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 Mangrove forests are considered one of the most complex and dynamic ecosystems facing 
various challenges due to anthropogenic disturbance and climate change. The excessive 
harvesting and land-use change in areas covered by mangrove ecosystems is critical threats 
to these forests. Therefore, the continuous and regular monitoring of these forests is essential. 
Fortunately, remote sensing data has made it possible to regularly and frequently monitor this 
forest type. This study has two goals. Firstly, it combines optical data of Landsat- 8 and 
Sentinel-2 with Sentinel-1 radar data to improve land cover mapping accuracy. Secondly, it 
aims to evaluate the SVM machine learning algorithms and random forest to detection and 
differentiate forest cover from other land types in the Google Earth Engine system. The results 
show that the support vector machine (SVM) algorithm in the S2 + S1 dataset with a kappa 
coefficient of 0.94 performs significantly better than when used in the L8 + S1 combination 
dataset with a kappa coefficient of 0.88. Conversely, the kappa coefficients of 0.89 and 0.85 
were estimated for the random forest algorithm in S2 + S1 and L8 + S1 datasets. This again 
indicates the superiority of Sentinel-2 and Sentinel-1 datasets over Landsat- 8 and Sentinel-1 
datasets. In general, the support vector machine (SVM) algorithm yielded better results than 
the RF random forest algorithm in optical and radar datasets. The results showed that using 
the Google Earth engine system and machine learning algorithms accelerates the process of 
mapping mangrove forests and even change detection. 
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1. Introduction  
 

Mangrove forests are swampy plant communities 
located in tropical regions between sea and land on 
tropical and subtropical coastlines [1-2]. These forests 
are prolific ecosystems with significant ecological and 
economic consequences [3-4]. Mangrove forests help 
reduce coastal flooding and erosion and protect inland 
farms, livestock and aquaculture, and other coastal 
communities against natural hazards such as tornadoes 
and storms [5]. However, these forests are at high risk 
due to rapid population growth, poor planning, and 
unbalanced economic development. The increasing 
problems related to mangrove forests worldwide are 
serious issues faced by coastal ecosystems. 
Unfortunately, these forests are affected by human 
habitats, pollution, storms, and sea waves [6]. In Iran, this 

type of forest is under threat due to the following factors: 
excessive harvesting in the branches of these forests, 
road development, the improper establishment of 
industries, forest use without proper recreational 
planning, pollution caused by oil hydrocarbons, 
increasing aquaculture activities and the general lack of 
environmental mechanisms in these forests [7]. 

