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Abstract
In this article, simultaneous identification of the time-dependent lowest and source terms
in a two-dimensional (2D) parabolic equation from knowledge of additional measurements
is studied. Existence and uniqueness of the solution is proved by means of the contraction
mapping on a small time interval. Since the governing equation is yet ill-posed (very
slight errors in the time-average temperature input may cause relatively significant errors
in the output potential and source terms), we need to regularize the solution. Therefore,
regularization is needed for the retrieval of unknown terms. The 2D problem is discretized
using the alternating direction explicit (ADE) method and reshaped as non-linear least-
squares optimization of the Tikhonov regularization function. This is numerically solved by
means of the MATLAB subroutine lsqnonlin tool. Finally, we present a numerical example
to demonstrate the accuracy and efficiency of the proposed method. Our numerical results
show that the ADE is an efficient and unconditionally stable scheme for reconstructing
the potential and source coefficients from minimal data which makes the solution of the
inverse problem (IP) unique.
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1. Introduction
Multi-dimensional parabolic equations are mathematical models arise in various pro-

cesses such as financial market behaviour, seawater desalination, bioheat transfer, fluid
dynamics, etc., see [5–8, 18] to mention only a few. Solvability of inverse problems for
a multi-dimensional parabolic equation has been attracted attention by many authors.
Amongst these inverse problems, great interest is paid to determining the lowest order
coefficient in the parabolic equation, especially when this coefficient is dependent only
on time. Authors studied the determination of the solely time-dependent diffusion co-
efficient in a two-dimensional parabolic equation with different boundary and additional
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measurements in [2, 37, 40]. In the references [1, 4, 35], and [36], authors considered the
inverse time-dependent lowest term identification problem with various classical (Dirich-
let, Neumann, and Robin) and non-classical boundary conditions. On contrary of these
references authors investigated the solvability of the inverse problem for both space and
time-dependent coefficient in [46]. The authors in [13] investigated the inverse problem
of estimating a discontinuous parameter in a quasi-variational inequality involving multi-
valued terms. Zeng et al. [49] studied a dynamical system called a differential variational-
hemivariational inequality of elliptic type and a nonlinear evolution inclusion problem in
a Banach space while the authors in [50] considered a mixed boundary value problem
with a nonhomogeneous under very general assumptions on the data. Yamamoto [48] has
obtained the Hölder stability estimate for the parabolic equation with the unknown coef-
ficient in a general domain with smooth boundary. In references [38,39] multidimensional
inverse problems for the parabolic equations are also investigated in general domains with
smooth boundaries.

In recent years, the authors numerically investigated various inverse problems related
to the determination of time-dependent coefficients [20–22, 24–27, 31–34, 43]. The au-
thors in [12] estimated free boundary coming from two new scenarios, aggregation pro-
cesses and nonlocal diffusion. Snitko [47], theoretically, and Huntul [23], numerically,
investigated the inverse problem of determining the time-dependent reaction coefficient
in a two-dimensional parabolic problem. Furthermore, Huntul et al. [28, 29] studied
numerically the inverse problems for reconstructing the unknown coefficients in a third-
order pseudo-parabolic equation from additional and nonlocal integral observations, re-
spectively. Huntul et al. [30] identified the time-dependent potential in a fourth-order
pseudo-hyperbolic equation from additional measurement.

In this article, we study the two-dimensional parabolic equation to identify the time-
dependent lowest and source function coefficients along with the solution function theoret-
ically, i.e. existence and uniqueness, and numerically, for the first time, in the rectangular
domain, using the initial, homogeneous boundary conditions and the additional data as
over-specification conditions. The pre-eminent goal of the current work is to undertake
the theory and numerical aspect of this problem.

The paper is organized as follows. The proposed inverse problem has been mathemati-
cally developed in Section 2. The existence and uniqueness of the solution of the inverse
problem is proved in Section 3. Section 4 briefly explains the scheme for solving the direct
problem by means of ADE. The description of numerical procedure to solve the minimiza-
tion of the nonlinear functional has been given in Section 5. The computational outcomes
for benchmark test example on the topic are discussed in Section 6. Finally, concluding
remarks are revealed in Section 7.

2. Mathematical formulation of the IP
We consider an inverse problem of recovering the time-dependent coefficients a(t) and

b(t) in the two-dimensional parabolic equation

zt(x, y, t) − α(t) (zxx(x, y, t) + zyy(x, y, t)) = a(t)z(x, y, t) + b(t)g(x, y, t) + f(x, y, t),
(x, y, t) ∈ QT ,(2.1)

subject to the initial condition

z(x, y, 0) = φ(x, y), (x, y) ∈ Qxy, (2.2)

the homogeneous boundary conditions

z(0, y, t) = z(1, y, t) = 0, (y, t) ∈ [0, 1] × [0, T ], (2.3)

z(x, 0, t) = z(x, 1, t) = 0, (x, t) ∈ [0, 1] × [0, T ], (2.4)
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and over-specification conditions∫∫
Qxy

z(x, y, t)dxdy = E1(t), t ∈ [0, T ], (2.5)

z(x0, y0, t) +
∫∫

Qxy

K(x, y)z(x, y, t)dxdy = E2(t), t ∈ [0, T ], (2.6)

where QT = Qxy × [0, T ], Qxy is the rectangle [0, 1] × [0, 1], α(t) ∈ C[0, T ] with α(t) > 0,
(x0, y0) ∈ (0, 1) × (0, 1), K(x, y) ∈ C(Qxy), φ(x, y), g(x, y, t), f(x, y, t), E1(t), and E2(t)
are given functions. Physical situations in which the measurement E2(t) in (2.6) depends
on time occur in mass (energy), damage and radioactive decay applications, [10, 11].

3. Existence and uniqueness of the solution of the IP
In this section, first we will give eigenfunctions and eigenvalues of the auxiliary spec-

tral problem and define two useful Banach spaces. Then we will set the existence and
uniqueness theorem of the solution of the inverse initial-boundary value problem for the
two-dimensional parabolic equation and and prove this theorem by using Banach fixed
point theorem.

The spectral problem corresponding to the inverse problem (2.1)–(2.6) is
Wxx(x, y) + Wyy(x, y) + µW (x, y) = 0, (x, y) ∈ Qxy,
W (0, y) = W (1, y) = 0, 0 ≤ y ≤ 1,

W (x, 0) = W (x, 1) = 0, 0 ≤ x ≤ 1,
(3.1)

where µ is the separation parameter. The eigenvalues and eigenfunctions of problem (3.1)
are

µm,k = (mπ)2 + (kπ)2 , m, k = 1, 2, ...,

and
Wm,k(x, y) = 2 sin(mπx) sin(kπy), m, k = 1, 2, ....

