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Wearable Electromyogram Design for Finger Movements Based 

Human-Machine Interfaces 
Highlights 

❖ Wearable electromyography system design 

❖ Design of an embedded system to decode finger movements in real time  

❖ In offline tests, 99.47% and 98.2% accuracy by using RF and SVM, respectively. 

❖ Decoding five finger movements with an accuracy of 92.16% by using MAV and RF in online tests.  

❖ Real-time decoding of finger movements in the embedded system in 90ms 

❖ Wireless communication with machine interfaces 

 

Graphical Abstract 

In this study, a three-channel wearable EMG amplifier was designed. The EMG signals were used to decode the 

finger movements by using machine learning algorithms. 

 

 

Aim 

This study aims to design a wearable EMG system that can be used in human-machine interfaces and develop an 

algorithm for real-time analyze of finger movements. 

Design & Methodology 

In this study, a three-channel wearable EMG amplifier was designed. The recorded EMG signals were analyzed in 

real-time, by the algorithm embedded in the ESP8266 based microprocessor. Mean absolute value (MAV) and random 

forests (RF) were employed for feature extraction and classification, respectively. The determined finger movements 

were transmitted to the devices wirelessly.  

Originality 

The wearable EMG system designed in this study can determine five finger movements by using a single feature (MAV) 

with 92.16% accuracy, in 90 msec, using only three-channel EMG signals and can transmit the determined movements 

to clients in real-time. 

Findings 

The designed system was tested on five volunteers. In offline tests, 99.47% and 98.2% accuracies were achieved using 

RF and SVM respectively. In the online tests, five finger movements were decoded with an accuracy of 92.16% using 

RF.   

Conclusion 

The 3-channel wearable EMG system can analyze five finger movements in real-time with 92.16% accuracy in 90 

msec by using MAV features and RF algorithm. 

Declaration of Ethical Standards 

The study was approved by the ethics committee of Gazi University on 23.11.2021 (2021 –18:1051). 
  

 

 
Figure. Block diagram of the wearable electromyogram design for finger movements 

based human-machine interfaces 
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 Parmak Hareketlerine Dayalı Gerçek Zamanlı İnsan-

Makine Arayüzleri için Giyilebilir Elektromiyogram 

Tasarımı 
Araştırma Makalesi / Research Article 

İsmail AYDOĞAN1, Eda Akman AYDIN2*,  
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 (Geliş/Received : 23.05.2022 ; Kabul/Accepted : 16.07.2022 ; Erken Görünüm/Early View : 07.09.2022) 

 ÖZ 

Bu çalışmada, insan-makine arayüzlerinde kullanılmak amacıyla, parmak hareketlerinin çözümlenebilmesine yönelik önkol üzerine 

giyilebilir bir elektromiyogram (EMG) sistemi tasarlanmıştır. Tasarlanan sistem, kullanıcının hareketlerini kısıtlamadan EMG 

sinyallerinin ölçümünü yaparak bu ölçümleri sisteme gömülü yazılım aracılığıyla çözümlemekte, oluşturulan cevabı, kontrol 

edilecek çıkış birimlerine kablosuz iletişim teknikleri ile gerçek zamanlı olarak iletebilmektedir. Çalışmada, üç kanal yapısındaki 

EMG yükseltecin tasarımı yapılmış ve NodeMCU V3 geliştirme kartının entegre edilebileceği bir sistem gerçekleştirilmiştir. 

Tasarlanan sistem ile parmak hareketlerine ait öznitelikler mutlak ortalama değer (MOD) kullanılarak elde edilmiş; Destek Vektör 

Makineleri (DVM) ve Rastgele Orman (RO) yöntemleri kullanılarak sınıflandırılmıştır. Offline testlerde, RO ile %99.47, DVM ile 

%98.2 doğruluk oranları elde edilmiştir. Offline testlerde %99.47 doğruluk gösteren RO algoritması seçilerek, online testler için 

gömülü sisteme entegre edilmiştir. Sistem 5 gönüllü ile gerçekleştirilen online testlerde parmak hareketlerini ortalama %92.16 

doğrulukla çözümleyebilmiş, sistemin çözümlediği parmak hareketleri ile ilişkilendirilen komutların Kullanıcı Veribloğu İletişim 

Kuralları (UDP) ağ protokolü ile istemcilere gönderilerek ilgili hareketlerin çıkış birimi arayüzünde görüntülenmesi sağlanmıştır. 

