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Arastirma Makalesi

oz
Makale Tarihgesi: Bu calismada, biperiodic Fibonacci ve Lucas sayilarin, biperiodic
Szﬁaltglr}l‘ﬁlllgg‘r;i%g Fibonacci ve Lucas Gaussian quaternionlar olarak isimlendirilen yeni bir tipi
Online Yaylﬁlaﬁmé: 10.03.2023 tamimlanmistir. Caligma igerisinde, negabiperiodic Fibonacci ve Lucas

Gaussian quaternionlarla biperiodic Fibonacci ve Lucas Gaussian

quaternionlar arasindaki iligkiden de bahsedilmistir. Ayrica, bu sayilar i¢in
] Binet formiilii, dizinin genellestirme fonksiyonu, d’Ocagne esitligi, Catalan

Quaternion e L. cqees - .. . qeon

Gaussian quaternion esitligi, Cassini esitligi, like-Tagiuri esitligi, Honberger esitligi ve bazi

Bi-periodic Fibonacci and Lucas toplam formiilleri verilmistir. Bi-periodic Fibonacci ve Lucas Gaussian

sayilari quaternionlarin bazi cebirsel 6zellikleri ele alinmustir.

Anahtar Kelimeler:

Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers

Research Article ABSTRACT

Article History: In this study, we define a new type of biperiodic Fibonacci and Lucas
i‘é‘éﬁ"ﬁg; %-ggégg numbers which are called biperiodic Fibonacci and Lucas Gaussian
Pub,i';’hed' online: 10.03.2023 quaternions. We also give the relationship between negabiperiodic Fibonacci

and Lucas Gaussian quaternions and biperiodic Fibonacci and Lucas
Gaussian quaternions. Moreover, Binet’s formula, generating function,

Keywords: . . . . c . . .
Qu);\?rlarnion fi’chgne’s identity, .Cata.lan’s identity, Cassini’s identity, like-Tagiuri’s
Gaussian quaternion identity, Honberger’s identity and some formulas for these new type numbers
Bi-PgriodiC Fibonacci and Lucas are obtained. Some algebraic proporties of biperiodic Fibonacci and Lucas
numbers

Gaussian quaternions which are connected between Gaussian quaternions
and biperiodic Fibonacci and Lucas humbers are investigated.

To Cite: Gokbas H. Biperiodic Fibonacci ve Lucas Sayilarii Igeren Gaussian Quaternionlar. Osmaniye Korkut Ata
Universitesi Fen Bilimleri Enstitiisii Dergisi 2023; 6(1): 594-604.

1. Introduction

Fibonacci sequence has pleased science lovers alike for centuries with their interesting aspect. Pisa has not
even guess that the number sequences would be so adventurous with the rabbit problem. The Fibonacci
numbers are found in most fields of mathematics. They also occur in variety of other fields such as computer
sciences, physics, finance, architecture, geostatics, art, color image processing and music. There have been

many works in literature about this special number sequence. There are many generalizations on this
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sequence some of which can be seen in (Horadam, 1961; Pand, 1968; George, 1969; Pethe and Phadte, 1992;
Falcon and Plaza, 2007; Gokbas, 2021).
The biperiodic Fibonacci sequence is also winthin generalized Fibonacci sequences. This sequence was
defined by Edson and Yayenie (Edson and Yayenie, 2009). For0 <n € Nand 0 # a,b € R, the bi-periodic
Fibonacci sequence is

E o= {aFn_l + F, 5, if nis even, nz=?2

n bF,_, + F,_,, if n is odd, nx=?2
with initial conditions Fy, = 0, F; = 1. They also investigated the generating function for biperiodic
Fibonacci sequence as
t(1+ at — t?)