The problem (3.1) is self-adjoint. It is easy to seen that
√

2 sin(mπx) and
√

2 sin(kπy)
are complete orthonormal systems on [0, 1]. Thus the set of eigenfunctions Wm,k(x, y) is
complete in L2(Qxy) and forms an orthonormal system on Qxy, see [35].

Now let us give the following spaces which are Banach spaces:
I:

BT =
{

z(x, y, t) =
∞∑

m=1

∞∑
k=1

zm,k(t)Wm,k(x, y) : zm,k(t) ∈ C[0, T ],

JT (z) =
( ∞∑

m=1

∞∑
k=1

(µ3/2
m,k ∥zm,k(t)∥C[0,T ])

2
)1/2

< +∞

 ,

with the norm ∥z(x, y, t)∥BT
≡
(∑∞

m=1
∑∞

k=1(µ3/2
m,k ∥zm,k(t)∥C[0,T ])

2
)1/2

which is
related with the Fourier coefficients of the function z(x, y, t) by the eigenfunctions
Wm,k(x, y) = 2 sin(mπx) sin(kπy), m, k = 1, 2, ....

II: ET = BT × C[0, T ] × C[0, T ] with the norm

∥v(x, y, t)∥ET
= ∥z(x, y, t)∥BT

+ ∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ] ,

where v(x, y, t) = {z(x, y, t), a(t), b(t)}.
Before giving the main theorem let us set and prove the following Lemmas:

Lemma 3.1. Let the assumption
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(A1): φ ∈ C2,2 (Qxy) , φxxx, φxxy, φxyy, φyyy ∈ L2 (Qxy) ,
φ(x, 0) = φ(x, 1) = φx(x, 0) = φx(x, 1) = φyy(x, 0) = φyy(x, 1) = 0, 0 ≤ x ≤ 1,
φ(0, y) = φ(1, y) = φxx(0, y) = φxx(1, y) = 0, 0 ≤ y ≤ 1;

be satisfied. Then, the estimates
∞∑

m=1

∞∑
k=1

(
(mπ)3 |φm,k|

)2
≤ ∥φxxx(., .)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
m2kπ3 |φm,k|

)2
≤ ∥φxxy(., .)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
(kπ)3 |φm,k|

)2
≤ ∥φyyy(., .)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
mk2π3 |φm,k|

)2
≤ ∥φxyy(., .)∥L2(Qxy) .

are valid.

Proof. Let us show the first one of these estimates is true and the others can be proven
analogously. Since

φm,k =
∫∫

Qxy

φ(x, y)Wm,k(x, y)dxdy,

where Wm,k(x, y) = 2 sin(mπx) sin(kπy), using integration by parts under the assumption
(A1), we get

φm,k = −1
(mπ)3

∫∫
Qxy

φxxx(x, y)2 cos(mπx) sin(kπy)dxdy.

The term 2 cos(mπx) sin(kπy) is complete and form an orthonormal system in L2(Qxy),
because

√
2 cos(mπx) and

√
2 sin(kπy) are complete orthonormal system on [0, 1]. Thus

from the Bessel’s inequality
∞∑

m=1

∞∑
k=1

(
(mπ)3 |φm,k|

)2
≤ ∥φxxx(., .)∥L2(Qxy) .

□

Here the notation C2,2(Qxy) means that all partial derivatives exist and continuous that
include at most two derivatives with respect to the first and second variables.

Analogously, we can get the estimates for fm,k(t) and gm,k(t) as:

Lemma 3.2. Let the assumption
(A2): f(x, y, t) ∈ C(QT ), fx, fy,fxx, fyy, fxy ∈ C2,2 (Qxy) , ∀t ∈ [0, T ], fxxx, fyyy, fxyy, fxxy ∈

L2 (QT ) , f(x, 0, t) = f(x, 1, t) = fx(x, 0, t) = fx(x, 1, t) = fyy(x, 0, t) = fyy(x, 1, t) =
0, (x, t) ∈ [0, 1] × [0, T ], f(0, y, t) = f(1, y, t) = fxx(0, y, t) = fxx(1, y, t) =
0, (y, t) ∈ [0, 1] × [0, T ];

be satisfied. Then, the estimates
∞∑

m=1

∞∑
k=1

(
(mπ)3 |fm,k(t)|

)2
≤ ∥fxxx(·, ·, t)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
m2kπ3 |fm,k(t)|

)2
≤ ∥fxxy(·, ·, t)∥L2(Qxy) ,
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∞∑
m=1

∞∑
k=1

(
(kπ)3 |fm,k(t)|

)2
≤ ∥fyyy(·, ·, t)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
mk2π3 |fm,k(t)|

)2
≤ ∥fxyy(·, ·, t)∥L2(Qxy) .

are valid.

Lemma 3.3. Let the assumption
(A3): g(x, y, t) ∈ C(QT ), gx, gy,gxx, gyy, gxy ∈ C2,2 (Qxy) , ∀t ∈ [0, T ], gxxx, gyyy, gxyy, gxxy ∈

L2 (QT ) , g(x, 0, t) = g(x, 1, t) = gx(x, 0, t) = gx(x, 1, t) = gyy(x, 0, t) = gyy(x, 1, t) =
0, (x, t) ∈ [0, 1] × [0, T ], g(0, y, t) = g(1, y, t) = gxx(0, y, t) = gxx(1, y, t) = 0, (y, t) ∈
[0, 1] × [0, T ];

be satisfied. Then, the estimates
∞∑

m=1

∞∑
k=1

(
(mπ)3 |gm,k(t)|

)2
≤ ∥gxxx(·, ·, t)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
m2kπ3 |gm,k(t)|

)2
≤ ∥gxxy(·, ·, t)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
(kπ)3 |gm,k(t)|

)2
≤ ∥gyyy(·, ·, t)∥L2(Qxy) ,

∞∑
m=1

∞∑
k=1

(
mk2π3 |gm,k(t)|

)2
≤ ∥gxyy(·, ·, t)∥L2(Qxy) .

are valid.

