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ABSTRACT

In this study, we answer the question under what conditions a hemi-slant submanifold of
locally decomposable metallic Riemannian manifolds admits a well defined canonical de Rham
cohomology class. Firstly, we give the integrability and minimality conditions of the distributions
arose from its definition. Later, we find some necessary conditions depending on the above-named
concepts of the associated distributions for such a type of submanifold to define a de Rham
cohomology class. Furthermore, we analyzed the non-triviality of this cohomology class. In the
end, we construct two examples which enable better expressing the main results.
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1. Introduction

The concept of a slant submanifold was first introduced by B. Y. Chen [9] as an extension of both holomorphic
and totally real submanifolds in an almost Hermitian manifold. Then, the same author also collected the
important results concerning slant submanifolds in his book [10]. After that, slant submanifolds were defined
and studied in different ambient manifolds, such as almost contact metric manifolds [26], Sasakian manifolds
[6], almost product Riemannian manifolds [31]. Also, slant submanifolds were generalized as semi-slant
submanifolds by N. Papaghiuc [28] in the almost Hermitian setting. On the other hand, J. L. Cabrerizo et
al. introduced and examined a large class of the aforesaid submanifolds, namely, bi-slant submanifolds [5].
Moreover, another significant class of bi-slant submanifolds are anti-slant submanifolds, which were defined
by A. Carriazo [7]. However, since the expression of anti-slant means that it has no slant factors, anti-slant
submanifolds have also appeared in different two names in the literature, namely pseudo-slant submanifolds
[25] or hemi-slant submanifolds [32].

Recently, metallic Riemannian manifolds [23] were defined by C. E. Hreţcanu and M. C. Crâşmăreanu as
a generalization of golden Riemannian manifolds [11, 21, 22]. In [3, 16, 17, 18, 20], C. E. Hreţcanu and A. M.
Blaga investigated invariant, anti-invariant, slant, semi-slant, hemi-slant and bi-slant submanifolds of metallic
Riemannian submanifolds in terms of the characterization, the integrability of the associated distributions,
totally mixed geodesicity and the parallelism of induced canonical structures. In [19], the authors also obtained
some results concerning the existence and non-existence of semi-invariant, semi-slant and hemi-slant warped
product submanifolds in metallic Riemannian manifolds.

On the other hand, there exist several papers regarding the idea to analyzing submanifolds on different
environments by using de Rham cohomology groups in the literature: In [8], B. Y. Chen constructed a canonical
de Rham cohomology group for any closed CR submanifold in a Kaehler manifold with the help of the
distributions involved in its definition in order to prove that if this cohomology group is even dimensional
and trivial, the holomorphic distribution is not integrable or its orthogonal complement in the tangent bundle
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is not minimal. In a similar way, the de Rham cohomology of CR submanifolds was also considered in some
well known ambient manifolds, such as a nearly Kaehler manifold [12] and a quasi-Kaehler manifold [13].
S. Ianuş, S. Marchiafava and G. E. Vîlcu [24] demonstrated that there is a canonical de Rham cohomology
group for a closed paraquaternionic CR submanifold of paraquaternionic Kähler manifolds and discussed
necessary conditions for such a cohomology group to be non-trivial. In [33], F. Şahin found some necessary
conditions for any hemi-slant submanifold of a Kaehler manifold to define a non-trivial de Rham cohomology
group. For a semi-invariant submanifold in locally product Riemannian manifolds, G. Pitis [29] obtained a close
relation between its de Rham cohomology group and associated distributions; moreover, the author gave some
examples which substantiate his claims. In addition, the de Rham cohomology of semi-invariant submanifolds
was investigated by M. Gök [14] in the locally decomposable metallic Riemannian setting.

Motivated by the above works, we study the de Rham cohomology group of a hemi-slant submanifold in
locally decomposable metallic Riemannian manifolds.