1— (ab + 2)t? + 4t*"

From the round-down function definition(|«|), they obtained the Binet’s formula of the biperiodic Fibonacci

f@®) =

sequence as

PF,

~ al=em n _ gn
- (ab)lgl( y—9 )

where | a] is the floor function of a, e(m) = m — 2 EJ is the parity function, y and & given by

y = ab+w’5 _ ab—\/a22b2+4ab,y + 68 = ab and y6 = —ab

are the roots of the equation

x? —abx —ab = 0.
The biperiodic Fibonacci number with negative subscripted is given by

PF_, = (-1)"*'PE,.
D’Ocagne’s, Catalan’s, Cassini’s identities and some related summation formulas were given by them
(Edson and Yayenie, 2009). Also, (Bilgici, 2014), for any n = 0 and 0 # a,b € R, the biperiodic Lucas
sequence is

L = {bLn_l + L, o, if nis even, nz=2
" laly_q + Ly_y, ifnis odd, n=?2

with initial conditions L, = 2, L; = a. The generating function for biperiodic Lucas sequence as

at(1+ bt —t?) +2(1 — (1 + ab)t? + at?)
1—(ab + 2)t? + t* '

The Binet’s formula of the biperiodic Lucas sequence as

I(t) =

ae(n)
PLn = —nH()/n + 5n)
(ab)[TJ

where |a] is the floor function of a, e(m) = m — 2 EJ is the parity function, y and & given by

Va2p2 —Vaz2p2
ab+ aZb +4ab’(S =ab azb +4»ab’y_|_6= ab and )/5 = —ab
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are the roots of the equation
x? —abx —ab = 0.

The biperiodic Lucas humber with negative subscripted is given by

PL_, = (—1)"PL,,.
In applied and theoretical sciences, quaternions have growing interest and they are also good at representing
rotations in three-dimensional space. Also it has applications in areas such as super string theory, projective
geometry, topology, and Jordan algebras (Adler, 1994; Ward, 1997; Baez, 2001).

The quaternion algebra
3
Q = {Z ageéy: ay € R

k=0

is a four dimensional non-commuttive vector space over R and the basis satisfy the following multiplication
rules:

et =-1,ke{1,2,3},
€16, = —eyey = €3,6,63 = —eze, = e and e;e; = —e 63 = e,.
eop can be identified with real number 1. There are some studies on varied types of sequences over
quaternion algebra (Horadam, 1963; Ramirez, 2015; Cimen and Ipek, 2016). Harman, called Gaussian
numbers, gave an supplementation of Fibonacci numbers into the complex plane and generalized the
methods by Horadam (Harman, 1981)

GE, =F, +iF,_4.

2. The Gaussian Quaternions biperiodic Fibonacci and Lucas

In the following sections, the biperiodic Fibonacci and Lucas Gaussian quaternions will be defined. In this
section, a variety of algebraic proporties of both the bicomplex quaternions and the biperiodic Fibonacci and
Lucas Gaussian quaternions and the negabiperiodic Fibonacci and Lucas Gaussian quaternions are presented
in a unified manner. Some identities will be given for biperiodic Fibonacci and Lucas Gaussian quaternions
such as Binet’s formula, generating function formula, d’Ocagne’s, Catalan’s, Cassini’s, Honsberger’s, like-
Tagiuri’s identities and some formulas.

Definition 1: For n > 3, the biperiodic Fibonacci Gaussian quaternions PGF,, are defined by the recurrence

relation

3
PGFn = Z PFn_kek
k=0

where PF, is the nth biperiodic Fibonacci number. The biperiodic Fibonacci Gaussian quaternions starting
from n = 0 can be written as
PGFy = Oey + 1le; — ae, + (1 + ab)es, PGF, = 1ey + Oe; + le, — ae; and PGF, = aey + le; +

Oe, + les, ...
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PGF, = PGF,_, + PGF,_,

is a recurrence relationship in biperiodic Fibonacci Gaussian quaternions.

Definition 2: For n > 1, the negabiperiodic Fibonacci Gaussian quaternions PGF_,, are defined by the

recurrence relation
3

PGE, = ) (~1™ H1PE, e
k=0

where PF, is the nth biperiodic Fibonacci number.