Theorem 3.4. Let the assumptions of Lemma 3.1, Lemma 3.2, Lemma 3.3 and
(A4): E1(t) ∈ C1[0, T ],

∫∫
Qxy

φ(x, y)dxdy = E1(0);

(A5): E2(t) ∈ C1[0, T ], φ(x0, y0) +
∫∫

Qxy

K(x, y)φ(x, y)dxdy = E2(0),

be satisfied, and D(t) = E1(t)g2(t) − E2(t)g1(t) ̸= 0, ∀t ∈ [0, T ], where
g1(t) =

∫∫
Qxy

g(x, y, t)dxdy, and g2(t) = g(x0, y0, t) +
∫∫

Qxy

K(x, y)g(x, y, t)dxdy. Then, the

inverse problem (2.1)–(2.6) has a unique solution for small T .

Proof. For arbitrary a(t), b(t) ∈ C[0, T ], to construct the formal solution of the inverse
problem (2.1)–(2.6), we will use the Fourier (Eigenfunction expansion) method. In accor-
dance with this, let us consider

z(x, y, t) =
∞∑

m=1

∞∑
k=1

zm,k(t)Wm,k(x, y), (3.2)

is a solution of the inverse problem (2.1)–(2.6), where Wm,k(x, y) are the eigenfunctions
and µm,k are the eigenvalues of the corresponding spectral problem.

Since z(x, y, t) is the formal solution of the inverse problem (2.1)–(2.6), we get the
following Cauchy problems with respect to zm,k(t) from the equation (2.1) and initial
conditions (2.2), {

z′
m,k(t) + µm,kα(t)zm,k(t) = R(m,k)(t; z, a, b),

zm,k(0) = φm,k, m, k = 1, 2, ...,
(3.3)



An inverse problem of identifying the time-dependent potential and source terms 1583

where

R(m,k)(t; z, a, b) = a(t)zm,k(t) + b(t)gm,k(t) + fm,k(t),

zm,k(t) =
∫∫

Qxy

z(x, y, t)Wm,k(x, y)dxdy, fm,k(t) =
∫∫

Qxy

f(x, y, t)Wm,k(x, y)dxdy,

gm,k(t) =
∫∫

Qxy

g(x, y, t)Wm,k(x, y)dxdy, φm,k =
∫∫

Qxy

φ(., .)Wm,k(x, y)dxdy.

Solving (3.3) we obtain

zm,k(t) = φm,ke−
∫ t

0 µm,kα(s)ds +
∫ t

0
R(m,k)(s; z, a, b)e−

∫ t

s
µm,kα(τ)dτ ds. (3.4)

Substitute the expression (3.4) into (3.2) to determine z(x, y, t). Then, we get

z(x, y, t) =
∞∑

m=1

∞∑
k=1

[
φm,ke

−
∫ t

0
µm,kα(s)ds +

∫ t

0
R(m,k)(s; z, a, b)e−

∫ t

s
µm,kα(τ)dτ

ds

]
Wm,k(x, y). (3.5)

Let us derive the equations of a(t) and b(t). If we integrate the equation (2.1) from (0, 0)
to (1, 1) with respect to x and y, and consider the additional condition (2.5), then we have

a(t)E1(t) + b(t)g1(t) = E′
1(t) − f1(t) − α(t)

∫∫
Qxy

(zxx + zyy) dxdy, (3.6)

where

f1(t) =
∫∫

Qxy

f(x, y, t)dxdy, g1(t) =
∫∫

Qxy

g(x, y, t)dxdy.

Since

zxx = −
∞∑

m=1

∞∑
k=1

zm,k(t)2(mπ)2 sin(mπx) sin(kπy),

zyy = −
∞∑

m=1

∞∑
k=1

zm,k(t)2(kπ)2 sin(mπx) sin(kπy),

we get∫∫
Qxy

(zxx + zyy) dxdy = −2
∞∑

m=1

∞∑
k=1

zm,k(t) µm,k

(mπ)(kπ)
[(−1)m − 1]

[
(−1)k − 1

]

=
{

0, if m or n is even,
−8
∑∞

m=1
∑∞

k=1 z2m−1,2k−1(t) µ2m−1,2k−1
(2m−1)(2k−1)π2 , if m and nare odd.

Thus from the equation (3.6), we obtain

a(t)E1(t) + b(t)g1(t) = E′
1(t) − f1(t) + 8α(t)

∞∑
m=1

∞∑
k=1

z2m−1,2k−1(t) µ2m−1,2k−1
(2m − 1)(2k − 1)π2 .(3.7)

Similarly, we can obtain

a(t)E2(t) + b(t)g2(t) = E′
2(t) − f2(t) + α(t)

∞∑
m=1

∞∑
k=1

Am,kµm,kzm,k(t), (3.8)
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where

f2(t) = f(x0, y0, t) +
∫∫

Qxy

K(x, y)f(x, y, t)dxdy,

g2(t) = g(x0, y0, t) +
∫∫

Qxy

K(x, y)g(x, y, t)dxdy,

Am,k = Wm,k(x0, y0) +
∫∫

Qxy

K(x, y)Wm,k(x, y)dxdy.

To derive the equations of a(t) and b(t), let us solve the system of equations (3.7) and
(3.8) for a(t) and b(t). Thus we get

a(t) = 1
D(t)

[
E′

1(t)g2(t) − E′
2(t)g1(t) + g1(t)f2(t) − g2(t)f1(t)

+α(t)
∞∑

m=1

∞∑
k=1

(
8g2(t)z2m−1,2k−1(t) µ2m−1,2k−1

(2m − 1)(2k − 1)π2 − g1(t)Am,kµm,kzm,k(t)
)]

, (3.9)

and

b(t) = 1
D(t)

[
E′

2(t)E1(t) − E′
1(t)E2(t) + E2(t)f1(t)

−E1(t)f2(t) + α(t)
∞∑

m=1

∞∑
k=1

(
E1(t)Am,kµm,kzm,k(t)

−8E2(t)z2m−1,2k−1(t) µ2m−1,2k−1
(2m − 1)(2k − 1)π2

)]
, (3.10)

where

D(t) = E1(t)g2(t) − E2(t)g1(t) ̸= 0, ∀t ∈ [0, T ].

We obtained the system of Volterra integral equations (3.5), (3.9) and (3.10) with respect
to z(x, y, t), a(t) and b(t). The inverse problem (2.1)–(2.6) and the system (3.5), (3.9) and
(3.10) are equivalent. In other words, solving the system of integral equations (3.5), (3.9)
and (3.10) is equivalent to solve the inverse problem (2.1)–(2.6).