It is impossible to monitor mangrove forests 
traditionally since they are located in intermedia  areas 
[8]. Meanwhile, satellite remote sensing data can be used 
for large areas over time so that this technology can be 
used as an alternative to mangrove forest monitoring. 
Many researchers have mapped mangrove forests 
worldwide, using various satellite remote sensing data, 
including optical images [9-10] and SAR [11]. Mangrove 
forests can be monitored on a large scale, using high-
resolution spatial images (less than 1 meter), such as 
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Worldview, Quickbird, and aerial photographs; however, 
due to cost constraints, data volume used by users is 
limited. As a result, freely accessible satellite images (e.g., 
Landsat-8 and Sentinel-2) and medium spatial resolution 
(30 and 10 m) are widely used for extracting data of 
large-scale mangrove forests [12]. Continuous cloud 
coverage and inundation of tidal lands in coasts prevent 
access to high-quality optical data [13-15]. With the 
advent of Sentinel-1 C-band synthetic aperture radar 
images, it is possible to provide land cover classifications 
in repetitive, cloud-covered environments [16]. SAR 
plays an essential role in monitoring the biophysical 
parameters of mangrove forests since its microwave 
energy can penetrate cloud masses formed continuously 
in tropical regions, making it possible to obtain data 
throughout the year [17]. Combining optical and SAR 
data can improve classification accuracy, contributing 
significantly to the protection of mangrove forests. This 
type of data combination provides more detailed 
information for studying the spatial distribution and 
dynamic changes of mangrove forests, which play an 
essential role in developing conservation and 
management policies [18]. The increase in the number of 
sensors and free satellite data has led to new platforms 
that help users select and process large volumes of 
spatial data. Google Earth Engine (GEE) is an excellent 
example of a cloud-based computing platform that 
provides easy access to satellite data sets on a planet-
scale [19-20]. For example, GEE provides free 
preprocessed satellite series data (including Landsat-, 
Sentinel-2, and Sentinel-1), along with the required disk 
space and advanced machine learning classification 
algorithms [1]. The online GEE system offers more than 
15 classification techniques, with most studies 
conducted rely on machine learning algorithms [21-22] 
CART, RF, and SVMs.  This is because these methods have 
proved to be some powerful ways to classify land cover. 
Such methods based on free data and robust algorithms 
can be helpful for regular monitoring [23]. So far, many 
studies have been done on mangrove forests using 
optical and radar remote sensing methods worldwide. In 
West Africa, mangrove forests were mapped using 
machine learning algorithms in Google Earth and 
Sentinel-2 images, with thematic maps found to have an 
accuracy of 90% [23]. A comparative study to 
differentiate mangrove forests from non-mangrove 
forests using NDVI, NDWI, SAVI indices, SR, and CMRI 
showed that the combined CMRI index has better 
accuracy than other indicators used [5]. Multimodal 
mapping of mangrove forests in China showed that 
integrating RADARSAT-2 polarization data and Landsat-
8 data can increase the overall accuracy (OA) by 95%, 
while optics classification alone can produce an OA of 
about 83% [18]. A study integrating Sentinel-2 
multispectral time-series images with Sentinel-1 images 
for mapping Spartina alterniflora and Mangrove in 
Zhangjiang Est showed that the 10-meter maps produced 
represented a relatively stable spatial pattern mangrove 
and rapid expansion Spartina alterniflora [24]. Another 
study using Landsat- 8 multidimensional data to map and 
identify mangrove changes in Pong Vietnam showed that 
Landsat- multidimensional data, along with image 
segmentation and GIS approaches, has a high potential to 

map mangrove forests in the coastal area [25]. Three 
spectral criteria (spectral match degree (SMD), 
normalized difference mangrove index (NDMI), and 
shortwave infrared absorption) were found to better 
differentiate mangrove forests from other vegetation in 
Landsat- images 8. The results showed that using 
spectral criteria (UA = 85%, PA = 94%, OA = 95%) is 
better than using raw band reflectance data (UA = 72%, 
PA = 82). ٪, OA = 90%) [26]. the changes in mangrove 
forests around Trat Province in Thailand were mapped 
by analyzing and processing 3-decade images via the GEE 
Web System. The results show that the use of a web-
based monitoring system of GEE contributes to mapping 
and preserving the coastal ecosystems [27]. lHu et a. [12] 
used Sentinel-1 and Sentinel-2 time-series data in Google 
Earth Engine in China to map mangrove forests on a 
national scale. The results showed the significant 
capability of Sentinel-1 and Sentinel-2 images in 
producing accurate maps of mangrove forests with high 
resolution in GEE. Producing accurate thematic maps of 
mangroves with Sentinel 1 and Sentinel 2 data is 
important and necessary for planners. The result showed 
an increase in overall accuracy and kappa coefficient 
[28]. Ghorbanian et al. [29] used the combination of 
Sentinel 1 and Sentinel 2 images to create a functional 
index. The results of the researchers showed that the 
performance of the combined index was good in 
mangrove identification and it is widely used in large-
scale mangrove mapping. In a study, the combination of 
optical and star data was used for mangrove mapping. 
The results showed that the combination of optical and 
SAR data can effectively improve the classification 
accuracy [30].  The present study uses the Cloud Google 
Earth Engine to monitor and map the Qeshm mangrove 
forests (southern Iran), which are designated as 
protected forests. The first purpose of this study was to 
combine images obtained from optics and radar 
(Sentinel-2 and Sentinel-1- Landsat-8 and Sentinel-1) 
systems with a different spatial resolution to compare 
them in terms of the accuracy of resulting thematic maps. 
The second purpose of this study was to compare and 
evaluate the performance of two algorithms, namely, 
SVM and RF machine learning, to identify mangrove 
forests and differentiate them from other land covers in 
the combined optics and radar images in the Google 
Earth Engine cloud platform. In previous studies, 
Sentinel-2 and Landsat-8 with optical nature were not 
integrated with Sentinel 1 SAR satellite with radar 
nature, which is superior to previous studies in the 
present study, and two RF and SVM machine learning 
classifiers were used simultaneously. 