PGF_, = PF_,ey + PF_,,_ye; + PF_,_,e, + PF_,,_ze;

PGF_,, = PF_peq + PF_(ny1ye1 + PF_(pi0)€; + PF_(ny3)€3

PGF_, = (=1)™*'[PF,eq — PFni1e1 + PFyipe; — PFyize;]

is obtained when the equality is arranged.

Definition 3: For n = 3, the biperiodic Lucas Gaussian quaternions PLF, are defined by the recurrence

relation

3
PGLn = z PLn_kek
k=0

where PL,, is the nth biperiodic Lucas number. The biperiodic Lucas quaternions starting from n = 0 can be
written as
PGLy = 2ey — ae, + (2 + ab)e, — (3a + a’b)e;, PGL, = aey + 2e; —ae, + (2 + ab)e; and
PGL, = (2 + ab)ey, + ae, + 2e, — aes, ...

PGL, = PGL,_; + PGL,,_,
is a recurrence relationship in biperiodic Lucas quaternions.
Definition 4: For n = 1, the negabiperiodic Lucas Gaussian quaternions PGL, are defined by the

recurrence relation
3

PGL_,, = Z(_l)n+k+1pl‘n+kek
k=0

where PL,, is the nth biperiodic Lucas number.

PGL_, = PL_,eq+ PL_,_,e; + PL_,_,e, + PL_,_zes
PGL_,, = PL_neq + PL_(ny1y€1 + PL_(ni2)€2 + PL_(ny3)€3
PGL_, = (—1)"[PLney — PLpy1€1 + PLpiz€; — PLpyses]

is obtained when the equality is arranged.
Theorem 5: (Generating Function Formula) Let PGF,, and PGL,, be the biperiodic Fibonacci Gaussian

guaternion and Lucas Gaussian quaternion, respectively. Generating function for these numbers is as follows
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(1 - bt —t?)

H(t) =
where

M(t) = th(t)eo + t*h(t)ey + £ (h<t> + %) e, +t* (h(t) + %) es,

h(t) = EOO PF,, _ t2n-1 = -t
- ] an-1 " 1—(ab+ 2)t? + t*
n=

and PF, is the nth biperiodic Fibonacci number.

H(D) = (1—at—t?)

where

M(t) = th(teo + t*h(t)e; + 3 (h(t) - %) e +t* (h(t) - %) es,

= a(t + t3)
h(t =ZPL _ 2l =
© . Zn—1 1—(ab +2)t2 + t4
n=

and PL, is the nth biperiodic Lucas number.
Proof: Let H(t) be the generating function for biperiodic Fibonacci Gaussian quaternions as
H(t) = Yoo PGE,t™.
Using H(t), btH (t) and t2H(t), we get the following equations
btH(t) = ¥X_obPGE,t"*1, t2H(t) = Yn_o PGE,t"*2. Since PF,,_; = bPF,,_, + PF,,_5,

_ t—t3 .
PF,, = aPF,,_1 + PFyp_, and Yo, PF,,_t?""1 = PP T eRvYy After the necessary calculations,

the generating function for biperiodic Fibonacci Gaussian quaternions is obtained as

(1 — bt — t2)H(t) = PGFy + (PGF, — bPGF,)t + Z(PGFn — bPGF,_, — PGF,_)t"

= PGF, + (PGF, — bPGFy)t + t(a — b)(X5q fon_1t?" Ve,
+t?(a — b)(Xnz1 fan-1t" ey + t3(a — )Xo fon-1t7""De,
+t*(a — b)Enzo fon-1t*" Des.
(1 — bt — t?)H(t) = PGF, + (PGF, — bPGFy)t + t(a — b)h(t)e,
+t2(a — b)h(t)e, + t*(a — b)(th(t) + 1)e,
+t3(a — b)(th(t) + 1)es.