To prove the existence of a unique solution of the system (3.5), (3.9) and (3.10) we need
to rewrite this system into operator form and to show that this operator a contraction
operator. To this end let us denote v(x, y, t) = {z(x, y, t), a(t), b(t)} is a triplet of the
functions z(x, y, t), a(t), and b(t) and consider the following operator equation

v = Φ(v), (3.11)

where Φ(z) ≡ {ϕ1, ϕ2, ϕ3} and ϕ1, ϕ2 and ϕ3 are connected with the equations (3.5), (3.9)
and (3.10), respectively, i.e.

ϕ1(v) =
∞∑

m=1

∞∑
k=1

[
φm,ke−

∫ t

0 µm,kα(s)ds

+
∫ t

0
R(m,k)(s; z, a, b)e−

∫ t

s
µm,kα(τ)dτ ds

]
Wm,k(x, y), (3.12)
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ϕ2(v) = 1
D(t)

[
E′

1(t)g2(t) − E′
2(t)g1(t) + g1(t)f2(t) − g2(t)f1(t)

+α(t)
∞∑

m=1

∞∑
k=1

(
8g2(t)z2m−1,2k−1(t) µ2m−1,2k−1

(2m − 1)(2k − 1)π2 − g1(t)Am,kµm,kzm,k(t)
)]

,(3.13)

and

ϕ3(v) = 1
D(t)

[
E′

2(t)E1(t) − E′
1(t)E2(t) + E2(t)f1(t) − E1(t)f2(t)

+α(t)
∞∑

m=1

∞∑
k=1

(
E1(t)Am,kµm,kzm,k(t) − 8E2(t)z2m−1,2k−1(t) µ2m−1,2k−1

(2m − 1)(2k − 1)π2

)]
.(3.14)

It is easy to see that

µ
3/2
m,k ≤

[
(mπ)2 + (kπ)2

]
[mπ + kπ] = (mπ)3 + m2kπ3 + mk2π3 + (kπ)3 ,

and

|Am,k| =

∣∣∣∣∣∣∣Wm,k(x0, y0) +
∫∫

Qxy

K(x, y)Wm,k(x, y)dxdy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣2 sin(mπx0) sin(kπy0) +
∫∫

Qxy

K(x, y)2 sin(mπx) sin(kπy)dxdy

∣∣∣∣∣∣∣
≤ 2

1 +
∫∫

Qxy

|K(x, y)| dxdy

 ≤ k, k − constant.

Now we can prove that Φ is a contraction operator. Let us carry out this proof in two
steps.

I) Let us demonstrate that Φ maps ET onto ET continuously. Stated in other words,
we require to show ϕ1(v) ∈ BT and ϕ2(v), ϕ3(v) ∈ C[0, T ] for arbitrary v(x, y, t) =
{z(x, y, t), a(t), b(t)} with z(x, y, t) ∈ BT , a(t), b(t) ∈ C[0, T ] .

Let us start with showing that ϕ1(v) ∈ BT , i.e. we need to verify

JT (ϕ1) =
( ∞∑

m=1

∞∑
k=1

(µ3/2
m,k

∥∥∥(ϕ1)m,k (t)
∥∥∥

C[0,T ]
)2
)1/2

< +∞, (3.15)

where

(ϕ1)m,k (t) = RHS(zm,k(t)).

After some manipulations under the assumptions (A1)–(A3), using the estimates in Lemma
3.1, 3.2, and 3.3, we obtain

JT (ϕ1) ≤ M1(T ) + M2(T ) ∥b(t)∥C[0,T ] + M3(T ) ∥a(t)∥C[0,T ] ∥z(x, y, t)∥BT
, (3.16)

where

M1(T ) = 4
(

∥φxxx(., .)∥L2(Qxy) + ∥φxxy(., .)∥L2(Qxy) + ∥φxyy(., .)∥L2(Qxy)

+ ∥φyyy(., .)∥L2(Qxy)

)
+ 4T

(
∥fxxx(·, ·, t)∥L2(Qxy) + ∥fxxy(·, ·, t)∥L2(Qxy)

+ ∥fxyy(·, ·, t)∥L2(Qxy) + ∥fyyy(·, ·, t)∥L2(Qxy)

)
, M2(T ) = 4T

(
∥gxxx(·, ·, t)∥L2(Qxy)

+ ∥gxxy(·, ·, t)∥L2(Qxy) + ∥gxyy(·, ·, t)∥L2(Qxy) + ∥gyyy(·, ·, t)∥L2(Qxy)

)
, M3(T ) = 4T.
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Since z(x, y, t) ∈ BT , and a(t), b(t) ∈ C[0, T ], the right hand side of JT (ϕ1) is finite. Thus
ϕ1(v) belongs to the space BT .

Now let us verify ϕ2(v), ϕ3(v) ∈ C[0, T ]. From the equation (3.13) and (3.14) we have

∥ϕ2(v)∥C[0,T ] ≤ N1(T ) + N2(T ) ∥b(t)∥C[0,T ] + N3(T ) ∥a(t)∥C[0,T ] ∥z(x, y, t)∥BT
, (3.17)

and

∥ϕ3(v)∥C[0,T ] ≤ R1(T ) + R2(T ) ∥b(t)∥C[0,T ] + R3(T ) ∥a(t)∥C[0,T ] ∥z(x, y, t)∥BT
, (3.18)

where

N1(T ) = 1
δ

{
∥g2(t)∥C[0,T ]

(∥∥E′
1(t)

∥∥
C[0,T ] + ∥f1(t)∥C[0,T ]

)
+ ∥g1(t)∥C[0,T ]

( ∥∥E′
2(t)

∥∥
C[0,T ] + ∥f2(t)∥C[0,T ]

)
+ ∥α(t)∥C[0,T ]

(
8C1 ∥g2(t)∥C[0,T ]

+C2 |Am,k| ∥g1(t)∥C[0,T ]

)[
∥φxxx(., .)∥L2(Qxy) + ∥φxxy(., .)∥L2(Qxy)

+ ∥φxyy(., .)∥L2(Qxy) + ∥φyyy(., .)∥L2(Qxy) + T
(

∥fxxx(·, ·, t)∥L2(Qxy)

+ ∥fxxy(·, ·, t)∥L2(Qxy) + ∥fxyy(·, ·, t)∥L2(Qxy) + ∥fyyy(·, ·, t)∥L2(Qxy)

)]}
,

N2(T ) = 1
δ

{
T ∥α(t)∥C[0,T ]

(
8C1 ∥g2(t)∥C[0,T ] + C2 |Am,k| ∥g1(t)∥C[0,T ]

) [
∥gxxx(·, ·, t)∥L2(Qxy)