 

2. Material, Method and Case studies 
 

2.1. Case studies 
 

The case study is the mangrove forest in Hormozgan 
province in Iran (Figure 1a). Qeshm Island, with an area 
of approximately 1.491 square kilometers, is the largest 
island in the Persian Gulf and 2.5 times the size of 
Bahrain. Mangrove forests are located between Khamir 
City and Qeshm Island between latitude 26.45 ° - 27.00 ° 
and longitude 55.20 ° - 55.51 ° (Figure 1b). Figure 1c 
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shows the map of land cover in the protected mangrove 
area. These forests account for the largest area of forests 
in Iran and even in the Persian Gulf countries, covering 
85% of Iranian mangroves. The majority of the mangrove 

forest cover in this area includes Avincina or mangrove. 
The mangrove biosphere has an area of 20 by 20 km, 
where several tidal channels have been identified [31]. 

 

 
Figure 1. The geographical Location, Hormozgan Province in Iran (a), updated land use map of Qeshm Island (b), the 

land use map of the mangrove forests in the study area (c) 

 
2.2. Data  
 

2.2.1. Reference data  
 

In this study, three datasets are as reference data. The 
land-cover map of the study area, global mangrove data 
[32], and high-resolution images obtained by Google 
Earth. To create a single data, the national land cover 
map was updated with global mangrove data in open-
source QGIS software and was used as reference data and 
high-resolution Google Earth Images to choose validation 
samples. Samples of water classes and tidal areas were 
selected and collected from Google Earth photos, while 
samples of mangrove and mud classes were taken from 
the updated land cover map. 

 
2.2.2. Satellite data 

 
Launched on February 11, 2013, the Landsat-8 

satellite is one of the new multispectral satellites, 
imagining the entire Earth every 16 days. This satellite 
has two OLI sensors and an infrared thermal sensor 
(TIRS). The Landsat-8 satellite has 11 spectral bands in 
the visible range, reflected infrared and thermal infrared 

with 15-, 30-, and 100-meters spatial resolution. The 
second satellite of the Sentinel series is called Sentinel-2, 
which began its operation on June 23, 2015. The Sentinel-
2 satellite includes two Sentinel-2A and Sentinel-2B twin 
satellites. This satellite has 13 spectral bands in the 
visible range, near-infrared, and middle infrared with 
different resolutions of 10, 20, and 60 meters. Although 
this satellite is twin, its spatial resolution has been 
reduced to 5 days compared to the Landsat--8 satellite, 
which is unique. 

Sentinel-1 is one of the Sentinel-satellites series that 
falls in the radar category, capturing the image of the 
Earth in the C band at two polarities VV and VH. This 
satellite has a spatial resolution of 5 to 20 meters per 
Azimuth and, like the Sentinel-2 optical satellite, has two 
types, A and B, which have reduced the review period of 
this satellite to 5 days. 

This study uses the following: the average series 
images of monthly cloud-free combination (all months of 
2016 except May due to severe cloudiness), Sentinel-2 
Level1C atmosphere reflection in Google Earth Engine 
(ee.ImageColection ID: COPERNICUS / S2), monthly time 
series images of a cloud-free combination of Landsat-8  



International Journal of Engineering and Geosciences– 2023, 8(3), 239-250 

 

  242  

 

for the high reflection atmosphere in Google Earth 
Engine (ee.ImageColection ID: LANDSAT- / LC8 / C01 / 
T1_TOA) as well as GRD Sentinel-1 monthly time series 
images in Google Earth Engine (ee.ImageColection ID: 

COPERNICUS / S1 ). Many researchers have suggested 
VH polarization to monitor land cover [33-34], so in this 
study, the Backscatter value of VH polarization was used. 
Table 1 describes the data used. 