Sistem 90 ms sürelik bir gecikme ile gerçek zamanlı olarak çalışabilmekte ve tasarlanan çıkış birimi arayüzünde anlık olarak 

yapılan hareketler görsel olarak görülebilmektedir. Yapılan bu çalışma kas hastalıklarının tespiti, EMG tabanlı giyilebilir protez 

sistemlerin kontrolü, parmak hareketleri ile kontrol edilebilecek insansız araçların tasarımında önemli bir aşamadır. 

Anahtar Kelimeler: Elektromiyogram (EMG), giyilebilir sistemler, insan makine arayüzü, parmak hareketleri. 

Wearable Electromyogram Design for Finger 

Movements Based Real-Time Human-Machine 

Interfaces 
ABSTRACT 

In this study, a wearable electromyogram (EMG) system on the forearm was designed to analyze finger movements for use in 

human-machine interfaces. The designed system measures the EMG signals without restricting the user's movements, analyzes 

these measurements through the software embedded in the system, and transmits the generated response to the output units to be 

controlled in real-time with wireless communication techniques. In the study, a three-channel EMG amplifier was designed and a 

system in which the NodeMCU V3 development board could be integrated was realized.With the system, the features of finger 

movements were obtained using the Mean Absolute Value (MAV) and classified using Support Vector Machines (SVM) and 

Random Forest (RF) methods. In offline tests, 99.47% accursacy with RF and 98.2% accuracy with SVM were obtained. The RF 

algorithm with 99.47% accuracy in offline tests was selected and integrated into the embedded system for online tests. In the online 

tests performed with five volunteers, the system was able to analyze finger movements with an average accuracy of 92.16%, and 

the commands associated with the finger movements analyzed by the system were sent to the clients with the User Datagram 

Protocol (UDP), and the related movements were displayed on the output unit interface. The system can work in real-time with a 

delay of 90 ms and instantaneous movements can be seen visually on the designed output unit interface. This study is an important 

step in the detection of muscle diseases, the control of EMG-based wearable prosthetic systems, and the design of unmanned 

vehicles that can be controlled by finger movements. 

Keywords: Electromyogram (EMG), wearable systems, human-machine interfaces, finger movements.

1. INTRODUCTION 

Human-Machine Interfaces (HMIs) are systems that 

allow humans to communicate with machines, systems, 

or devices. In the traditional HMIs, communication 

between humans and machine is provided by units such 

as buttons, switches, and touch screens. Additionally, it 

has been seen that various devices and applications can 

be controlled with human-machine interfaces based on 

control variables such as human voice, eye movements, 

and head movements [1]. For people who lose voluntary 

muscle control due to various neuromuscular diseases, 

such as ALS and SCI, control signals can be obtained 
*Sorumlu Yazar  (Corresponding Author)  
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from human physiological data in HMIs [2]. For this 

purpose, signals such as electrocardiography (ECG) 

[3,4], electroencephalogram (EEG) [5,6], 

electrooculogram (EOG) [7], electromyogram (EMG) 

[8] can be used as control signals in HMIs.  

People make the conscious motor movements they need 

with skeletal muscles. Skeletal muscles can be controlled 

by the motor control units to which each fiber is attached. 

EMGs are devices used to measure and record the 

electrical activity that occurs because of muscle 

contraction. In invasive EMG measurements, the 

amplitudes of the EMG signal range from peak to peak 

between 0 and 10 mV and the frequency bands vary in 

the range of 0.1-10 kHz, while in non-invasive 

applications with surface electrodes, the measurement 

frequency range decreases to the range of 0.1-500 Hz, 

depending on the position of the electrodes [9-10]. In 

addition to having an important place in the diagnosis of 

various diseases [11], EMG signals can be used in 

rehabilitation applications [12], control of upper 

extremity prosthesis [13], and robotic control 

applications [14]. EMG signals are used in augmented 

reality applications [15] together with HMIs. In this 

study, we designed an embedded EMG measurement and 

recognition system that uses surface EMG (s-EMG) 

signals as input variables for analyzing the finger 

gestures by using machine-learning (ML) algorithms in 

real-time [16, 17]. 

