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Abstract
We investigate a Kirchhoff type plate equation with degenerate damping term. By potential well theory, we show
the asymptotic stability of energy in the presence of a degenerate damping.
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1. Introduction and Preliminaries
In this paper, we focus on the stability of solutions under the sufficent conditions for the following problem

utt +∆2u−∆u−
(∫

Ω

|∇u|2 dx
)γ

∆u+ |u|ρ j′ (ut) = |u|q−1 u in Ω× (0,+∞) ,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) on x ∈Ω,

u(x, t) = ∂

∂n u(x, t) = 0 on x ∈ ∂Ω,

(1.1)

where γ > 0, j′ denotes the derivative of j (α) [1], n is the outer normal and Ω is a bounded domain in Rn with a smooth
boundary ∂Ω. Also, here

∆u−

∫
Ω

|∇u|2 dx

γ

∆u and |u|ρ j′ (ut)

represent Kirchhoff-type term and degenerate damping term, respectively.

1.1 Kirchhoff-type plate problems
To motivation for this problem comes from the following equation so called Beam equation model

utt +∆
2u−

α +β

∫
Ω

|∇u|2 dx

∆u = |u|q−2 u, (1.2)

without source term
(
|u|q−2 u

)
was firstly introduced by Woinowsky-Krieger [2] to describe the dynamic bucking of a hinged

extensible beam under an axial force. It was extensively studied by several researcers in different contexs. In [3, 4], the authors
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showed the global attractor, convergence and unboundedness of solutions with |ut |p−2 ut nonlinear damping term. Then, the
model also was investigated in [5, 6] and the authors obtained the existence, decay estimates of solutions and blow up of
solutions with both negative and positive initial energy with |ut |p−2 ut nonlinear damping term.

Recently, Pereira et al. [7] and Pişkin and Yüksekkaya [8] studied the model (1.2) with ut . Pereira et al. studied existence
of the global solutions through the Faedo-Galerkin approximations and obtained the asymptotic behavior by using the Nakao
method. Pişkin and Yüksekkaya proved the blow up of solutions with positive and negative initial energy.

1.2 Problems with degenerate damping
This kind of degenerate damping effects was firstly investigated by Levine and Serrin [9] and considered the following equation

(
|ut |l−2 ut

)
t
−a∇.

(
|∇u|q−2

∇u
)
+b |u|ρ |ut |m−2 ut = c |u|p−2 u.

The authors considered the blow up of solutions with negative initial energy for the case ρ +m < p under several other
restrictions imposed on the paremeters m,ρ, p,q. But Levine and Serrin obtain only blow up solution with negative initial
energy without any guarantees that the solution has a local solution. Then, Pitts and Rammaha [10] proved global and local
existence for ρ +m ≥ p and for the case ρ < 1 established uniqueness. Also, the authors obtained blow up solutions for
negative initial energy and ρ +m < p .

On the other hand, the hyperbolic models with degenerate damping are of much interest in material science and physics. It
particularly appears in physics when the friction is modulated by the strains. There is a wide literature has degenerate damping
terms, namely δ (u)h(ut) where δ (u) is a positive function and h is nonlinear, (see [11]-[27]).

The remaining part of this paper is organized as follows: In the next section, we study the stability result.
Now, we present some preliminary material which will be helpful for the proof of our result. Throughout this paper, we

denote the standart L2 (Ω) norm by ‖.‖= ‖.‖L2(Ω) and Lq (Ω) norm ‖.‖q = ‖.‖Lq(Ω) .

(A1) ρ, p,q ≥ 0; ρ ≤ n
n−2 , q + 1 ≤ 2n

n−2 if n ≥ 3. There exist positive constants c, c0, c1 such that for all α,β ∈ R
j (α) : R→ R be a C1 convex real function satisfies

• j (α)≥ c |α|p+1 ,
• j′ (α) is single valued and | j′ (α)| ≤ c0 |α|p ,
• ( j′ (α)− j′ (β ))(α−β )≥ c1 |α−β |p+1 .

(A2) u0 (x) ∈ H2
0 (Ω) , u1 (x) ∈ L2 (Ω) , |u(τ)|ρ j (ut) ∈ L2 (Ω× (0,T )) .