 
Table 1. Characteristics of satellite data 

Sentinel-1 Sentinel-2 Landsat-8 Satellite 
SAR (Radar) MSI (Optical) OLI (Optical) Sensor (type) 

GRD Level 1C Level 1 Data Level 

C-VH (5.62 cm) 

B3 (560) 
B4 (665) 
B8 (842) 

B3 (560) 
B4 (660) 
B5 (865) 

Spectral Band/ Polarization (um) 

5 * 10 10 30 Spatial Resolution (m) 

6 5 16 Repeat Frequency (days) 
2016/1/1 – 2017/1/1 Time Series 

 
 
2.3. Methods 
 

As shown in the procedure flowchart (Figure 2), the 
spectral indices were initially calculated separately 
based on the time series satellite images in the Google 
Earth Engine system (Landsat-8 and Sentinel-2). 

Secondly, the spectral indices used for each satellite were 
combined with the series images Sentinel-1 and placed in 
a dataset. Third, the mangrove forest cover was mapped 
using machine learning classification algorithms (RF and 
SVM) in GEE. Finally, to evaluate the classified maps, they 
were compared with the reference data.  

 
 

 
Figure 2. Research flowchart 

 
 
2.3.1. Calculation of NDVI Time-Series 
 

The present study detects and differentiates 
mangrove jungles from other vegetation and land, using 
the Normalized Differential Vegetation Index (NDVI).  
NDVI index was applied separately to the Sentinel-2 and 

Landsat-8 multispectral time-series images in Google 
Earth Engine. NDVI is one of the most common indicators 
used for vegetation dynamics at a regional and global 
scale [35-36]. This index developed by [37] (T) is 
calculated based on the ratio between the TOA 
reflectivity of the red band in the spectral range of 0.66 
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μm and the near-infrared band (NIR) in the range of 0.86 
μm [38]. The value of NDVI ranges from - 1 to 1. Low 
NDVI values indicate vegetation under moisture 
pressure, and higher values indicate a higher level of 
green vegetation density [39-40]. This index is calculated 
based on Equation 1: 
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (1) 

 
NIR represents the near-infrared band in the spectral 

range of 865 and 842 nm, and the red band ranges from 
660 to 665 nm. 
 
2.3.2. Calculation of NDWI Time-Series 
 

Given the presence of water canals in the mangrove-
covered area, water canals were identified and 
differentiated from other water bodies using the NDWI 
Normalized Differential Index in GEE. To this end, this 
index was calculated on time-series images (Landsat- 8 
and Sentinel-2) to identify water channels. NDWI index is 
the best indicator for mapping water size. It is also a 
suitable index for monitoring the hydrological condition 
of wetlands. The value of NDWI ranges from 1 and-1, with 
negative values or near negative and positive values 
representing a water area with high humidity.  NDWI was 
calculated using Equation 2 [41]: 
 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

(2) 

 
NIR represents the near-infrared band in the spectral 

range of 865 and 842 nm, Green: the green band is in the 
range of 560 nm. 
 
2.3.3. Data integration and combination 
 

After calculating the spectral indices on the satellite 
imagery used, all the time series indices (NDWI, NDVI 
from the Sentinel-2 image) and the VH polarization time 
series redistribution image (Sentinel-1) were stacked 
and integrated into a single data set. Also, all the time 
series indices (NDWI and NDVI) calculated for Landsat- 
8 and the VH Sentinel-1 polarization time series 
redistribution image were stacked and integrated into a 
single data set. The Landsat-8 and Sentinel-1 
combination datasets included 33 bands (11 NDVI 
indices, 11 NDWI indices, and 11 VH redistribution 
images), and the Sentinel-2 and Sentinel-1 combination 
datasets, had 33 bands. All these processes were 
performed in the GEE system. 
 