EMG signals have been used in various studies to analyze 

the hand and finger movements of both healthy and 

amputee individuals [18-19,22]. Anfolk et al. [18] 

designed a 16-channel s-EMG measurement system and 

determined the 5-finger movements of an amputee with 

86% accuracy. In the study by Malešević et al. [19], the 

16-channel EMG measurement system was designed and 

different classification methods were examined with 

different feature extractions in the classification of s-

EMG signals, and an average of 84.30% accuracy was 

achieved using the Hidden Semi Markov Model 

algorithm with the mean absolute value (MAV) feature. 

In the study by Yamaoni et al. [20], a 5-channel EMG 

measurement system was designed and it was aimed to 

determine nine different hand movements of an amputee 

and four different healthy individuals using artificial 

neural networks (ANN). According to the results of the 

study, while the average accuracy for the amputee was 

30%, the average accuracy was calculated over 80% for 

healthy individuals. A 3-channel s-EMG measurement 

system was designed and a wireless vehicle was 

controlled by taking the amplitude levels of hand 

movements [21]. By using an 8-channel EMG device, the 

dataset from nine amputees was classified with LDA, 

QDA and k-Nearest Neighbors(k-NN) machine learning 

methods for six different movements, and 82% average 

accuracy was obtained using k-NN [22]. In the study by 

Ariyanto et al. [23], 16 features were extracted with a 

single-channel EMG sensor and five different finger 

movements were classified with ANN with an accuracy 

of 96.7%. Caesarendra et al. [24] classified five different 

finger movements with the 8-channel wearable MYO 

armband (Thalmic Labs, Waterloo, Canada) using the 

ANFIS classification method and obtained an accuracy 

rate of 82%. Since these studies are conducted in 

laboratory environments, the analysis of signals recorded 

with EMG devices is done offline on computers. In order 

for EMG-controlled HMI systems to become 

widespread, these systems should be designed wearable 

and embedded work with few electrodes, short 

processing time and low power consumption. 

Wearable technologies are technological systems that can 

be worn by people and where the data recorded with the 

sensors can be monitored remotely. Wearable 

technologies can transfer information from smart sensors 

to a central unit with wireless communication methods or 

process data directly. Wearable technologies are 

developing rapidly with innovations in communication 

fields such as Wi-Fi systems and the internet, as well as 

developments in electronic integrated circuit (IC) 

technology, sensors, and nanotechnology [25]. 

In order for EMG-controlled HMIs to be used practically 

in the field of health and industry, it is important to 

transform these systems into wearable ones. Liu et al. 

[26] designed a card with a 12-bit resolution, 1.6 kHz 

sampling frequency, EMG sensors, microprocessor, 

wireless transmission module and a 4-channel 

measurement system including the and with this system, 

using the MAV feature of the signal, it was combined 

with the ANN classifier. Ten different movements were 

obtained with an average of 94% accuracy, and these 

results were transferred wirelessly with the NRF24L01 

RF IC. Benatti et al. [27] designed a multilayer printed 

circuit board with low power consumption and EMG 

system was designed using an 8-channel Cerebro ASIC 

analog front-end (AFE) IC with 16-bit resolution, 8 kHz 

sampling frequency, and STM32F407 microprocessor. 

With this system, seven different movements were tested 

with four different people using the support vector 

machines (SVM) classifier, and it was shown that the 

system provided an average of 90% accuracy. Zang et al. 

[16] designed a real-time recognition system for hand 

gestures with MYO armband and a computer. This 

system had an average 227.76 ms response time. 

Chandrasekhar et al. [17] designed a portable, low-cost, 

8-channels, real-time s-EMG system. The system was 

tested with 6-channels and response time was measured 

as 110 ms. The total cost of the system was about USD 

200. The results of the studies in this field indicate that 

the high number of channels, high processing times, large 

size, inability to use in real-time and having a wired 

structure constitute obstacles to the development of 

wearable EMG systems. 