+ ∥gxxy(·, ·, t)∥L2(Qxy) + ∥gxyy(·, ·, t)∥L2(Qxy) + ∥gyyy(·, ·, t)∥L2(Qxy)

]}
,

N3(T ) = T

δ
∥α(t)∥C[0,T ]

(
8C1 ∥g2(t)∥C[0,T ] + C2 |Am,k| ∥g1(t)∥C[0,T ]

)
,

and

R1(T ) = 1
δ

{
∥E2(t)∥C[0,T ]

(∥∥E′
1(t)

∥∥
C[0,T ] + ∥f1(t)∥C[0,T ]

)
+ ∥E1(t)∥C[0,T ]

(∥∥E′
2(t)

∥∥
C[0,T ]

+ ∥f2(t)∥C[0,T ]

)
+ ∥α(t)∥C[0,T ]

(
8C1 ∥E2(t)∥C[0,T ]

+C2 |Am,k| ∥E1(t)∥C[0,T ]

)[
∥φxxx(., .)∥L2(Qxy) + ∥φxxy(., .)∥L2(Qxy) + ∥φxyy(., .)∥L2(Qxy)

+ ∥φyyy(., .)∥L2(Qxy) + T
(

∥fxxx(·, ·, t)∥L2(Qxy) + ∥fxxy(·, ·, t)∥L2(Qxy) + ∥fxyy(·, ·, t)∥L2(Qxy)

+ ∥fyyy(·, ·, t)∥L2(Qxy)

)]}
,

R2(T ) = T

δ

{
∥α(t)∥C[0,T ]

(
8C1 ∥E2(t)∥C[0,T ] + C2 |Am,k| ∥E1(t)∥C[0,T ]

) [
∥gxxx(·, ·, t)∥L2(Qxy)

+ ∥gxxy(·, ·, t)∥L2(Qxy) + ∥gxyy(·, ·, t)∥L2(Qxy) + ∥gyyy(·, ·, t)∥L2(Qxy)

]}
,

R3(T ) = T

δ
∥α(t)∥C[0,T ]

(
8C1 ∥E2(t)∥C[0,T ] + C2 |Am,k| ∥E1(t)∥C[0,T ]

)
,
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where δ is a constant such that

0 < δ ≤ min
0≤t≤T

|D(t)| , C1 =
( ∞∑

m=1

∞∑
k=1

1
[(2m − 1) + (2k − 1)]2 π2

)1/2

,

C2 =
( ∞∑

m=1

∞∑
k=1

1
(m + k)2 π2

)1/2

.

The right hand sides of (3.17) and (3.18) are bounded. Thus, ϕ2(v) and ϕ3(v) are contin-
uous in other words ϕ2(v) and ϕ3(v) belong to the space C[0, T ]. Since ϕ1(v) ∈ BT and
ϕ2(v), ϕ3(v) ∈ C[0, T ], we can conclude that Φ maps ET onto itself continuously.

II) In this step our aim is to show Φ is contraction mapping operator. Assume that
let v1 and v2 be any two elements of ET . We know that
∥Φ(v1) − Φ(v2)∥ET

= ∥ϕ1(v1) − ϕ1(v2)∥BT
+ ∥ϕ2(v1) − ϕ2(v2)∥C[0,T ] + ∥ϕ3(v1) − ϕ3(v2)∥C[0,T ] ,

where
vi =

{
zi(x, y, t), ai(t), bi(t)

}
, i = 1, 2.

Now consider the following differences

ϕ1(v1) − ϕ1(v2) =
∞∑

m=1

∞∑
k=1

∫ t

0

[
R(m,k)(s; z1, a1, b1)

−R(m,k)(s; z2, a2, b2)
]
e−
∫ t

s
µm,kα(τ)dτ dsWm,k(x, y), (3.19)

ϕ2(v1) − ϕ2(v2) = α(t)
D(t)

∞∑
m=1

∞∑
k=1

(
8g2(t)µ2m−1,2k−1

(2m − 1)(2k − 1)π2

(
z1

2m−1,2k−1(t) − z2
2m−1,2k−1(t)

)

−g1(t)Am,kµm,k

(
z1

m,k(t) − z2
m,k(t)

))
,(3.20)

and

ϕ3(v1) − ϕ3(v2) = α(t)
D(t)

∞∑
m=1

∞∑
k=1

(
E1(t)Am,kµm,k

(
z1

m,k(t) − z2
m,k(t)

)

− 8E2(t)µ2m−1,2k−1
(2m − 1)(2k − 1)π2

(
z1

2m−1,2k−1(t) − z2
2m−1,2k−1(t)

))
. (3.21)

As in the estimates (3.16)–(3.18), we can obtain from the last equations

∥ϕ1(v1) − ϕ1(v2)∥BT
≤ M2(T )

∥∥∥b1 − b2
∥∥∥

C[0,T ]

+M3(T )
∥∥∥z2

∥∥∥
BT

∥∥∥a1 − a2
∥∥∥

C[0,T ]
+ M3(T )

∥∥∥a1
∥∥∥

C[0,T ]

∥∥∥z1 − z2
∥∥∥

BT

, (3.22)

∥ϕ2(v1) − ϕ2(v2)∥C[0,T ] ≤ N2(T )
∥∥∥b1 − b2

∥∥∥
C[0,T ]

+N3(T )
∥∥∥z2

∥∥∥
BT

∥∥∥a1 − a2
∥∥∥

C[0,T ]
+ N3(T )

∥∥∥a1
∥∥∥

C[0,T ]

∥∥∥z1 − z2
∥∥∥

BT

, (3.23)

and
∥ϕ3(v1) − ϕ3(v2)∥C[0,T ] ≤ R2(T )

∥∥∥b1 − b2
∥∥∥

C[0,T ]

+R3(T )
∥∥∥z2

∥∥∥
BT

∥∥∥a1 − a2
∥∥∥

C[0,T ]
+ R3(T )

∥∥∥a1
∥∥∥

C[0,T ]

∥∥∥z1 − z2
∥∥∥

BT

. (3.24)

From the these inequalities it follows that
∥Φ(v1) − Φ(v2)∥ET

≤ C(T, a1, z2) ∥v1 − v2∥ET
, (3.25)
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where

C(T, a1, z2) = max
{

M2(T ) + N2(T ) + R2(T ), M3(T )
∥∥∥z2

∥∥∥
BT

+ N3(T )
∥∥∥z2

∥∥∥
BT

+R3(T )
∥∥∥z2

∥∥∥
BT

, M3(T )
∥∥∥a1

∥∥∥
C[0,T ]

+ N3(T )
∥∥∥a1

∥∥∥
C[0,T ]

+ R3(T )
∥∥∥a1

∥∥∥
C[0,T ]

}
.