PGFy+(PGF,—bPGFy)t+(a—b)M(t)

H(t) - (1-bt-t2)

Similarly, the generating function for biperiodic Lucas Gaussian quaternions is obtained.
Theorem 6: (Binet’s Formula) The Binet’s formula for the biperiodic Fibonacci Gaussian quaternion and

Lucas Gaussian quaternion PGE, and PGL,, are
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(yy"r—66"

@l - 6)
y**yn _ 6**6n

\an)lly - )

,n is even

PGE, =

,nis odd

and
(y**yn + 6**611

——,hiseven

@)l
yy"t+ 86"
n+1J

\ (@)=

PGL, =
,nis odd

where

. as(i+1) _: " as(i+1) _: x ae(i) _:
resn(phe oLl (gl m
(ab)l2 (ab)l2 (ab)l 2

&(i) »
0 = ?20 <%) o) ‘ei.
(ab)l 2

Proof: By using the definition of the biperiodic Fibonacci Gaussian quaternion and Lucas Gaussian

guaternion, we get the desired result.
Theorem 7: (Catalan’s Identity) For 0 < p,k € Z, withp = k, we have
_ PRy

vy = 8)(ab)*

PGFy(p_1yPGFy(p iy — PGF3, [y*6*8%% — §*y*y?¥]

and

(¥ = 8)PFy

a(ab)zp_k [6**]/**)/2]{ _ )/**5**52k]

PGLy(y-kyPGLy(p+iy — PGL3p =

Proof:

2
*,2(p—k) _ 5* 52(p—k) *,2(p+k) _ 5% 52(p+k) *,2D _ 5% 52D

PGFZ(p—k)PGFZ(p+k) - PGFzzp = <V ! lz(p—f)J(S )(y ! lz(p+lf)J6 ) - (y ! _sz 2 )
(@l 2z 1y-6) @l 2z 1y-6) =98

2
(ab)l 2

[V*S*((V(S)Zp _ y2p—2k62p—2k) + S*Y*((V(S)Zp _ y2p+2k62p+2k)]

" (ab)?P(y — )2

1 82k 2k

= g 7 o (1-1) + v (1- %)
_ PF3k
= o) @k

Similarly, we prove that

[y*6*62k — §*y*y2K].

_ (¥ = 8)PFy

*x. k% 2k sk Ok 02
PGLygy—toPGLypricy — PGLE, = aapy e 18Ty e,

Theorem 8: (Cassini’s Identity) For p > 1, we have

PGF;4p—1)PGF 41y — PGF3, [y*6*6% — 5*y*y?]

_ 1
~ (y — 8)(ab)
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and

(v —9)

PGLyp-1)PGLops1) = PGLyy = (ab)?1

Proof: Since Cassini’s formula is a special case of Catalan’s formula, the proof is seen by taking k = 1.

Theorem 9: (d’Ocagne’s Identity) For 0 < p,k € Z, with k = p, we have

1

PGFZkPGFz(p+1) - PGFz(k+1)PGF2p

and

(y—90)

PGszPGLz(p+1) - PGLz(k+1)PGL2p ES W

sk wk S2k—2p o xx oxx 2k—2p
[6**y**6 Yoy 1

Proof:

(y*yzk_(g*(gzk) (y*yz(p+1)_5*52(p+1)) (y*yz(k+1)_5*52(k+1)) (y*yzp_5*52p)
(ab)k(y-6) (ab)P+1(y-6) B (ab)k+1(y-6) (ab)P(y-6)

[y*5*(V2k+262p _ y2k62p+2) + 5*)/*()/2p52k+2 _ y2p+252k)]

1
- (ab)k+P+1(y—§)2
_ 1
- (ab)k+P+1(y—§)2

_ 1
- (ab)k+P+1(y—§)2 [)/

[y*(S*(yz"_Z”“ _ yzk—2p62) + 5*]/*(62k_2p+2 _ )/252k_2p)]