In this study, a wearable EMG system was designed and 

implemented for real-time analysis of finger movements. 

The designed 3-channel EMG measurement system 

enables the measurement of EMG signals over the 

forearm, and can classify the EMG signals on the 

embedded system using machine learning methods, and 

wirelessly transfer the commands related to the 
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determined finger movements to the output units to be 

controlled through the User Datagram Protocol (UDP). 

In order to extract the features of the EMG signals, the 

mean absolute value (MAV) was used. Support Vector 

Machines (SVM) and Random Forest (RF) algorithms 

were employed for classification. The performance of the 

designed system was analyzed by offline analysis of the 

recorded EMG signals of five participants. Training sets 

created in offline data analysis were transferred to the 

embedded system, enabling real-time online operation 

with the wearable EMG system, and the commands 

determined by the embedded system were transferred to 

the output unit wirelessly. With this structure, response 

time is reduced to 90 ms. 

In the second section of the study, the hardware details of 

the designed wearable EMG system are explained, and 

the experimental procedures are detailed. In the third 

section, offline and online test results were given, and 

results are evaluated in the discussion section. Finally, 

the results of the study are summarized in the conclusion 

part. 

 

2. MATERIAL and METHOD 

The block diagram of the wearable EMG system 

designed in the study is shown in Figure 1. Thanks to the 

surface electrodes, the biopotential signals of the muscles 

are detected by the EMG amplifier. The signals detected 

by the EMG amplifier are filtered using band-pass and 50 

Hz band-stop analog filters with a cutoff frequency of 10-

530 Hz. The obtained signals are amplified with 

operational amplifiers and read by the NodeMCU V3 

[28] development board with the help of ADC (Analog-

Digital Converter) IC.  

Training sets were created after the feature extraction 

using the recorded EMG signals, classified using Python 

with SVM and RF algorithms, and the header file that 

contains code block translated to C programming 

language using the micromlgen library [29] was loaded 

to integrate into the code on the NodeMCU V3 

development board. Compile process was conducted  

with Arduino IDE.  Online tests were conducted with five 

participants using participant-specific training sets. The 

placements of the electrodes on the forearm, and the 

device worn by the user are shown in Figure 2. 

 

 
The flowchart of the processor is given in Figure 3. 

According to the flowchart, features are extracted using 

analog data read by a predetermined sample size; the 

classifier creates a response by classifying the data using 

the training set previously embedded in the card, and this 

answer is shared in real time over the network to which 

the system is connected by the UDP method. UDP is a 

network communication protocol that uses the datagram 

unit of packet-switched computer communication 

between devices connected to the same network and is 

referenced to the Internet Protocol (IP) [30]. 

The movements that are resolved based on the client's 

query are transmitted with a 90 ms delay from the defined 

IP and port address of the designed system. The shared 

answers are displayed on the screen and the query is sent 

again. In case there is no new response as a result of the 

query, the interface software shows the fixed hand 

movement. 

 

2.1 EMG Amplifier Design 

In this study, three modules were designed for the EMG 

system. The modules are shown in Figure 4. Figure 4 (a) 

includes the EMG amplifier, the socket for the module to 

be attached to the electrodes, the MCP3204 analog-to-

digital converter (ADC) IC, the NodeMCU V3 

development board, the negative voltage circuit, the 

reference voltage circuit and the 440 mAh Li-Polymer 

battery. Its dimensions are 32x57x20 mm. The two 

modules seen in Figures 4 (b) and 4 (c) are identical and 

contain only the EMG amplifier and the necessary socket 

for attaching the module to the electrodes. Wired 

connections are established between the modules. Its 

dimensions are 29x50x8 mm. 

(a) (b)  
Figure 2. (a) Position of the electrodes on the forearm, (b) 

the device on the forearm 

Electrodes Pre 
Amplifier(Instrumentati

on Amplifier)

10-530 Hz Bandpass and 
50 Hz Notch Filter 

Total Gain

64dB

Analog-Digital Converter Nodemcu V3 
Development Board

ADC

 
Figure 1. The block diagram of the system 
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During s-EMG measurement, EMG signals can be 

affected by electrical noise due to their low amplitude. 