The paper is prepared in the following way: Section 1 is introduction. Section 2 gives a background to
clarify the main results of the paper. In section 3, we mainly focus necessary conditions for the existence and
non-triviality of de Rham cohomology classes for a hemi-slant submanifold in locally decomposable metallic
Riemannian manifolds. Finally, we establish two concrete examples to illustrate the results obtained in the
paper.

2. Preliminaries

A metallic structure J̃ on a differentiable manifold M̃ is an endomorphism of the tangent bundle TM̃ yielding
the equation

J̃2 = pJ̃ + qI , (2.1)

where p, q are non-zero natural numbers and I is the identity endomorphism on M̃ . In this situation,
(
M̃, J̃

)
is called a metallic manifold. Furthermore, if a metallic manifold

(
M̃, J̃

)
admits a J̃-compatible Riemannian

metric, i.e.,
g̃
(
J̃X, Y

)
= g̃

(
X, J̃Y

)
(2.2)

for any vector fields X,Y ∈ Γ(TM), then the pair
(
g̃, J̃
)

and the triple
(
M̃, g̃, J̃

)
are said to be a metallic

Riemannian structure and a metallic Riemannian manifold, respectively [23]. In particular, if the metallic structure
is parallel with respect to the Levi-Civita connection ∇̃ on M̃ , i.e.,(

∇̃X J̃
)
Y = 0 (2.3)

for any vector fields X,Y ∈ Γ(TM), then the triple
(
M̃, g̃, J̃

)
is called a locally decomposable metallic Riemannian

manifold.
LetM be anym-dimensional isometrically immersed submanifold of an m̃-dimensional metallic Riemannian

manifold
(
M̃, g̃, J̃

)
. The ambient tangent bundle TM̃ is given by the direct sum

TM̃ = TM ⊕ TM⊥,

where TM and TM⊥ are tangent and normal bundles of M . In what follows, we denote by the same symbol g̃
the Riemannian metric induced on M throughout the paper.

The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h (X,Y ) (2.4)

and
∇̃XV = −AVX +∇⊥

XV (2.5)

for any vector fields X,Y ∈ Γ(TM) and V ∈ Γ(TM⊥), where ∇ is the induced connection on M , h is the second
fundamental form, AV is the shape operator with respect to V and ∇⊥ is the normal connection. In addition,
the second fundamental form h and the shape operator A are related by

g̃ (h (X,Y ) , V ) = g̃ (AVX,Y ) (2.6)
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for any vector fields X,Y ∈ Γ(TM) and V ∈ Γ(TM⊥) [1].
For any vector field X ∈ Γ(TM) and U ∈ Γ

(
TM⊥), we can split the vector fields J̃X and J̃U into tangential

and normal components as follows:
J̃X = TX +NX (2.7)

and
J̃U = tU + nU (2.8)

where TX, tU ∈ Γ(TM) and NX,nU ∈ Γ(TM⊥). Thus, the following relations are valid [18]:

pT + qI = T 2 + tN , (2.9)

pN = NT + nN , (2.10)

pt = Tt+ tn (2.11)

and
pn+ qI = n2 +Nt. (2.12)

Moreover, the operators T and n are g̃-symmetric [3], i.e.,

g̃ (TX, Y ) = g̃ (X,TY ) (2.13)

and
g̃ (nU, V ) = g̃ (U, nV ) (2.14)

for any vector fields X,Y ∈ Γ (TM) and U, V ∈ Γ
(
TM⊥).

An isometrically immersed submanifold M of a metallic Riemannian manifold
(
M̃, g̃, J̃

)
is said to be hemi-

slant [18] if there are two orthogonal differentiable distributions Dθ and D⊥ on M such that

(a) TM = Dθ ⊕D⊥,

(b) Dθ is a slant distribution with the slant angle θ ∈
[
0, π2

]
,

(c) D⊥ is an anti-invariant distribution.

Furthermore, a hemi-slant submanifold M of a metallic Riemannian manifold
(
M̃, g̃, J̃

)
is called proper if

dimDθ · dimD⊥ ̸= 0 and θ ∈
(
0, π2

)
.