2.3.4. Determining training data of classification  
 

A total of 500 points in the area under study were 
selected in GEE to determine the training samples to 
classify four land cover classes (mangrove, tidal lands, 
mud, and seawater). The appropriate distribution of the 
samples was the primary criterion for selecting the 
sample. The data were collected using a combination of 
NDVI (Feb-Mar-Jan)  and (Feb-Sep-Apr) in the images of 
Sentinel-2 and Landsat-8, respectively, due to unstable 

environmental conditions such as submersion of tidal 
areas. This study used a completely random sampling 
method based on the visual evaluation of images and the 
ratio of different land cover in the study area. Jensen says 
that classes that are more important and have more 
importance are sampled more [42]. So, since the main 
purpose of the current paper was to separate mangroves 
from other lands by the mentioned method, we took 
more samples for the main purpose, which was 
mangroves, and less sampling should be done for other 
lands. So, 200 and 100 points were collected for the 
mangrove class and the other three land cover classes, 
respectively. 
 
2.3.5. Image classification  
 

Machine learning algorithms have been used in 
remote sensing for decades (e.g., from basic algorithms 
such as PCA and K-Means to more complex classifications 
and regression frameworks such as SVMs, decision trees, 
random forests, and artificial neural networks  [43]. It has 
received special attention for land use and land cover 
[44-45]. There are many classification algorithms, but RF 
and SVM were also used in this paper due to their 
frequency and most use in previous studies. In a study to 
prepare a land cover map in the GEE system, they used 
machine learning classifications and concluded that RF 
and SVM algorithms have higher accuracy than other 
machine learning classifications [46]. 

Random Forest is a non-parametric “machine 
learning” algorithm [47-48]. Nowadays, RF is considered 
one of the most widely used algorithms for land cover 
classification, which uses remote sensing data [49-51]. 
This classification method uses bootstrap aggregating or 
bagging to generate random vectors with N samples (N: 
the size of the primary input training data) and select the 
training data for each class [52]. Each pixel is assigned to 
one class based on the popular votes of all tree predictors 
[23]. 

SVM methods have also been successfully applied in 
various classification approaches [53-54]. SVM is a 
machine learning method based on Vapnik 
Chervonenkis’s dimension theory, drawing on the 
principle of minimum structural risk [55]. Generally, 
SVM is widely used and can turn nonlinear problems into 
linear problems by creating a different function in high-
dimensional space; therefore, it is not affected by sample 
dimensions and can prevent misclassification [56]. The 
Classifier package manages and supports machine 
learning algorithms in the GEE system. These classifiers 
include CART, Random Forest, NaiveBayes, and SVM. In 
this research, RF and SVM classification in the classifier 
package of the GEE system was used to classify land 
cover. For this purpose, the datasets created for each 
satellite (Sentinel-2 + Sentinel-1 and Landsat-8 + 
Sentinel-1) containing calculated spectral indices and 
redistribution of radar VH polarization were each 
separately placed as the input of RF and SVM 
classification algorithms.  Note: 1, 50 trees were taken 
into account using a trial-and-error method in order to 
perform the RF classification for the desired result. 2- 
100% of the points collected in the previous stage 
(determination of training data) were designated as 
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training points in the image classification process since 
we had access to reference data for the validation 
(testing) of RF and SVM classifiers. 
 
2.3.6. Validation 
 

In this study, the accuracy of land cover maps 
obtained from the classifiers was validated, using a 
reference map (combination of national land cover map 
and global forest cover); therefore, 30 samples (for each 
class: mangrove, mud, tidal areas, and sea) and a total of 
120 samples as a control point on the reference map 
were selected and determined to assess the accuracy. 