The main reasons of this are that electrical noise can 

reach the surface electrodes over the body, and the 

surface contact of the electrodes is not provided well. In 

(a)      (b)        (c)  
Figure 4. (a) Development board, EMG amplifier, main 

module containing reference and negative voltage 

circuits and battery, (b) and (c) Modules that 

contain EMG amplifiers and can be wired to the 

main module  
 

order to eliminate interference noises, the common mode 

rejection ratio (CMRR) was kept as high as possible. 

Instrumentation Amplifier (IA) needs a negative voltage 

to detect the negative part of the EMG signals, while the 

ADC IC needs a reference voltage to process the negative 

voltages. The required negative voltage and DC reference 

voltage are provided by the circuits on the first module. 

ICL7660 IC is used for negative voltage. For the DC 

reference voltage, a voltage divider circuit is used 

together with the LMV321IDBVR operational amplifier 

to obtain a balanced DC reference voltage. The circuit 

diagram is given in Figure 5. 
 

 
Figure 5. Diagram of negative voltage and DC reference 

voltage generation circuits 

 

 
Figure 6. EMG amplifier circuit diagram 

 

Start

Read Data From ADC IC

Has the Defined 
Number of Samples 

Been Reached?

Extract Feature of Samples

Share the Determined 
Finger Movement 
Wirelesly Over the 

Network

Yes

No

Training Set
Classify Extracted Features 

Matrix

 

Figure 3. The flowchart of NodeMcu V3 development 

board 
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INA826AIDR IA was used in the EMG amplifier. This 

amplifier, with a gain of approximately 12, provided a 

CMRR of approximately 110 dB. By adding a DC 

reference voltage, the data can be read by the ADC. A 

high-pass filter with a cut-off frequency of 10 Hz, a low-

pass filter with a cut-off frequency of 530 Hz and a notch 

filter with a cut-off frequency of 50 Hz were designed. In 

the last stage of the circuit, the signal was amplified with 

an operational amplifier. LM324N and LMV321IDBVR 

operational amplifiers were employed in analog filters 

and signal amplifier, respectively. A total gain of 64 dB 

was achieved. In the study, the MCP3204 IC was fed with 

3.3 V and used with a clock frequency of 1.35 MHz. An 

analog signal cycle time was measured as 40 µs. By 

removing the measured DC reference voltage value from 

the EMG data, the raw EMG signal can be read in 

NodeMCU V3. The schematic of the EMG amplifier is 

given in Figure 6, and the connection between the 

MCP3204 and the development board is given in Figure 

7. The power consumption was measured as 308 mW. 

Firmware was compiled in Arduino 1.8.13 IDE. 

2.2 Experiment Procedure and Data Records 

Five volunteers participated in the experiments. The 

study was approved by the ethics committee of Gazi 

University. The participants were informed about the 

purposes, consent and experimental procedure of the 

study and all the participants signed the informed consent 

form. Participants used their left arms during the 

experiments. In order to create the training set, offline 

data were recorded. Data recording was made using 

surface electrodes placed on the forearm. The 

participants were asked to sit upright and keep their arms 

straight and repeat the finger movements verbally told 

them. Finger movements seen in Figure 8 were repeated 

for 210 ms. This process was carried out in 5 sessions at 

5-second intervals. 

Online tests were carried out with 25 trials for each 

movement. In the trials, the movements given in Figure 

8 were said to the participants as voice commands and 

they were asked to wait for 5 seconds between each 

command. In the online experiments, the designed output 

user interface was used. While the participants were 

performing the finger movements, a query was sent to the 

system from the output user interface and the current 

response was taken as a result, and the command for the 

action was displayed on the output user interface. 

 

2.3 Feature Extraction and Classification 

In this study, for feature extraction, mean absolute value 

(MAV), which is a feature that has been successfully 

used in EMG signal analysis in the literature, was used 

[18, 19, 26]. The formula for the feature is given in 

Equation 1. MAV is obtained by summing the absolute 

values of the analog data received by the EMG amplifier 

from the first signal to the 𝑁th (number of samples) signal 

and dividing 𝑁. 𝑥𝑖 refers the 𝑖th raw sample. 