Let M be a proper hemi-slant submanifold of a metallic Riemannian manifold
(
M̃, g̃, J̃

)
. In this case, it is

clear that
TDθ = Dθ, TD⊥ = {0} , ND⊥ = J̃D⊥ and NDθ ⊥ ND⊥.

Also,
TM⊥ = NDθ ⊕ND⊥ ⊕ µ,

where µ is the orthogonal complement of NDθ ⊕ND⊥ in the normal bundle TM⊥.
We consider a differentiable manifold M . The quotient space

Hk
dR (M) = ker

(
d : Ωk (M) → Ωk+1 (M)

)
/ Im

(
d : Ωk−1 (M) → Ωk (M)

)
is called the k-th de Rham cohomology group of M , which is also an abelian group, where k is a positive integer,
Ωk is the vector space of all k-forms on M and d is the exterior derivative. Also, its dimension is said to be the
k-th Betti number, denoted by bk [27].

On the other hand, Hodge Theorem [30, Theorem 8.12] is a useful method for finding harmonic
representatives of Hk

dR (M)’s if M is a compact orientable Riemannian manifold without boundary. It identifies
Hk

dR (M) with the space of all harmonic k-forms on M , denoted by Hk
∆ (M).

Let (R,S) be a pair of complementary orthogonal distributions on a Riemannian manifold M endowed with
the Levi-Civita connection ∇. In this case, the vector field ∇XY can be decomposed into two parts as follows:

∇XY = (∇XY )
R
+ (∇XY )

S
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for any vector fieldsX,Y ∈ Γ (TM), where (∇XY )
R ∈ Γ (R) and (∇XY )

S ∈ Γ (S). We set dimR = r and dimS =
s. Let BR = {E1, . . . , Er} and BS = {Er+1, . . . , Er+s} be the local orthonormal frames for the distributions
R and S, respectively. The distribution R is named minimal [8] if its mean curvature vector given by HR =

1
r

r∑
i=1

(∇Ei
Ei)

S is identically zero. Besides, the distribution R is called nearly autoparallel [2] or geodesically

invariant [4] if
∇XX ∈ Γ (R) ,

or equivalently
(∇XY +∇YX) ∈ Γ (R)

for any vector fields X,Y ∈ Γ (R). Same definitions can be applied to the distribution S. In fact, minimality of
a distribution on a Riemannian manifold is equivalent to its nearly autoparallelness or geodesically invariance.

Let α and β be two forms such that

α = α1Λ · · ·Λαr and β = βr+1Λ · · ·Λβr+s,

where α1, . . . , αr, βr+1, . . . , βr+s are 1-forms on M determined by

αi (Z) = 0, αi (Ej) = δij , 1 ≤ i, j ≤ r (2.15)

and
βr+A (X) = 0, βr+A (Er+B) = δAB , 1 ≤ A,B ≤ s (2.16)

for any vector fields X ∈ Γ (R) and Z ∈ Γ (S). From (2.15) and (2.16), we get

α (E1, . . . , Er) = det
[
αi (Ej)

]
= 1 (2.17)

and
β (Er+1, . . . , Er+s) = det

[
βr+A (Er+B)

]
= 1. (2.18)

Thus, it follows that the distributions R and S are orientable with respect to the ordered local orthonormal
frames BR and BS , respectively. For the same reason, it is seen that α (resp., β) is a globally well defined r-
form (resp., a globally well defined s-form). Moreover, it is notable that αΛβ is a globally well defined m-form
and M is orientable with respect to the local orthonormal frame BR ∪BS of the tangent bundle TM .

Before starting, we give two following propositions [14]:

Proposition 2.1. Let M be any submanifold of a Riemannian manifold
(
M̃, g̃

)
such that TM = R⊕ S, where R and S

are orthogonal distributions on M . If the distribution S is integrable and the distribution R is minimal, then the r-form
α = α1Λ · · ·Λαr is closed.