The said solution of (1.1) satisfies the energy identity

E ′ (t) =−
∫

Ω

|u(τ)|ρ j (ut)(τ)dxdτ ≤ 0 (1.3)

where

E (t) =
1
2

[
‖ut‖2 +‖∆u‖2 +‖∇u‖2 +

1
γ +1

‖∇u‖2(γ+1)
]
− 1

q+1
‖u‖q+1

q+1 (1.4)

and

E (0) =
1
2

[
‖u1‖2 +‖∆u0‖2 +‖∇u0‖2 +

1
γ +1

‖∇u0‖2(γ+1)
]
− 1

q+1
‖u0‖q+1

q+1 . (1.5)

Moreover, by computation, we get E (t) is a non-increasing function, then

E (t)≤ E (0) . (1.6)

Now, we define

α1 = λ
− 2

q−1
1 , E1 =

(
1

2(γ +1)
− 1

q+1

)
α

q+1
1 ,

α2 =

(
1

(q+1)λ 2
1

) 1
q−1

, E2 =
q+1

2

(
1
2
− 1

q+1

)
α

q+1
2 ,

W0 =
{
(α,E) ∈ R2,0≤ α < α2,0 < E < E2

}
,

V =
{
(α,E) ∈ R2,α > α1,0 < E < E1

}
where λ1 is the embedding constant (where H2

0 (Ω) is embedded into Lq+1 (Ω)).
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2. Stability

This section is devoted to prove the stability of solutions for problem (1.1).

Lemma 2.1. Assume that (A1) and (A2) hold and
(
‖u0‖q+1 ,E (0)

)
∈W0, then

(
‖u(t)‖q+1 ,E (t)

)
∈W0, t ≥ 0, (2.1)

and

E (t)≥ 1
2

[
‖ut (t)‖2 +‖∆u(t)‖2 +

1
γ +1

‖∇u(t)‖2(γ+1)
]
+

1
4
‖∇u(t)‖2 , t ≥ 0. (2.2)

Proof. By using the embedding theorem and (1.6), we get

E2 > E (0)≥ E (t)

≥ 1
2

[
‖ut (t)‖2 +‖∆u(t)‖2 +

1
γ +1

‖∇u(t)‖2(γ+1)
]

+
1
4
‖∇u(t)‖2 +

1
4

λ
−2
1 ‖u(t)‖

2
q+1−

1
2
‖u(t)‖q+1

q+1

≥ 1
2

[
‖ut (t)‖2 +‖∆u(t)‖2 +

1
γ +1

‖∇u(t)‖2(γ+1)
]

+
1
4
‖∇u(t)‖2 +h

(
‖u(t)‖q+1

)
, (2.3)

where h(α) = 1
4 λ
−2
1 α2− 1

2 αq+1, for α ≥ 0. It is not difficult to verify that h(α) reachs its maximum E2 for α = α2, h(α)
is strictly decreasing for α ≥ α2 and h(α)→−∞ as α → ∞. By the continuity of ‖u(t)‖q+1 and α (0) = ‖u0‖q+1 < α2,
α (t)< α2 for all t ≥ 0. Further, E (t)< E2 by (2.3). Then, (2.1) holds.

To obtain (2.2), it remains to the note that h(α)≥ 0 whenever 0≤ α < α2. Then (2.2) comes after at once.

Lemma 2.2. Assume that (A1) and (A2) hold, then

‖∇u(t)‖2 ≥ 2‖u(t)‖q+1
q+1 or ‖∇u(t)‖2−‖u(t)‖q+1

q+1 ≥
1
2
‖∇u(t)‖2 . (2.4)

Furthermore, we have for constant C{
‖ut (t)‖ ∈ L2 (Ω) ,

‖∇u(t)‖ ≤C, ‖u(t)‖q+1 ≤C, ‖ut (t)‖ ≤C, ‖∆u(t)‖ ≤C.
(2.5)

Proof. By using the embedding theorem, we get

1
2
‖∇u(t)‖2− 1

2
‖u(t)‖q+1

q+1 ≥ 1
4
‖∇u(t)‖2 +

1
4

λ
−2
1 ‖u(t)‖

2
q+1−

1
2
‖u(t)‖q+1

q+1

=
1
4
‖∇u(t)‖2 +h

(
‖u(t)‖q+1

)
.

Since h(α)≥ 0, if 0≤ α < α2 and 0≤ ‖u(t)‖q+1 < α2 by Lemma 1, (2.4) is true.
The initial result in (2.5) comes from the assumption (A2). The remainder of results in (2.5) follows (1.6), (2.2) and

(2.4).

Lemma 2.3. Let
(
‖u0‖q+1 ,E (0)

)
∈W0 and E (t)≥ η , where η > 0 is a constant, then there exists δ = δ (η)> 0 such that

‖ut (t)‖2 +‖∆u(t)‖2 +‖∇u(t)‖2 +‖∇u(t)‖2(γ+1)−‖u(t)‖q+1
q+1 ≥ δ , t ≥ 0. (2.6)
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Proof. From the definition of E (t) and E (t)≥ η , we get

‖ut (t)‖2 +‖∆u(t)‖2 +‖∇u(t)‖2 +‖∇u(t)‖2(γ+1) ≥ 2η , t ≥ 0. (2.7)

Now, we suppose by contradiction that (2.6) does not hold. By (2.4), there is a sequences tn ⊂ R+ as follows

‖ut (tn)‖2 +‖∆u(tn)‖2 +‖∇u(tn)‖2 +‖∇u(tn)‖2(γ+1)−‖u(tn)‖q+1
q+1

≥ ‖ut (tn)‖2 +‖∆u(tn)‖2 +‖∇u(tn)‖2(γ+1)+
1
2
‖∇u(tn)‖2→ 0, (n→ ∞) .