For sufficiently small T such as C(T, a1, z2) tends to zero, i.e. 0 < C(T, a1, z2) < 1 for
sufficiently small T . This implies that the operator Φ is contraction operator.

Thus from the first and second steps the operator Φ is contraction mapping operator
and maps ET onto itself continuously. Then in regard to Banach fixed point theorem the
solution of the operator v = Φ(v) exists and unique. □

4. Numerical solution of the Direct problem
We consider in this section, the direct initial boundary value problem given by equations

(2.1)–(2.4), where a(t), b(t), α(t), g(x, y, t), φ(., .) and f(x, y, t) are known and the solution
z(x, y, t) is to be determined. We subdivide QT into M1, M2 and N subintervals of equal
step lengths ∆x, ∆y and ∆t, where ∆x = 1/M1, ∆y = 1/M2, and ∆t = T/N, respectively.
At the node (i, j, n), we denote zn

i,j := z(xi, yj , tn), where xi = i∆x, yj = j∆y, tn = n∆t,
an := a(tn), bn := b(tn), αn := α(tn), gn

i,j := g(xi, yj , tn) and fn
i,j := f(xi, yj , tn) for

i = 0, M1, j = 0, M2, n = 0, N .

4.1. Alternating direction explicit (ADE) scheme
Based on the method described in [3, 9, 45], in this section an unconditionally stable

numerical procedure for solving nonlinear a two-dimensional parabolic equation (2.1) with
initial and boundary conditions (2.2)–(2.4) will be described.

Let un
i,j and vn

i,j be the solutions of the following equations which are multilevel finite
difference discretization of equation (2.1):

ũn+1
i,j − ũn

i,j

∆t
− αn

(
un

i+1,j − un
i,j − un+1

i,j + un+1
i−1,j

(∆x)2 +
un

i,j+1 − un
i,j − un+1

i,j + un+1
i,j−1

(∆y)2

)

= an

(
un

i,j + un+1
i,j

2

)
+ bngn

i,j + fn
i,j , i = 1, M1 − 1, j = 1, M2 − 1, n = 0, N, (4.1)

vn+1
i,j − vn

i,j

∆t
− αn

(
vn+1

i+1,j − vn+1
i,j − vn

i,j + vn
i−1,j

(∆x)2 +
vn+1

i,j+1 − vn+1
i,j − vn

i,j + vn
i,j−1

(∆y)2

)

= an

(
vn+1

i,j + vn
i,j

2

)
+ bngn

i,j + fn
i,j , i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N. (4.2)

Rearranging the terms in (4.1) and (4.2), we obtain the explicit calculations of un+1
i,j and

vn+1
i,j as follows:

un+1
i,j = Anun

i,j + Bn(un
i+1,j + un+1

i−1,j) + Cn(un
i,j+1 + un+1

i,j−1) + Dn
(
bngn

i,j + fn
i,j

)
,

i = 1, M1 − 1, j = 1, M2 − 1, n = 0, N, (4.3)

vn+1
i,j = Anvn

i,j + Bn(vn+1
i+1,j + vn

i−1,j) + Cn(vn+1
i,j+1 + vn

i,j−1) + Dn
(
bngn

i,j + fn
i,j

)
,

i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N, (4.4)
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where

An = 1 − λn

1 + λn
, Bn = (∆t)αn

(∆x)2(1 + λn)
, Cn = (∆t)αn

(∆y)2(1 + λn)
,

Dn = ∆t

1 + λn
, λn = ∆t

(
αn

(∆x)2 + αn

(∆y)2 − an

2

)
.

The initial (2.2) and homogeneous boundary conditions (2.3) and (2.4) are given as

u0
i,j = v0

i,j = φ(xi, yj), i = 0, M1, j = 0, M2, (4.5)

un
0,j = vn

0,j = 0, un
M1,j = vn

M1,j = 0, j = 0, M2, n = 1, N, (4.6)

un
i,0 = vn

i,0 = 0, un
i,M2 = vn

i,M2 = 0, i = 0, M1, n = 1, N. (4.7)

From (4.3), un+1
i,j can be computed explicitly. In this case, calculations proceed from the

grid point close to the boundaries x = 0 and y = 0, as i, j increasing. The needed values
such as un+1

i−1,j , un+1
i,j−1, un

i,j , un
i+1,j and un

i,j+1 will be known from initial and boundary
conditions (4.5)–(4.7). Similarly, vn+1

i,j can be calculated explicitly from (4.4) beginnig at
the boundaries x = 1 and y = 1 and marching in a ssquence of decreasing i and j, i.e.
i = M1 − 1, M1 − 2, ..., 1, j = M2 − 1, M2 − 2, ..., 1. These values are then substituted into
the simple arithmetic mean approximation

zn+1
i,j =

un+1
i,j + vn+1

i,j

2
. (4.8)

The double integral in (2.5) and (2.6) is approximated using the trapezoidal rule [15, 17],
as follows:∫ 1

0

∫ 1

0
z(x, y, t)dxdy = 1

4M1M2

[
z(0, 0, tn) + z(1, 0, tn) + z(0, 1, tn) + z(1, 1, tn)

+2
M1−1∑

i=1
z(xi, 0, tn) + 2

M1−1∑
i=1

z(xi, 1, tn) + 2
M2−1∑
j=1

z(0, yj , tn) + 2
M2−1∑
j=1

z(1, yj , tn)

+4
M2−1∑
j=1

M1−1∑
i=1

z(xi, yj , tn)
]
, n = 1, N, (4.9)

∫ 1

0

∫ 1

0
K(x, y)z(x, y, t)dxdy = 1

4M1M2

[
K(0, 0)z(0, 0, tn) + K(1, 0)z(1, 0, tn)

+K(0, 1)z(0, 1, tn) + K(1, 1)z(1, 1, tn) + 2
M1−1∑

i=1
K(xi, 0)z(xi, 0, tn)

+2
M1−1∑

i=1
K(xi, 1)z(xi, 1, tn) + 2

M2−1∑
j=1

K(0, yj)z(0, yj , tn) + 2
M2−1∑
j=1

K(1, yj)z(1, yj , tn)

+4
M2−1∑
j=1

M1−1∑
i=1

K(xi, yj)z(xi, yj , tn)
]
, n = 1, N.(4.10)

5. Numerical solution of the IP
In this section, our goal is to obtain simultaneously stable reconstructions for the coef-

ficients a(t) and b(t) and the temperature z(x, y, t), satisfying equations (2.1)–(2.6). The
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inverse problem can be formulated as a nonlinear least-squares minimization of the least-
squares objective function given as follows.