Proposition 2.2. Let M be any submanifold of a Riemannian manifold
(
M̃, g̃

)
such that TM = R⊕ S, where R and S

are orthogonal distributions on M . If the distribution R is integrable and the distribution S is minimal, then the s-form
β = β1Λ · · ·Λβs is closed.

Remark 2.1. For semi-invariant submanifolds of locally product Riemannian manifolds, Propositions 2.1 and
2.2 were proved by G. Pitis in [29].

3. Main Results

Let M be any hemi-slant submanifold of a locally decomposable metallic Riemannian manifold
(
M̃, g̃, J̃

)
such that TM = Dθ ⊕D⊥, where Dθ is the slant distribution with the slant angle θ and D⊥ is the anti-
invariant distribution. We put dimDθ = u and dimD⊥ = v. Let us denote by BDθ = {H1, . . . ,Hu} and BD⊥ =
{Hu+1, . . . ,Hu+v} the local orthonormal frames of the distributions Dθ and D⊥, respectively.

We consider two forms ψ = ψ1Λ · · ·Λψu and ω = ωu+1Λ · · ·Λωu+v, where ψ1, . . . , ψu, ωu+1, . . . , ωu+v are 1-
forms on M satisfying the following relations:

ψi (Z) = 0, ψi (Hj) = δij , 1 ≤ i, j ≤ u (3.1)

and
ωu+A (X) = 0, ωu+A (Hu+B) = δAB , 1 ≤ A,B ≤ v (3.2)

for any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥).
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Proposition 3.1. Let M be any hemi-slant submanifold of a locally decomposable metallic Riemannian manifold(
M̃, g̃, J̃

)
. A necessary and sufficient condition for the slant distribution Dθ to be integrable is that for any vector

fields X,Y ∈ Γ
(
Dθ
)
, the vector field

h (X,TY )− h (TX, Y ) +∇⊥
YNX −∇⊥

XNY

is perpendicular to the distribution J̃D⊥ of the normal bundle TM⊥.

Proof. By use of (2.2), (2.3), (2.4), (2.5) and (2.7), by a straightforward computation, we get

g̃ (∇XY,Z) =
1

q
g̃
(
h (X,TY ) +∇⊥

XNY − ph (X,Y ) , J̃Z
)

(3.3)

for any vector fields X,Y ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥). Similarly, interchanging the roles of X and Y in (3.3), we

can obtain
g̃ (∇YX,Z) =

1

q
g̃
(
h (TX, Y ) +∇⊥

YNX − ph (X,Y ) , J̃Z
)

. (3.4)

Then we infer from (3.3) and (3.4) that

g̃ ([X,Y ] , Z) = g̃
(
h (X,TY )− h (TX, Y ) +∇⊥

YNX −∇⊥
XNY, J̃Z

)
for any vector fields X,Y ∈ Γ

(
Dθ
)

and Z ∈ Γ
(
D⊥), which proves our assertion.

Proposition 3.2. [18, Theorem 4.9] LetM be any hemi-slant submanifold of a locally decomposable metallic Riemannian
manifold

(
M̃, g̃, J̃

)
. A necessary and sufficient condition for the anti-invariant distribution D⊥ to be integrable is that

AJ̃ZW = 0 (3.5)

for any vector fields Z,W ∈ Γ
(
D⊥).

Proposition 3.3. Let M be any hemi-slant submanifold of a locally decomposable metallic Riemannian manifold(
M̃, g̃, J̃

)
. A necessary and sufficient condition for the slant distribution Dθ to be minimal in M is that for any vector

fields X ∈ Γ
(
Dθ
)
, the vector field

h (X,TX) +∇⊥
XNX − ph (X,X)

has no components in the distribution J̃D⊥ of the normal bundle TM⊥. Specially, the slant distribution Dθ is minimal
in M if the following statements are correct:

(a) The hemi-slant submanifold M is Dθ-geodesic,

(b) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),
g̃
(
∇⊥

XNX,NZ
)
= 0.