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

                                              (1) 

In the classification stage, SVM and RF algorithms were 

employed. SVM is a supervised machine learning 

method that creates a hyperplane that separates classes. 

SVM can work with linearly or non-linearly separable 

data. [31]. For linear SVM, C is a penalty parameter for 

each misclassified data point. C parameter of the  SVM 

algorithm was determined for every participant 

individually. RF algorithm is an ensemble method. RF 

classifier is a classifier that creates more than one 

decision tree for classification and makes a classification 

based on the result of these decision trees [32]. For the 

RF algorithm, the parameters that indicate the number of 

trees in the forest and the depth of trees in the forest were 

used as 100 and 2, respectively. In this study, 

classification algorithms were developed using the Scikit 

Learn library. Because of superior performance in offline 

tests and due to the short processing time, we preferred 

to use the RF algorithm in online tests. The data recorded 

in the offline experiments were used to construct the 

training sets and classifier models. The classifier models 

are installed into the embedded system for use in online 

 
Figure 7. MCP3204 IC and NodeMCU V3 connection 

 

 Rest  I  M 

 R  L 
 

Figure 8. Finger movements used for testing in the 

experiment, resting state 'Rest', index finger 

movement 'I', middle finger movement 'M', ring 

finger movement 'R', little finger movement 'L' 
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experiments. GUI design, offline tests and trained 

datasets were compiled in Python 3.9.0 IDLE. 

 

3. EXPERIMENTAL RESULTS 

In this study, a three-channel wearable real-time EMG 

measurement and movement detection system was 

designed and implemented for the analysis of finger 

movements. Signals recorded on the forearm using the 

designed EMG system were used to classify finger 

movements. EMG signals of a participant recorded over 

three channels for the little finger movement using the 

designed EMG system are shown in Figure 9. 

 
In the data analysis, EMG signals were first filtered using 

a band pass filter at a frequency of 10-530 Hz and a 50 

Hz notch filter. The filtered EMG signals were 

decomposed into 20 ms windows with a 10 ms 

overlapping windowing process. Feature extraction was 

applied to each time window for the three channels. After 

the feature extraction process, the feature distributions 

for each finger movements obtained for the three 

channels are shown in Figure 10. 

 
Firstly, offline data analysis was performed to evaluate 

the system performance. The SVM and RF algorithms 

were used in the classification. The classification 

accuracies obtained by SVM and RF for 5 participants 

are shown in Figure 11. By using the subject-specific C 

parameters, finger movement classification accuracy is 

yielded as 98.2% for SVM in offline tests. The average 

accuracy rate was 99.47% for RF. 

 

 

 

 

Due to the accuracy rate of the RF algorithm in offline 

testing, it was decided to use it in embedded system and 

online tests. The training sets were embedded on 

NodeMCU V3, and the online operation of the system 

was ensured. Commands related to finger movements 

determined by the embedded system were sent to clients 

wirelessly. 

Figure 11. Offline test results 

Online experiments were conducted with the same five 

participants in offline tests. The results of the online tests, 

which indicate the accuracies of 4 finger movements and 

resting states are given in Figure 12, and the confusion 

matrices of the online test results are given in Figure 13. 

When the online test results are examined, the average 

accuracy rates are calculated for resting state (b), index 

(i), middle (o), ring (y) and little (s) fingers as 94.4%, 

91.2%, 92.8%, 96% and 86.4%, respectively. 
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Figure 9. Raw EMG signals for the little finger movement  

 

 
Figure 10. Mean absolute value graph by channels 

 
Figure 12. Online test results 
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The individual confusion matrices obtained in the online 

experiments for five participants are shown in Figure 13. 

Accordingly, since the effects of other finger movements 

are minimal due to the electrode positions in the ring 

finger movement, it is thought that the highest accuracy 

is obtained in this movement. Besides, when the EMG 

signals during the ring finger movements were examined, 

it was observed that the signal amplitudes obtained from 

the second channel electrodes were higher than the other 

finger movements. It was observed that the little finger 

movement was classified incorrect during the online tests 

since the participants also contracted their other fingers 

during the little finger movement. Therefore, it is thought 

that the lowest accuracy rate occurs in this finger 

movement. 