*6*V2k_2p()/2 _ 52) _ 5*]/*62k_2p()/2 _ 52)]

1
~ (ab)k+P(y-8)

[)/*5*]/2k_2p _ 5*]/*62k_2p].
D’Ocagne’s formula for the biperiodic Lucas Gaussian quaternion can be demonstrated similarly.
Theorem 10: (like-Tagiuri’s Identity) For p = 1 and nonnegative even integer p such that k < p, we have
k
( (=1)7PF,(ab)k
a0 (5 — y)(—ab)*
k
(~1)? (ab)PFi(ab)l
at==®)(§ — y)(—ab)k

(y*§*y* — 8*y*6%),p is even
PGF,,.PGF,_;, — PGE? =

(y**d**y" — 6**)/**6"),;9 is odd
and

(PRap)ll' ¢y = &)
al—s(k)(_ab)k
PR (ab)l " (y - &)
al=e(0 (—gh)k+1

(y**6*y* — §**y**8%),p is even

PGLy . PGL, ) — PGL? =

(y*8*y* — 8*y*6%),pis odd

Proof: If p is even

* p+k _ oxSp+k wp—k _ sxsp—k . e 2
PGF,,PGF,_, — PGF} = (V re o )(V o )_ ( ry-os )
(ab)[TJ (y — 6) (ab)lTI (y—9) (ab)lEJ (y — 6)
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_ 1
"~ (ab)P(a-6)2

— (V‘S)p * Q% ‘Sk_yk B L ‘Sk_yk
@R G-0RaoF (V 65 -0y (5)

(a*aPtk — §*65P) (a*aP~* — §*6P7%) — (a*aP — §*6P)?

k
(—1)PPFk(ab)H

= Oy (cab)t (y*8*y* — 5*y*65).

If pisodd

2
y**yp+k _ 6**6p+k y**yp—k _ 6**6p_k y**yp _ 6**6p
PGF,.PGF,_, — PGE? = ( e — - 7]
@)y -6 /\ @lFly-6 / \@nbly -6

1 *k *ok % _ o _ . .
- m(y yp+k -6 5p+k)()’ yP T N L (y**yP — §*6P)2

_ (¥8)P N sk—yk SRk sk—yk
~ @Po-pEoer (V 6" () =0y (5)

k
_ (—1)P(ab)PFk<ab)lfJ
— at~E)(5-y)(—ab)k

The other part of the proof is computed following the same way.
Theorem 11: (Honsberger’s Identity) For p > 1 and nonnegative even integer k such that k < p, we have
PGE,PGFy, + PGFy1PGFj 14
(YPHR(y + y2y2) 4 SPHR(6% + §26%) — (—ab)P (y*6* + Y 8")PLy_p
(y — 6)?

,D, k are even

| yPHeGr? 4+ y2y?) + 6PHR (62 + 626%) — (—ab)P(y'8" + ¥ ™" 6™)PLy
(v — 6)?

,0, k are odd

PGL,PGLy + PGLy,1PGLy 14
(YPTRE(y2™ 4+ y2y ) + SPHR(§2 + 628%) + (= 1)P(y*8* + ¥y**8**)PLy— —p

p+k

(ab) =

,D, k are even

PP 4y ) + 8P (8% 4 626%) — (“1P (18" 4y 6 )PLicy
\ (ab)’%
Proof: If p and k are even

PGFE,PGFy + PGFy,1PGFj 44
_ (a*a? — §*6P) (a*ak — §*6%) (a*™aP*t — §6PFY) (a*aktl — 5*6k*T)

C@lle-0 @bla-5  @Fle-0  @)lFla-s

,0, k are odd

PGy 4 6P (E 4 8267 — (C1PGET 4 8 )
(ab)l?] lEJ (y —§)2
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CYPHR P 4y Ry ) 4 8PHR(6F + 6%6%) — (—ab)P(y 8" + ¥ 6 )PLyy
- (y —6)?