Then, we get

‖ut (tn)‖2→ 0,‖∆u(tn)‖2→ 0,‖∇u(tn)‖2(γ+1)→ 0, ‖∇u(tn)‖2→ 0, n→ ∞.

This is imposible since (2.7) and yield the desired result. This completes the proof of lemma.

Theorem 2.4. Assume that (A1) and (A2) hold, we get

lim
t→∞

E (tn) = 0, lim
t→∞
‖∆u(tn)‖2 = 0. (2.8)

Proof. Assume that (2.8) fails, then there exists η > 0 such that E (t)≥ η for all t ≥ 0 since (1.6) and E (t)≥ 0. Multiplying
both sides of (1.1) by u, integrating them over [T, t]×Ω (0 < T ≤ t ≤ ∞) and integrating by parts, we have

(ut (s) ,u(s))|ts=T

=
∫ t

T

[
2‖ut (s)‖2−

(
‖ut (s)‖2 +‖∆u(s)‖2 +‖∇u(s)‖2 +‖∇u(s)‖2(γ+1)−‖u(s)‖q+1

q+1

)
−
∫

Ω

|u(s)|ρ u(s) j′ (ut)(s)dx
]

ds

=
∫ t

T
(K1 +K2 +K3)ds. (2.9)

By (1.6), (2.2) and (2.5), we have

∫ t

T
K1ds =

∫ t

T
2‖ut (s)‖2 ds≤ 4E

1
2 (0)

(∫ t

T
‖ut (s)‖2 ds

) 1
2
(∫ t

T
ds
) 1

2
≤C1

(∫ t

T
ds
) 1

2
. (2.10)

Here and in the next positive constant Ci not depend on t and T. From Lemma 3, we have

∫ t

T
K2ds = −

∫ t

T

(
‖ut (s)‖2 +‖∆u(s)‖2 +‖∇u(s)‖2 +‖∇u(s)‖2(γ+1)−‖u(s)‖q+1

q+1

)
ds

≤ −δ

∫ t

T
ds. (2.11)

Set

H (t) = E1−E (t) .

From (1.3), we have

H ′ (t) =−E ′ (t) =
∫

Ω

|u(t)|ρ j (ut)(t)dx≥ 0. (2.12)
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Form (2.12) and since E (t) ≥ 0 for t ≥ 0 and H (t) ∈C (0,∞) we reach at
∫

Ω
|u(t)|ρ j′ (ut)(t)dx ∈ L1 (0,∞) , using Holder

inequality, (2.4) and embedding theorem H2
0 (Ω) ↪→ Lρ+p (Ω) , we have∫ t

T
K3ds = −

∫ t

T

∫
Ω

|u(s)|ρ u(s) j′ (ut)(s)dxds

≤
∫ t

T

∫
Ω

|u(s)|ρ+1− ρ+p+1
p+1 |u(s)|

ρ+p+1
p+1 |ut (s)|p dxds

≤
(∫ t

T

∫
Ω

|u|ρ j (ut)(s)dxds
) p

p+1
(∫ t

T

∫
Ω

|u(s)|ρ+p+1 dxds
) 1

p+1

≤ C2

(∫ t

T
H ′ (s)ds

) p
p+1
(∫ t

T
‖u(s)‖ρ+p+1

ρ+p+1 ds
) 1

p+1

≤ C3

(∫ t

T
‖∇u(s)‖ρ+p+1 ds

) 1
p+1
≤C4

(∫ t

T
ds
) 1

p+1
. (2.13)

Then from (2.9)-(2.13), as p+1≤ 2, we know

(ut (s) ,u(s))|ts=T ≤C1

(∫ t

T
ds
) 1

2
+C4

(∫ t

T
ds
) 1

p+1
−δ

∫ t

T
ds≤C5

(∫ t

T
ds
) 1

p+1
−δ

∫ t

T
ds. (2.14)

Moreover, by applying Holder inequality and (2.5),

|(ut (s) ,u(s))| ≤C6

(
‖ut (s)‖2 +‖∆u(s)‖2 +‖∇u(s)‖2 +‖∇u(s)‖2(γ+1)

)
< ∞.

In turn, we arrive a result that is in contradiction with (2.14) for fixing T when t→ ∞. Therefore, we derive lim
t→∞

E (t) = 0 and

lim
t→∞
‖∆u(t)‖2 = 0 by (2.2). This completes the proof.
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[20] E. Pişkin, F. Ekinci, Global existence of solutions for a coupled viscoelastic plate equation with degenerate damping terms,
Tbilisi Math. J., 14(2021), 195-206.
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