Proof. We derive from (2.2), (2.3), (2.4), (2.5) and (2.7) that

g̃ (∇XX,Z) =
1

q
g̃
(
h (X,TX) +∇⊥

XNX − ph (X,X) , J̃Z
)

(3.6)

for any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥), which completes the proof.

Proposition 3.4. Let M be any hemi-slant submanifold of a locally decomposable metallic Riemannian manifold(
M̃, g̃, J̃

)
. A necessary and sufficient condition for the anti-invariant distribution D⊥ to be minimal in M is that

g̃
(
AJ̃ZZ, TX

)
− g̃

(
∇⊥

ZNZ,NX
)
− pg̃

(
AJ̃ZZ,X

)
= 0

for any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥). Especially, each leaf of the anti-invariant distribution D⊥ is minimal

in M if the following statements hold:
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(a) For any vector fields Z,W ∈ Γ
(
D⊥),

AJ̃ZW = 0,

(b) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),
g̃
(
∇⊥

ZNZ,NX
)
= 0.

Proof. Using the parallelism of the metallic structure J̃ , we obtain from (2.2), (2.4), (2.5) and (2.7) that

g̃ (∇ZZ,X) =
1

q

{
−g̃
(
AJ̃ZZ, TX

)
+ g̃

(
∇⊥

ZNZ,NX
)
+ pg̃

(
AJ̃ZZ,X

)}
for any vector fields X ∈ Γ

(
Dθ
)

and Z ∈ Γ
(
D⊥), which shows that our claim is true.

Theorem 3.1. For an arbitrary compact proper hemi-slant submanifold M without boundary of a locally decomposable
metallic Riemannian manifold

(
M̃, g̃, J̃

)
, the v-form ω defines a well defined canonical de Rham cohomology class denoted

by [ω] in Hv
dR (M) if the following statements are true:

(a) For any vector fields X,Y ∈ Γ
(
Dθ
)
, the vector field

h (X,TY )− h (TX, Y ) +∇⊥
YNX −∇⊥

XNY

is perpendicular to the distribution J̃D⊥ of the normal bundle TM⊥,

(b) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),

g̃
(
AJ̃ZZ, TX

)
− g̃

(
∇⊥

ZNZ,NX
)
− pg̃

(
AJ̃ZZ,X

)
= 0.

Moreover, the canonical de Rham cohomology class [ω] is non-trivial if the following statements are satisfied:

(c) For any vector fields Z,W ∈ Γ
(
D⊥),

AJ̃ZW = 0,

(d) For any vector fields X ∈ Γ
(
Dθ
)
, the vector field

h (X,TX) +∇⊥
XNX − ph (X,X)

has no components in the distribution J̃D⊥ of the normal bundle TM⊥.

Proof. As is seen from Proposition 3.1, (a) shows that the slant distribution Dθ is integrable. Proposition
3.4 means that (b) is equivalent to the minimality of the anti-invariant distribution D⊥. Hence, under the
assumptions (a) and (b), by Proposition 2.1, we get that the v-form ω is closed. In this case, there is a canonical
de Rham cohomology class [ω] ∈ Hv

dR (M) associated to ω.
Now, we show that such a cohomology class is non-trivial. Proposition 3.2 implies that (c) is a necessary

and sufficient condition for the integrability of the anti-invariant distribution D⊥. At the same time, in view of
Proposition 3.3, it results from (d) that the slant distribution Dθ is minimal. Thus, if the assumptions (c) and
(d) are satisfied, it follows from Proposition 2.2 that the u-form ψ is closed. Taking account of that the u-form ψ
is the Hodge dual of ω, denoted by ⋆ω, i.e., ψ = ⋆ω, it is clear that ω is a co-closed v-form. Therefore, by reason
of the fact that M is a compact and boundaryless submanifold, i.e., a closed submanifold, ω is a harmonic v-
form. Also, we recall that the submanifold M is orientable with respect to BDθ ∪BD⊥ . Consequently, in the
light of the aforementioned evaluations, Hodge Theorem completes the proof, i.e., the cohomology class [ω] is
non-trivial in Hv

dR (M).

