

feasible value calculations from different averaging methods. The code was repeated 10,000 

times for each approximation method each with randomly generated unit cost matrix. This 

iteration number preferred usually for simulation purposes. Furthermore it allows a normal 

distribution, which marks a preferred population size in order to make the results comparable 

within probability law. The basic feasible solution was usually reached at nine loops and some 

iterations consisted eight loops. 

Table 2 samples the final cost matrix of the transportation problem simulation. The supply and 

demand quantities were randomly generated at the beginning of the simulations and kept 

constant through all the solutions. A statistical distribution-dependent random generation of 

these quantities would cause a stochastic transportation problem, preventing a comparison of 

the approximation method solutions. 

As unit cost of transportation uniformly distributed with predetermined parameters a and b, 

C~U(10, 150) and cijC, the expected unit transportation cost will be 𝐸(𝐶) =
𝑎+𝑏

2
=

10+150

2
= 80 

currency unit. This will held for each lot from any source to any destinations. The 

predetermined quantity of 801 will transported by expected unit transportation cost accounts 

for an expected total transportation cost to 810x80 = 72000. That is the total average cost of the 

facility under the agreement of invoicing the transportation each lot of goods with an average 

cost. The amount of 72000 is a comparison key to the solutions. 
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Table 2. Sample Cost Matrix of Generated Transportation Problem 

Supply/Demand D1 D2 D3 D4 D5 Total Supply 

S1 72 110 90 57 86 130 

S2 139 91 85 37 19 150 

S3 74 98 126 150 83 300 

S4 58 60 50 133 93 100 

S5 35 125 78 108 119 130 

Total Demand 210 240 110 80 170 810 

 

The following calculations sample the last iteration of the written R code: 

 

A- Minimum Cost Approximation Method: The minimum cost min(cij)=c25=19 selected and 

the total supply of quantity 150 of supplier S2 assigned to transport to the destination 

D5 by a unit cost 19. The rest demanded amount 170-150=20 leaved unfulfilled at D5. 

The supplier S2 dropped out from the problem. Supplier S5 allocates all its resources 

130 quantities to destination D1 with the cost of 35. These allocations continues until 

all demands fulfilled with all supplier resources. This algorithm calculates the total 

transportation cost 49,220. 

 

Table 3. Optimal Source to Destination Allocations and Solutions for the Final 

Iteration Problem due to MCAM 

 
MCAM 

Loop S to D Unit cost Quantity Value 

1 S2-D5 19 150 2850 

2 S5-D1 35 130 4550 

3 S4-D3 50 100 5000 

4 S1-D4 57 80 4560 

5 S1-D1 72 50 3600 

6 S3-D1 74 30 2220 

7 S3-D5 83 20 1660 

8 S3-D2 98 240 23520 

9 S3-D3 126 10 1260 

 
Mean C= 60.77 810 49220 
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B- The TCAM Approximation Method: TCAM uses an analytic mean to select the key raw 

or column instead of the minimum function. The following calculations demonstrates 

selection the first cost value for supply-demand pair. The cell was selected with the 

unit cost closest to the given mean. Either the source or the destination was reduced, 

which has less quantity in supply or in demand. These allocations continues until all 

demands fulfilled with all supplier resources. 

i. Arithmetic mean 87.04 requires that S1 allocates all 130 quantities to D5 with unit cost 

c15=86 at first stage. 

𝑐𝐴 =
1

𝑛×𝑚
∑ ∑ 𝑐𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 =

1

5×5
(72 + 110 + ⋯ + 126 + 150 + ⋯ + 108 + 119) = 87.04 

   (4) 

ii. Quadratic mean 93.27 requires that S4 allocates all 100 quantities to D5 with unit cost 

c45=93 at first stage. 

𝑐𝑄 = √
1

𝑛×𝑚
∑ ∑ 𝑐𝑖𝑗

2𝑛
𝑗=1

𝑚
𝑖=1 = √

1

5×5
(722 + 1102 + ⋯ + 1262 + ⋯ + 1082 + 1192) = 93.27

   (5) 

iii. Geometric mean 79.09 requires that S5 allocates all 110 quantities to D3 with unit 

cost c53=78 at first stage. 

𝑔 =
1

𝑛×𝑚
∑ ∑ 𝑙𝑜𝑔𝑐𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 =

1

5×5
(𝑙𝑜𝑔72 + 𝑙𝑜𝑔110 + ⋯ + 𝑙𝑜𝑔126 + ⋯ + 𝑙𝑜𝑔108 +

𝑙𝑜𝑔119) = 1.8981                       

    (6) 

𝑐𝐺 = 10𝑔 = 101.8981 = 79.09 

iv. Harmonic mean 68.97 requires that S1 allocates all 130 quantities to D1 with unit 

cost c11=72 at first stage. 

𝑐𝐻 = 𝑛 × 𝑚 ∑ ∑
1

𝑐𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1⁄ = 5 × 5 (

1

72
+

1

110
+ ⋯ +

1

126
+ ⋯ +

1

108
+

1

119
)⁄ = 68.97   

  (7) 

The Table 4 represents the optimal source to destination allocations and solutions for the final 

iteration problem due to given approximation methods. The means have been calculated from 

the retained unit cost after row or column elimination. 
 