Researchers strongly suggest that one can’t use the 
kappa coefficient parameter to compare and evaluate the 
accuracy of thematic maps obtained from image 
classification [50-57]. The advantage and capability of 
kappa coefficient is that it works well in unbalanced data. 
Another advantage of Kappa is that it can be used for 
multiple classes. Due to the unbalanced nature of the 
data, this coefficient is fruitful. Therefore, this study 
assesses the accuracy of classification methods using the 
optimal parameters extracted from the error matrix, 
such as overall accuracy (OA), producer’s accuracy (PA), 
and user accuracy (UA). Table 2 shows the details of the 
assessment parameters used in this study. 

 
Table 2. The statistical parameters of error matrix used in this study 

Reference Description Formula Matrix Error 

[58] 
Where OA defines the total accuracy of the model, 
test pixels are described by N, and P pii represents 

the total number of correctly classified pixels. 

1

𝑁
∑ 𝑃𝑖𝑖 Overall accuracy 

[42] 

Where k is the number of rows (e.g., land-cover 
classes) in the error matrix, xii is the number of 

observations in row i and column i, and xi+ and x+j 
are the marginal totals for row i and column j, 

respectively, and N is the total number of samples . 

𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ × 𝑥+1)𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ × 𝑥+1)𝑟
𝑖=1

 kappa 

Where 𝑥𝑖𝑖  the number of correctly classified pixels 
is, 𝑥1+ is the number of pixels in a category.  𝑥+𝑗 is 

the number of sample pixels in a category. 

𝑥𝑖𝑖

𝑥1+
 User’s accuracy, UA 

𝑥𝑗𝑗

𝑥+𝑗
 Producer’s 

accuracy, PA 

 
3. Results  
 
3.1. Mangrove phenology cycle and other vegetation  
 

Figure 3 shows the monthly average of the NDVI time 
series of the Sentinel-2 and Landsat-8 satellites. The 
NDVI values of the mangrove cover and the typical 
vegetation in the Sentinel-2 images are much higher than 
the NDVI values calculated from the Landsat-8 images. In 
general, the NDVI of mangrove cover in Sentinel-2 and 
Landsat-8 was almost higher than that of normal 
vegetation per month, while the changes in typical 
vegetation fluctuated relatively highly per month. This 
factor is a distinguishing feature for identifying and 
differentiating mangroves from other vegetation in the 
area. As this figure shows, it can be concluded that spring 
is the best time to monitor mangrove forests in the study 
area (January, February, March) since the NDVI values in 
Landsat-8 and Sentinel-2 are 0.57 and 0.64 percent, 
respectively, indicating a high level of greenery of 
mangroves forests compare to other months of the year. 
 
3.2. Accuracy assessment  
 

Table 3 shows the resulting maps' accuracy obtained 
using the two classification methods for the combination 
datasets (S2 + S1 and L8 + S1). According to the tables, 
the mangrove class has the highest user accuracy among 
the four land cover classes based on the two algorithms 

used on the 3 datasets; that is, the user accuracies of the 
mangrove class for SVM and RF algorithms related to the 
data (L8 + S1) are 100 and 96.30, respectively, while the 
user accuracies of the mangrove class related to dataset 
S2 + S1 are 100 and 93.55 for the SVM algorithm and the 
RF algorithm, respectively. Also, both classification 
methods in optical and radar satellite datasets had good 
performance in differentiating other classes (user 
accuracy above 81% for water, mud, and tidal land 
classes). The manufacturer’s accuracy follows the same 
patterns for evaluating each class. The SVM and RF 
datasets (S2 + S1) are 95.79 and 92.43, respectively, and 
the accuracies of the SVM and RF datasets (L8 + S1) are 
91.52 88.98, respectively. The kappa coefficients of the 
SVM algorithm for the datasets (S2 + S1) and (L8 + S1) 
are 0.94 and 0.88, respectively. The kappa coefficients of 
the RF algorithm for the datasets (S2 + S1) and (L8 + S1) 
are 0.89 and 0.85%, respectively. 