F (a, b) =

∥∥∥∥∥∥∥
∫∫

Qxy

z(x, y, t)dxdy − E1(t)

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥z(x0, y0, t) +
∫∫

Qxy

K(x, y)z(x, y, t)dxdy − E2(t)

∥∥∥∥∥∥∥
2

, (5.1)

or, in discretizations form

F (a, b) =
N∑

n=1

∫∫
Qxy

z(x, y, tn)dxdy − E1(tn)


2

+
N∑

n=1

z(x0, y0, tn) +
∫∫

Qxy

K(x, y)z(x, y, tn)dxdy − E2(tn)


2

, (5.2)

where z(x, y, t) solves (2.1)–(2.4) for given a(t) and b(t), respectively. The minimization of
the objective function (5.2) is performed using the MATLAB toolbox routine lsqnonlin,
which does not require supplying by the user the gradient of the objective function, [41].
This subroutine attempts to minimize a sum of squares, which starts from initial guesses,
based on the physical constraints a(t) and b(t). Thus, the lower and upper bounds for
the coefficients a(t) and b(t) are −102 and 102, respectively. These bounds allow a wide
search range for the unknown. Moreover, within lsqnonlin, we apply the interior-reflective
Newton approach based Trust Region Reflective algorithm [14].

6. Numerical results and discussion
In this section, we present numerical results for the terms a(t) and b(t) together with

the temperature z(x, y, t), in the case of exact and noisy data (2.1)–(2.6). We employ the
root mean square errors (RMSE), in order to assess th accuracy of the numerical results,
defined as follows.

RMSE(a) =
[

T

N

N∑
n=1

(
aNumerical(tn) − aExact(tn)

)2
]1/2

, (6.1)

RMSE(b) =
[

T

N

N∑
n=1

(
bNumerical(tn) − bExact(tn)

)2
]1/2

. (6.2)

For simplicity, we take T = 1.
The inverse problem given by (2.1)–(2.6) is solved subject to both exact and noisy

measurements (2.5) and (2.6). The noisy data are numerically formulated as follows:

Eϵ1
1 (tn) = E1(tn) + ϵ1n, Eϵ2

2 (tn) = E2(tn) + ϵ2n, n = 1, N, (6.3)

where ϵ1n and ϵ2n are random variables generated from a Gaussian normal distribution
with mean zero and standard deviations σ1 and σ2 given by

σ1 = max
t∈[0,T ]

|E1(t)|×p, σ2 = max
t∈[0,T ]

|E2(t)|×p, (6.4)

where p represents the percentage of noise.
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Let us investigate the problem proposed in equations (2.1)–(2.6) with unknown coeffi-
cients a(t) and b(t), with the input data:

φ(x, y) = −(−1 + x)5x5(−1 + y)5y5, z(0, y, t) = z(1, y, t) = 0, α(t) = 1 + t

200
,

z(x, 0, t) = z(x, 1, t) = 0, g(x, y, t) = x3y3(−1 + x)3(−1 + y)3et,

f(x, y, t) = et

20
(−1 + x)3x3(−1 + y)3y3(−20(1 + t) − 20(−1 + x)2x2(−1 + y)2y2

+20t(−1 + x)2x2(−1 + y)2y2 + (1 + t)(2(−1 + y)2y2 − 9x(−1 + y)2y2

−2x3(2 − 9y + 9y2) + x4(2 − 9y + 9y2) + x2(2 − 9y + 18y2 − 18y3 + 9y4))), (6.5)

E1(t) =
∫ 1

0

∫ 1

0
z(x, y, t)dxdy = − et

7683984
, (6.6)

E2(t) = z(x0, y0, t) +
∫ 1

0

∫ 1

0
K(x, y)z(x, y, t)dxdy = − 545785et

503577575424
, (6.7)

where
x0 = 0.5, y0 = 0.5, K(x, y) = 1,

and

D(t) = E1(t)g2(t) − E2(t)g1(t) = 3401e2t

201431030169600
̸= 0, ∀t ∈ [0, 1], (6.8)

where

g1(t) =
∫ 1

0

∫ 1

0
g(x, y, t)dxdy = et

19600
,

g2(t) = g(0.5, 0.5, t) +
∫ 1

0

∫ 1

0
K(x, y)g(x, y, t)dxdy = 1481et

5017600
.

We observe that the conditions of Theorem 1 is fulfilled and thus, the uniqueness condition
of the solution is guaranteed. In fact, it can easily be checked by direct substitution that
the analytical solution is given by

z(x, y, t) = −x5y5(x − 1)5(y − 1)5et, (x, y, t) ∈ QT , (6.9)
and

a(t) = t, b(t) = 1 + t, t ∈ [0, 1]. (6.10)
First, we assess the accuracy of the direct problem (2.1)–(2.4) with the input data (6.5)
when a(t) and b(t) are known and given by (6.10). The numerical results for the interior
temperature z(x, y, t) have been obtained in excellent agreement with the analytical so-
lution (6.9) and therefore they are not presented. Apart from the interior temperature,
other output of interest is the data (2.5) and (2.6), which analytically is given by (6.6)
and (6.7). Figure 1 shows that the analytical and numerical solutions (6.9) obtained with
M1 = M2 = 10 and with various numbers of time steps N ∈ {10, 20, 40} are in very good
agreement. Also, the RMSE defined by

RMSE(E1) =
[

1
N

N∑
n=1

(
Enumerical

1 (tn) − Eexact
1 (tn)

)2
]1/2

, (6.11)

RMSE(E2) =
[

1
N

N∑
n=1

(
Enumerical

2 (tn) − Eexact
2 (tn)

)2
]1/2

, (6.12)

indicated in Table 1, shows more clearly their decreases as the grid size becomes smaller.
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Figure 1. The analytical (6.9) and approximate solutions for the temperature
z(x, y, 1), with absolute errors for ∆x = ∆y = 1

10 and with: (a) ∆t = 1
10 , (b)

∆t = 1
20 and (c) ∆t = 1

40 , for the direct problem.

Table 1. The RMSE values ((6.11) and (6.12)) for E1(t) and E2(t), with M1 =
M2 = 10 and with various N ∈ {10, 20, 40}, for direct problem.