Table 4. Optimal Source to Destination Allocations and Solutions for the Final Iteration 

Problem due to TCAM  

  Arithmetic mean Quadratic mean 

Loop S to D Mean Unit cost Quantity Value S to D Mean Unit cost Quantity Value 

1 S1-D5 87.04 86 130 11180 S4-D5 93.27 93 100 9300 

2 S2-D2 88.05 91 150 13650 S3-D2 95.31 98 240 23520 

3 S4-D5 92.60 93 40 3720 S1-D3 92.22 90 110 9900 

4 S3-D2 91.17 98 90 8820 S1-D5 90.74 86 20 1720 

5 S5-D3 90.11 78 110 8580 S5-D4 96.01 108 80 8640 

6 S5-D4 92.83 108 20 2160 S3-D5 88.91 83 50 4150 

7 S4-D4 103.75 133 60 7980 S3-D1 93.13 74 10 740 

8 S3-D1   74 210 15540 S2-D1 101.36 139 150 20850 

9           S5-D1   35 50 1750 
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    Mean C= 88.43 810 71630   Mean C= 99.47 810 80570 

  Geometric mean Harmonic mean 

Loop S to D Mean Unit cost Quantity Value S to D Mean Unit cost Quantity Value 

1 S3-D3 79.09 78 110 8580 S1-D1 68.97 72 130 9360 

2 S3-D1 78.32 74 210 15540 S3-D1 66.84 74 80 5920 

3 S3-D5 81.92 83 90 7470 S4-D2 68.76 60 100 6000 

4 S1-D5 76.65 86 80 6880 S5-D3 67.51 78 110 8580 

5 S2-D2 83.10 91 150 13650 S3-D5 61.97 83 170 14110 

6 S5-D4 93.67 108 20 2160 S2-D2 83.16 91 140 12740 

7 S4-D2 84.10 60 90 5400 S2-D4 69.84 37 10 370 

8 S1-D4 87.06 57 50 2850 S5-D4 125.58 108 20 2160 

9 S4-D4   133 10 1330 S3-D4   150 50 7500 

    Mean C= 78.84 810 63860   Mean C= 82.40 810 66740 

 

The minimum cost method has the lowest problem value 49,220 among others, so has the 

first rank for the final iteration problem. 

The unit transport costs were generated randomly from uniform distribution with given 

parameters at each iteration. Each iteration solved the total transportation cost with the 

minimum cost and TCAM algorithms. The TCAM algorithm employs the arithmetic, 

quadratic, geometric, and harmonic means simultaneously. Consequently, a 10000x5 data 

frame consisting of the total transportation costs for 10,000 iterations for five approximation 

methods was produced. The total transportation costs were minimized as the objective 

function of the problems. The arithmetic means and standard deviations of the objective 

function values described the solution characteristics of the different methods. However, the 

main effort focused on the comparison of the objective values of problems with unique cost 

structures. Therefore, these objective values were ranked at each iteration, which had an equal 

cost matrix. The code showed the method with the minimum number of results. None of the 

TCAM approaches dominated under the assumption that the cell selection method does not 

effect the approximation to optimal value. 

 

Table 5. Comparison of Approximation Approaches 

 
Minimum 

cost 

Arithmetic 

mean 

Quadratic 

mean 

Geometric 

mean 

Harmonic 

mean 

Average 43266.13 58362.48 63755.25 57588.11 53260.96 

Standard Deviation 8378.44 6836.57 11713.49 8994.71 8776.83 

Minimum cost % in 

10,000 iterations 84% <0.5% 4% 12% 

 

The minimum cost approximation was about 84% successful in determining the lowest total 

cost for the basic feasible solution. The arithmetic mean approach gave higher objective 

function values, but provided the least risky distribution (i.e., the lowest standard deviation). 

The arithmetic mean was already the most efficient measure of central tendency in terms of 

estimation theory, but this and the quadratic mean overrode the minimum in most iterations. 
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The harmonic mean was developed for unit cost calculations, and this gave a lower cost in 

approximately 12% of the trials, an achievement that ranks second best in terms of obtaining 

a basic feasible solution close to the minimal objective function value. The standard deviation 

of the harmonic mean was lower than that the quadratic and geometric means and is 

considered more reliable despite varying costs for the same amount of transportation 

problems. The harmonic mean in the TCAM algorithm is relatively stable in finding the basic 

initial solution of transportation problems.  

 

Conclusion and Discussion 

The proposed TCAM approach provides the same features as other common approximations 

aimed at identifying a solution subset of transportation problems. Therefore, TCAM offers an 

alternative approximation method. Supply and demand quantity allocation equality was 

satisfied in all solutions. 

The harmonic mean gave better results than the arithmetic, quadratic and geometric means 

for the approximation to minimum cost. The harmonic mean is typically used for things like 

averaging rates or fractions to explain multiplicative or divisor relations. Therefore, it might 

be suitable for transportation problems with unit transport costs multiplicative to the 

quantities. On the other hand, a cost matrix of a real transportation problem consists of average 

unit costs for each source-destination combination. The findings on different means reported 

here might vary when unit transport costs in the cost matrix are distributed normally or where 

they have a skewed distribution with extreme values. Future studies on this are required. 

The effect of the different statistical means could be investigated for reaching the corner points 

on the hyperplane as a future study option. Various techniques have been proposed in the 

literature to compare approximation techniques in optimization. Here, the scope of the study 

was limited to a more general comparison of approximation techniques. Processing time and 

operation quantities drive the selection of algorithms for computational purposes in projects 

with huge data. This study excluded these operational measurements in order to focus on 

comparing the feasible solutions produced by different means through the TCAM algorithm. 
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