Theorem 3.2. For an arbitrary compact proper hemi-slant submanifold M without boundary of a locally decomposable
metallic Riemannian manifold

(
M̃, g̃, J̃

)
, the v-form ω determines a well defined canonical de Rham cohomology class

given by [ω] in Hv
dR (M) if the following statements are valid:
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(a) For any vector fields X,Y ∈ Γ
(
Dθ
)
, the vector field

h (X,TY )− h (TX, Y ) +∇⊥
YNX −∇⊥

XNY

is perpendicular to the distribution J̃D⊥ of the normal bundle TM⊥,

(b) For any vector fields Z,W ∈ Γ
(
D⊥),

AJ̃ZW = 0,

(c) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),
g̃
(
∇⊥

ZNZ,NX
)
= 0.

Also, the canonical de Rham cohomology class [ω] is non-trivial if the following statements are verified:

(d) The hemi-slant submanifold M is Dθ-geodesic,

(e) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),
g̃
(
∇⊥

XNX,NZ
)
= 0.

Proof. Taking account of Propositions 3.3 and 3.4, the proof is an immediate consequence of Theorem 3.1.

Theorem 3.3. For an arbitrary compact totally geodesic proper hemi-slant submanifold M without boundary of a locally
decomposable metallic Riemannian manifold

(
M̃, g̃, J̃

)
, the v-th Betti number bv is not zero if the following statements

hold:

(a) For any vector fields X ∈ Γ
(
Dθ
)

and Z,W ∈ Γ
(
D⊥),

g̃
(
∇⊥

ZNW,NX
)
= 0,

(b) For any vector fields X,Y ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),

g̃
(
∇⊥

XNY,NZ
)
= 0.

Proof. Since M is totally geodesic, if (a) and (b) are satisfied, then we can see that all the conditions of Theorem
3.1 are hold automatically. Thus, the proof has been demonstrated.

Theorem 3.4. For an arbitrary compact proper hemi-slant submanifold M without boundary of a locally decomposable
metallic Riemannian manifold

(
M̃, g̃, J̃

)
, there exists a well defined de Rham cohomology class [ψ] determined by the

u-form ψ in Hu
dR (M) if the following statements are correct:

(a) For any vector fields Z,W ∈ Γ
(
D⊥),

AJ̃ZW = 0,

(b) For any vector fields X ∈ Γ
(
Dθ
)
, the vector field

h (X,TX) +∇⊥
XNX − ph (X,X)

has no components in the distribution J̃D⊥ of the normal bundle TM⊥.

Furthermore, the canonical de Rham cohomology class [ψ] is non-trivial if the following two conditions are satisfied:

(c) For any vector fields X,Y ∈ Γ
(
Dθ
)
, the vector field

h (X,TY )− h (TX, Y ) +∇⊥
YNX −∇⊥

XNY

is perpendicular to the distribution J̃D⊥ of the normal bundle TM⊥,
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(d) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),

g̃
(
AJ̃ZZ, TX

)
− g̃

(
∇⊥

ZNZ,NX
)
− pg̃

(
AJ̃ZZ,X

)
= 0.

Proof. The proof can be demonstrated in a manner similar to that of Theorem 3.1.

Theorem 3.5. For an arbitrary compact proper hemi-slant submanifold M without boundary of a locally decomposable
metallic Riemannian manifold

(
M̃, g̃, J̃

)
, the u-form ψ represents a well defined de Rham cohomology class denoted by

[ψ] in Hu
dR (M) if the following statements are verified:

(a) The hemi-slant submanifold M is Dθ-geodesic,

(b) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),
g̃
(
∇⊥

XNX,NZ
)
= 0,

(c) For any vector fields Z,W ∈ Γ
(
D⊥),

AJ̃ZW = 0.