M1 = M2 = 10 RMSE(E1) RMSE(E2)
N = 10
N = 20
N = 40

5.4607E-8
3.0359E-9
1.9196E-9

2.2271E-8
6.6868E-9
2.7236E-9
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Now, we investigate the inverse problem. We fix M1 = M2 = 10 and N = 40 and
start the investigation for reconstructing the unknown coefficients a(t) and b(t) and the
temperature z(x, y, t) in absence of noise in the measured data (6.3). We take the initial
guesses for the vectors a and b as follows:

a0(tn) = a(0) = 0, b0(tn) = b(0) = 1, n = 1, N. (6.13)
The objective function (5.2), as a function of the number of iterations, is plotted in Fig-
ure 2(a). From this figure, it can be seen that a fast monotonic decreasing convergence
is achieved in about 19 iterations to reach a very low prescribed tolerance of O(10−21).
The exact (6.10) and approximate solutions to the functions a(t) and b(t) are portrayed
in Figures 2(b) and 2(c). It is observed that the numerical outcomes are accurate with
RMSE(a) =0.0110 and RMSE(b) =1.1928E-4. No regularization was found necessary to
penalise the nonlinear least-squares objective functional (5.2) for p = 0 noise. Neverthe-
less, for higher amounts of noise the instability in retrieving the coefficients a(t) and b(t)
will become apparent and regularization would need to be employed.

(a)

0 5 10 15 20

Number of iterations

10-25

10-20

10-15

10-10

10-5

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

2.4787×10-21

(b)

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

1.2

a
(t

)

Exact solution

Numerical solution

Initial guess

(c)

0 0.2 0.4 0.6 0.8 1

t

1

1.2

1.4

1.6

1.8

2

b
(t

)

Exact solution

Numerical solution

Initial guess

Figure 2. (a) The objective function F (5.2) versus no. of iterations, and the
approximate and analytical exact curves (6.10) for: (b) the potential a(t) and (c)
the source b(t), in absence of noise and regularization.
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Next, we associate 1%, 3% noise with the simulated data (2.5) and (2.6), as in equation
(6.4). It is significant to note that the inverse problem is not well posed therefore, we
anticipate that the cost function needs to be regularized for the sake of stability and
accuracy in results. Figures 3 and 4 show visuals of the reconstructed terms a(t) and b(t).
From Figures 3(a), 3(c) and 4(a), 4(c) it is clear that, as expected, we obtain inaccurate
and unstable solutions with RMSE(a) = 0.3209 and RMSE(b) = 0.0086 for p = 1%, and
RMSE(a) = 0.5520 and RMSE(b) = 0.0100 for p = 3%, respectively, as the problem is
noise sensitive and ill-posed. Hence, regularization process is crucial for stable solutions.
For this, we penalise the objective function F (5.1) by adding β

(
∥a(t)∥2 + ∥b(t)∥2

)
to it,

where β > 0 is the Tikhonov’s regularization parameter to be chosen. Then, in discretised
form of Tikhonov functional recasts as

Fβ(a, b) = F (a, b) + β

(
N∑

n=1
[an]2 +

N∑
n=1

[bn]2
)

. (6.14)
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Figure 3. The approximate and analytical (6.10) solutions of the potential a(t),
and the heat source b(t), for p = 1%, with β ∈ {0, 10−8, 10−7}.
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The regularization parameter β is chosen to be 10−8, 10−7 for p = 1% noise (see Fig-
ures 3(b) and 3(d) obtaining RMSE(a) ∈ {0.0605, 0.0329} and RMSE(b) ∈ {0.0063, 0.0031},
and β ∈ {10−6, 10−5} for p = 3% noise (see Figures 4(b) and 4(d) obtaining RMSE(a) ∈
{0.1491, 0.1189} and RMSE(b) ∈ {0.0087, 0.0081}, which provide stable and comparatively
accurate approximations for the functions a(t) and b(t). We have also investigated higher
amounts of noise p in (6.4), but the results obtained were less accurate and therefore,
they are not presented. Although not presented, it is illustrated that the regularized cost
function Fβ versus no. of iterations monotonically decreasing convergence is observed.
Other details about the RMSE values ((6.1) and 6.2)), and the no. of iterations, with and
without regularization are listed in Table 2. Eventually, from Figures 2-4 and Table 2, it
is observed that the MATLAB simulation results are fairly stable and accurate.
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Figure 4. The approximate and analytical (6.10) solutions of the potential a(t),
and the heat source b(t), for p = 3%, with β ∈ {0, 10−6, 10−5}.
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Table 2. RMSE values, and no. of iterations, with p ∈ {1%, 3%} noise, with
δ ∈ {0, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4}.

p β RMSE(a) RMSE(b) Iter

1%

0
10−9

10−8

10−7

10−6

0.3209
0.0893
0.0605
0.0329
0.0472

0.0086
0.0080
0.0063
0.0031
0.0043

30
10
10
10
10

3%

0
10−7

10−6

10−5

10−4

0.5520
0.2251
0.1491
0.1198
0.1237

0.0100
0.0099
0.0087
0.0081
0.0089

40
20
20
20
20

7. Conclusions
The article considers the problem of identifying the time-dependent potential and force

terms in the two-dimensional parabolic equation with homogeneous boundary conditions
and the time-average temperature observations. The unique solvability of the solution of
the inverse problem on a sufficiently small time interval has been proved by using of the
contraction mapping. The proposed work is novel and has never been solved theoretically
nor numerically before. The direct solver based on the ADE technique was employed.
The resulting non-linear optimization problem was solved computationally by means of
the MATLAB subroutine lsqnonlin. Since the problem under consideration was ill-posed,
therefore, the Tikhonov regularization was utilized in order to tackle the stability. The
numerical results show that ADE is an accurate, stable and robust regularization method
for reconstructing the time-dependent potential and force terms from time-average tem-
perature observations. The main difficulty in regularization when we solve the inverse
problem is how to choose an appropriate regularization parameter β which compromises
between accuracy and stability. However, one can use techniques such as the L-curve
method [19] or Morozov’s discrepancy principle [44] to find such a parameter, but in our
work we have used trial and error. As mentioned in [16], the regularization parameter β
is selected based on experience by first choosing a small value and gradually increasing it
until any numerical oscillations in the unknown coefficients disappear.

Future work will concern inversion of real physical measurements data (5) and (6) to
reconstruct the time-dependent lowest and source terms in a 2D parabolic equation in
the context or the heat transfer coefficient in the context of fins used in condensers and
evaporators,[42].
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