If p and k are odd
PGE,PGFy + PGF,1PGFy 44

YR = 8TEP) (YR — 576K)  (pTyP — 6767 (Rt — 578k
@lly -8 @wlly-6 @lFe-6 @lFloy-s

PG £y £ EPHESE 4 8267 — (SPG48PT
(ab)lEJ lEJ (y —6)?
_ YPHR(y 2 + y2y %) + §PHR(6% + 626%%) — (—ab)P(y*6* + Y 0™)PLy_p
- (y — 6)?

If p and k are even
PGL,PGLy + PGLy41PGLyyq
ry? +876P) (v YR + 876 (yyPT - 678 (yy ! - 6764
) B B B 2]
(ab)l2 (ab) (ab)! 2 (ab)lz
_ YPHR 2 + y2y®) + 8PTR(2 + 8%26%) + (DP(y P + 8 P)(y 5T + vy 6T)
an) B
PR Py ) + P8P + 628%) + (1P (Y8 + ¥ 8 )PLy

p+k

(ab) =

If p and k are odd
PGL,PGLy + PGLy 41 PGLy 14
_ YR =8 (YK = 878K) (Pt 67 (ry M 4 576k
P ] D
_ PP Ay By 4 8P (6R 4 8267 — (1P (R 4 6558 418"
- a2
_yPRGE y Py + 8PP + 626%) — (“DP(y' 8T + ¥ 8 )PLy
) (an)>

The other part of the proof is computed following the same way.

Theorem 12: The connections between biperiodic Fibonacci Gaussian quaternion PGF, and biperiodic
Lucas Gaussian quaternion PGL,, are as fallows
PGF,_4 + PGF,,; = PGL,
PGF,., — PGF,_, = (y? — §%)PGL,
PGL,_, + PGLy1 = (y — 6)?PGE,
PGLgyy — PGL,_, = —(y — 6)*PGF,
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Proof: If a is even

PGF,_,+PGF,,,

(Y*Va—l_g*aa—1> <V*ya+1_6*6a+1>
a—-1 + a+1
@) T ly-5) @)= ly-s)
<)/ ya—l_a*aa—1> + (Y*ya+1_6*6a+1>
(ab)z7 ' (y-96) (ab)z(y-9)
<( yé-)(y*ya—l_a*ga—l)) + (Y*ya+1_6*6a+1>
(ab)2(y-8)

(ab)2(y-6)

VYO8 5y 6))
(ab)2 (y—8)

(£285) = p,

(ab)l 2

If ais odd

a-1_ g+ ga—1 wxo,Q+1_ sxk sa+1
PGFy_y+PGF,,, = (V o )+(V re o )
(ab)l 2 J(V—5) (ab) J(Y 6)

< i 1> N (V**yaﬂa_y*@m)
(@b)2" () (ab)2(y-5)
<( 00 s i 1)) N (y**y““a—a**a““)
(ab)2(y-6) (@b)2(y-5)
_ (V**y“(y—tﬁ)‘:&**&“(y—&))
(ab)2(y-5)

_ (V**y +f:5a> — PGL,
(an)lz ]

The other part of the proof is computed following the same way.

3. Conclusion

This study shows the biperiodic Fibonacci and Lucas Gaussian quaternions. We acquire these new
quaternions which were not defined in the literature before. We generate Binet’s formula, generating
function formula and the relationships between for these quaternions. Also we give d’Ocagne’s, Catalan’s,
Cassini’s, Honsberger’s and like-Tagiuri’s identities. Since this study comprises some new outcomes, it
conduces to literature by providing requisite information regarding the bicomplex quaternions. The main
contribution of this research is that one can get a great number of distinct quaternion sequence by providing
the initial values in the bi-periodic Fibonacci and Lucas sequences. For further studies, we plan to find some

proporties for the bi-periodic Fibonacci and Lucas quaternions.
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