In addition, the canonical de Rham cohomology class [ψ] is non-trivial if the following two conditions are correct:

(d) For any vector fields X,Y ∈ Γ
(
Dθ
)
, the vector field

h (X,TY )− h (TX, Y ) +∇⊥
YNX −∇⊥

XNY

has no components in the distribution J̃D⊥ of the normal bundle TM⊥,

(e) For any vector fields X ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),
g̃
(
∇⊥

ZNZ,NX
)
= 0.

Proof. With the help of Propositions 3.3 and 3.4, the proof follows directly from Theorem 3.4.

Theorem 3.6. For an arbitrary compact totally geodesic proper hemi-slant submanifold without boundary of a locally
decomposable metallic Riemannian manifold

(
M̃, g̃, J̃

)
, the u-th Betti number bu is not zero if the following statements

are true:

(a) For any vector fields X ∈ Γ
(
Dθ
)

and Z,W ∈ Γ
(
D⊥),

g̃
(
∇⊥

ZNW,NX
)
= 0,

(b) For any vector fields X,Y ∈ Γ
(
Dθ
)

and Z ∈ Γ
(
D⊥),

g̃
(
∇⊥

XNY,NZ
)
= 0.

Proof. The proof is the same as that of Theorem 3.3.

Finally, we give two examples.

Example 3.1. Let J be a tensor field of type (1, 1) on the 5-dimensional Euclidean space
(
R5, ⟨, ⟩

)
defined by

J (x1, x2, x3, x4, x5) =

(
p

2
x1 +

√
λ

2
x3,

p

2
x2 +

√
λ

2
x4,

p

2
x3 +

√
λ

2
x1,

p

2
x4 +

√
λ

2
x2, 0

)
where (x1, x2, x3, x4, x5) is the local coordinates of R5, λ = p2 + 4q and p, q ∈ N+.

We define a submanifold M by the immersion i :M −→ R5 such that

i (u, v, w) = (u cos t, v sin t, v, 0, w) ,
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where u, v > 0 and t ∈
(
0, π2

)
. In this case, a local orthonormal frame of the tangent bundle TM can be chosen

as follows:
E1 =

∂

∂x1
,

E2 =
1√

1 + sin2 t

(
sin t

∂

∂x2
+

∂

∂x3

)
and

E3 =
∂

∂x5
.

Putting ω1 = dx5, then we get
J2 = pJ + q

(
I − ω1 ⊗ E3

)
.

Also, it is worthy to note that J is a framed fa,b (3, 2, 1)-structure of rank 2 [15] with a = p and b = q. We set

Dθ =
{
X ∈ Γ (TM) : ω1 (X) = 0

}
and denote by D⊥ its orthogonal complement in the tangent bundle TM . Then it follows that Dθ =
Span {E1, E2} and D⊥ = Span {E3}.

Let us consider a tensor field J̃ of type (1, 1) on the product manifold M ×R such that

J̃X = JX for any vector field X ∈ Γ
(
Dθ
)

, that is, J̃E1 = JE1, J̃E2 = JE2,

J̃E3 = (p− σp,q)
∂

∂l
and J̃

(
∂

∂l

)
= (p− σp,q)E3,

where σp,q is the (p, q)-metallic number and l is the parameter on R. Hence, we derive that
(
M ×R, ⟨, ⟩ , J̃

)
is a

locally decomposable metallic Riemannian manifold.
Taking account of the definitions of the distributions Dθ and D⊥, by a straightforward computation, it

follows that Dθ is a slant distribution with the Wirtinger angle θ = arccos

(
p√
p2+λ

)
and J̃D⊥ = TM⊥. Thus, M

is a 3-dimensional hemi-slant submanifold of the ambient manifold
(
M ×R, ⟨, ⟩ , J̃

)
.