Figures 4 and 5 illustrate the maps obtained from 
SVM and RF classifications of Optical and SAR datasets. 
As shown in the selected section of the S2 + S1 and L8 + 
S1 maps by the SVM algorithm, this algorithm, in addition 
to the acceptable classification of mangrove lands, has 
been able to distinguish well in both satellite scenarios of 
mud lands and tidal lands. However, the selected section 
in the S2 + S1 and L8 + S1 maps, classified by the RF 
algorithm, could not distinguish between tidal, mud 
lands, and sea. It has a potent mix of mud classes and tidal 
lands. 
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Figure 3. Comparing the average time-series images of NDVI for mangrove cover and typical vegetation cover in 

Landsat-8 and Sentinel-2 
 

Table 3. The parameters of matrix for algorithms 
Classification/Satellite class Mangrove Mud Tidal Zone Sea PA UA 

SVM-
Sentinel2+Sentinel1 

Mangrove 96.55 0 0 0 96.55 100 
Mud 3.45 100 0 0 100 96.77 
Tidal  0 0 96.67 10 96.67 90.63 
Sea 0 0 3.33 90 90 96.43 

Overall Accuracy = 95.79 
Kappa Coefficient = 0.94 

RF-Sentinel2+Sentinel1 

Mangrove 100 6.67 0 0 100 93.55 
Mud 0 93.33 0 0 93.33 100 
Tidal 0 0 93.33 16.67 93.33 84.85 
Sea 0 0 6.67 83.33 83.33 92.59 

Overall Accuracy = 92.43% 
Kappa Coefficient = 0.89 

SVM-Landsat-8+Sentinel1 

Mangrove 92.86 0 0 0 92.86 100 
Mud 7.14 100 0 3.33 100 90.91 
Tidal 0 0 96.67 20 96.67 82.86 
Sea 0 0 3.33 76.67 76.67 95.83 

Overall Accuracy = 91.52% 
Kappa Coefficient = 0.88 

RF-Landsat-8+Sentinel1 

Mangrove 92.86 3.33 0 0 92.86 96.30 
Mud 7.14 96.67 0 0 96.67 93.55 
Tidal 0 0 96.67 20 86.67 81.25 
Sea 0 0 3.33 80 80 85.71 

Overall Accuracy = 88.98% 
Kappa Coefficient = 0.85 

 
3.3. Comparison of land cover area  
 

Despite the increased improvement of map accuracy 
through combining radar and optics data in two machine 
learning methods (user accuracy greater than 81%), the 
resulting land cover maps differ in terms of area (Figure 
6). As shown in Figure 6, the area of the land cover map 
obtained from the SVM algorithm for the combined 
dataset of Sentinel-2 and Sentinel-1 (mangrove area: 
8333.41, mudflat: 25265.34, tidal areas: 13204.44, and 
sea: 27707.19 hectares) was nearly comparable with the 
area of the land cover map obtained from Landsat- 8 and 
Sentinel-1 datasets (mangrove area: 8544.72, mudflat: 
24702.54, tidal areas: 12472.46 and sea: 287911.08 
hectares) . 

However, the map obtained from the Landsat-8 and 
Sentinel-1 combination datasets based on the RF 
algorithm yielded a smaller estimate of the area of 
mangrove forests (7305.25 ha) compared to that 
obtained by the Sentinel-2 and Sentinel-1 datasets. The 
area of other lands based on RF algorithm in Sentinel-2 
and Sentinel-1 combination datasets (mud area: 
24674.31, tidal areas: 14051.36 and sea: 27209.9 
hectares, respectively) gave results somewhat similar to 
those obtained from Landsat- 8 and Sentinel-1 
combination datasets (244.85 mud area): Tidal zones: 
12477.64, sea: 30301.07), but this classification method 
did not yield a better result compared to the SVM 
algorithm . 
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Figure 4 .Land cover map based on SVM algorithm related to S2 + S1 (a) combination dataset, SVM land cover map of 

S2 + S1 database in zoom-out mode (c), Land cover map based on RF algorithm related to S2 + S1 (b) combination 
database RF land cover data set S2 + S1 in zoom-out mode (d) 