Therefore, it is thought that the lowest accuracy rate 

occurs in this finger movement. 

 

The output user interface used during the real-time 

operation of the study is given in Figure 14 (a-d). The 

window in which the analyzed movements are displayed 

in real-time is given in Figure 14 (b), while the window 

that can display the current movement on the screen 

when the “Query” button is pressed momentarily is given 

in Figure 14 (c). In this study, the results obtained were 

presented as feedback to the user by displaying the image 

of the movement on the prepared control screen; 

however, these results can be used to control any system 

that can operate with discrete commands. 

 

4. DISCUSSIONS  

In this study, a wearable EMG system was designed and 

used to analyze finger movements thanks to its embedded 

software. The designed system can be used on different 

muscle groups in the human body to analyze the 

movements of different limbs. The ultimate purpose of 

such a system is to contribute to wireless control of 

EMG-based wearable orthoses or prostheses by 

analyzing the user's movement intentions, in 

rehabilitation systems [33]. On the other hand,  a 

wearable EMG system can provide early diagnosis of 

various muscle diseases by continuous monitoring of 

patients. While performing different movements, muscle 

fibers create electrical potentials at different levels and 

different frequencies for each movement. By analyzing 

these potentials in the time and frequency domain, it is 

possible to distinguish between healthy and patient 

groups [34, 35]. Besides, in unmanned devices, 

especially for dangerous tasks, wearable controllers can 

be developed using EMG signals. EMG-based wearable 

HMIs can be also used to provide control of several 

output devices by amputee individuals [36]. 

In EMG-based movement classification studies, the 

number of electrodes employed in the systems varies. In 

(a) (b) (c)

 
(d) 

Figure 14. (a) Main page, (b) ‘REAL TIME CONTROL’ 

window, (c) ‘TEST’ window (d) Software on 

different platforms 

 

 
Figure 13. Confusion matrices of online test results 
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literature, 96.7% accuracy is achieved using only one 

channel s-EMG system [23] while 82% accuracy is 

obtained using an 8-channel EMG system [24]. The 

accuracy of the system does not only affected by the 

number of electrodes. As well as the number of 

electrodes, it depends on the position of electrodes, the 

number of movements to be determined, the muscles that 

will be used while performing related movements, the 

ADC channel number of the EMG system and the 

sampling frequency of the system. On the other hand, the 

number of electrodes of a system can affect the 

processing time, total cost of modules, power 

consumption, and dimensions of modules. In this study, 

we designed a real-time, wearable EMG system. 

Therefore, by considering the movement detection 

accuracy as well as processing time, the total cost of 

modules, power consumption, and dimensions of 

modules, in this study, we designed a three-channel EMG 

system. If a higher number of electrodes is used in an 

EMG system, the accuracy could be upgraded; however, 

this would increase processing time, the total cost of 

modules, power consumption, and dimensions of 

modules. 

 

5. CONCLUSIONS 

In this study, a wearable, low-cost, low power 

consumption and small-size EMG system, which can 

analyze the finger movements embeddedly and share the 

commands related to the movements decoded in real-

time, was designed for people who have lost their finger 

movements. A prototype of a 12-bit resolution, wearable 

s-EMG measurement and classification system was 

implemented. The system enables to decode finger 

movements with a short delay of 90ms embeddedly. The 

system also can transmit the determined finger 

movements wirelessly through the UDP network 

protocol on the network it is connected to. The system 

can work for 4.8 hours with 440 mAh.  

The designed prototype showed an average of 99.47% 

accuracy in offline experiments using the RF algorithm 

with five different participants, and it was seen that an 

average of 92.16% accuracy was obtained in online 

experiments. With the output user interface created with 

Python, the commands related to the specified finger 

movements are displayed in real-time with a delay of 

approximately 90 ms.  

The designed system is an important step in the control 

of EMG-based wearable prosthetic systems, and the 

design of unmanned vehicles that can be controlled by 

finger movements. Although the designed wearable 

EMG system is used to determine the finger movements 

in this study, the system can be used to classify different 

movements by making modifications on the system. The 

performance of the system can be further improved by 

using different feature selection and classification 

algorithms. 
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