Now, let us define a 2-form ψ and a 1-form ω by ψ = ψ1Λψ2 and ω = ω1, respectively, where

ψ1 = dx1

and
ψ2 =

1√
1 + sin2 t

(sin tdx2 + dx3) .

It is clear that dω = δω = dψ = δψ = 0. Hence, we find

∆ω = ∆ψ = 0,

which means that the forms ψ and ω are harmonic. Therefore, by Hodge Theorem, the cohomology groups
H1

dR (M) and H2
dR (M) are non-trivial, in other words, b1 ̸= 0 and b2 ̸= 0.

Example 3.2. We consider a metallic Riemannian structure on the 8-dimensional Euclidean space
(
R8, ⟨, ⟩

)
given by

J̃

(
∂

∂xι

)
= σp,q

∂

∂xι
, ι = 1, 3, 5, 7

and

J̃

(
∂

∂xκ

)
= (p− σp,q)

∂

∂xκ
, κ = 2, 4, 6, 8,

where (x1, x2, x3, x4, x5, x6, x7, x8) is the local coordinates of R8 and σp,q is the (p, q)-metallic number. Also,(
R8, ⟨, ⟩ , J̃

)
is a locally decomposable metallic Riemannian manifold.
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We consider a submanifold defined by the immerson i :M −→ R8 such that

i (u, v, w, t) =

(
u,
σp,q√
q
u,

√
q

σp,q
v, v, w − t, w,w + t, t

)
.

In this case, the tangent bundle TM is spanned by the following vector fields:

E1 =

√
q

σ2
p,q + q

(
∂

∂x1
+
σp,q√
q

∂

∂x2

)
,

E2 =
σp,q√
σ2
p,q + q

( √
q

σp,q

∂

∂x3
+

∂

∂x4

)
,

E3 =
1√
3

(
∂

∂x5
+

∂

∂x6
+

∂

∂x7

)
and

E4 =
1√
3

(
− ∂

∂x5
+

∂

∂x7
+

∂

∂x8

)
.

Choosing Dθ = Span {E3, E4} and D⊥ = Span {E1, E2}, then it can be easily seen that Dθ is a slant distribution

with the Wirtinger angle θ = arccos

(
p+σp,q√

3(2σ2
p,q+(p−σp,q)

2)

)
and J̃D⊥ ⊂ TM⊥. Hence,M is a 4-dimensional hemi-

slant submanifold of the ambient manifold
(
R8, ⟨, ⟩ , J̃

)
.

Now, we consider two 2-forms ψ and ω given by ψ = ψ1Λψ2 and ω = ω1Λω2, respectively, where

ψ1 =

√
q

σ2
p,q + q

(
dx1 +

σp,q√
q
dx2

)
,

ψ2 =
σp,q√
σ2
p,q + q

( √
q

σp,q
dx3 + dx4

)
,

ω1 =
1√
3
(dx5 + dx6 + dx7)

and
ω2 =

1√
3
(−dx5 + dx7 + dx8) .

In this situation, it is easy to verify that dω = δω = dψ = δψ = 0. Thus, we obtain

∆ω = ∆ψ = 0,

which says the forms ψ and ω are harmonic. Consequently, from Hodge Theorem, the cohomology group
H2

dR (M) is non-trivial, i.e., the 2nd Betti number is not zero.

4. Conclusions and Future Work

In this paper, we have investigated the geometry of hemi-slant submanifolds in metallic Riemannian
manifolds with the help of de Rham cohomology groups. In this sense, the paper establishes a connection
between the associated distributions of a hemi-slant submanifold of locally decomposable metallic Riemannian
manifolds and its the de Rham cohomology group. Concrete examples confirm the validity of the theoretical
results of the paper. The results obtained in the paper can be extended to bi-slant submanifolds of metallic
Riemannian manifolds. Also, it is well known that the de Rham cohomology is a generalization of Maxwell’s
theory of the electromagnetic field, so we hope that the current work will be useful in physics as well as in
differential geometry.
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