 
4. Discussion and Conclusion 

 
This study aims to use a combination of optical and 

radar datasets (Landsat- 8 + Sentinel-and Sentinel-2 + 
Sentinel-1) to improve the accuracy of land cover maps 
and compare and assess them. Given the objectives of 
this study, the land cover was mapped using the new 
Google Earth Engine processor. Mondal et al. [23] used 
CART and RF machine learning algorithms to map 
mangrove forests. They stated that the accuracy of the 
maps obtained from the used algorithms is more than 
90%, while in the current study, the land cover maps 
prepared based on the RF algorithm in GEE had an 
accuracy of less than 91%. Dong et al. [24] integrated the 
Sentinel-1 and Sentinel-2 images in the GEE to 
differentiate the Spartina alterniflora from the 
mangrove. Their results show that the combination of 
optics and radar data improved the accuracy of classified 
maps by about 99%. This theory is entirely consistent 
with our study because the use of a combination of optics 
and radar data in both 30-meter and 10-meter images 
has resulted in better differentiation of the mangrove 

class from other land covers. Jahanbakhshi and Ekhtesasi 
[59] Applied SVM and RF algorithms to vegetation 
classification and land use. They concluded that the SVM 
algorithm is more valuable, providing logical results that 
confirm the current study results. Zhen et al. [2] used SAR 
data in the C and Landsat-8 bands to develop a suitable 
method for improving the classification of mangrove 
forests. Their results showed that the combination of 
optical data with radar yields an overall accuracy of up to 
95%, confirming the current study results regarding the 
combination of Sentinel-1 and Sentinel-2 (SVM) and the 
overall accuracy of 95% resulting from such a 
combination. In general, managers and planners usually 
require frequent and regular monitoring of marine 
ecosystems such as mangrove forests monthly or 
annually. Such monitoring requires a large amount of 
satellite data and a powerful hardware system, which the 
GEE system has provided in recent years. EGG includes 
large amounts of satellite data (such as Landsat-8, 
Sentinel-2, and Sentinel-1) and advanced machine 
learning algorithms such as RF and SVM in the cloud and 
is available completely free. For this purpose, a 
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combination of free satellite data categorized as radar 
and optical data has improved land cover classification in 
the cloud-based GEE. Given the objectives of the present 
study, hybrid satellite data (Landsat-8 + Sentinel-1 and 
Sentinel-2 + Sentinel-1), SVM, and RF machine learning 
algorithms were used in the GEE. Due to their high 
spectral power and strong interpretation, optical data 
can achieve better classification results but requires 
more accurate spatial information concerning the 
biophysical properties of vegetation, which has been 
estimated by radar. In this study, the combined optical 
and radar variables (NDVI index, NDWI, and VH 
redistribution) helped improve the algorithms’ results. 
This suggests that optical and radar properties can be 
combined to map mangrove forests using machine 
learning algorithms such as RF and SVM. In other words, 
radar data eliminates the problems of optical sensing and 

improves the classification accuracy of thematic maps, 
especially mangrove mapping, when combined with 
optical data. In this study, the SVM algorithm in both 
combination datasets of Landsat-8 + Sentinel1 and 
Sentinel-2 + Sentinel-1 showed a very reasonable and 
good result compared to similar use of datasets with RF 
algorithm. This means that the SVM algorithm is one of 
the most desirable machine learning algorithms used in 
land use classification and land use. Thus, based on the 
results of this study, we recommend using the GEE 
system and other advanced machine learning algorithms 
in the cloud space to process time-series data for 
mapping the land cover. Moreover, it is better to use 
machine learning algorithms from radar data in-band L 
for achieving relevant results with high accuracy of 95% 
due to the very high penetration of such data up to about 
25 cm in vegetation. 

 

 
Figure 5.  Land cover map based on SVM algorithm related to L8 + S1 (a) combination dataset, SVM land cover map of 
L8 + S1 combination dataset in zoom-out mode (c), Land cover map based on RF algorithm related to L8 + S1 (b) 
combination dataset RF land cover data set L8 + S1 in zoom-out mode (d), 
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Figure 6. Comparing the area of land cover in combination dataset based on different machine learning algorithms  
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