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Abstract

On the recent study, the series space
∣∣Nθ

p
∣∣(q) has been introduced as the set of all series summable by the absolute Nörlund summability

method, which includes the Maddox’s space l(q), the absolute Cesàro space |Cα |k and the absolute Nörlund space
∣∣Nθ

p
∣∣
k, and studied in

terms of some topological and algebraic properties and matrix transformations by Gökçe and Sarıgöl. In this paper, some characterizations of
matrix operators between the absolute Nörlund series space

∣∣Nθ
p
∣∣(q) and the classical sequence spaces c,c0, l∞ are given. Also, it is shown

that the matrix operators are bounded operators. Finally, certain results are obtained as a special case.
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1. Introduction

The summability theory has very important role in mathematics, which has various applications in analysis, applied mathematics, engineering
sciences, specially quantum mechanics, probability theory, Fourier analysis, approximation theory and fixed point theory, etc. It deals with
the generalization of the concept of convergence of sequences and series, and aims to assign a limit for non-convergent sequences and series
using an operator described by an infinite matrix. The reason why matrices are used for a general linear operator is that a linear operator
from a sequence space to another can generally be given with an infinite matrix. This reveals the importance of sequence spaces and matrix
operators in summability theory. In recent times, the literature has grown up concerned with characterizing all matrices operators which
transform one given sequence space into another ( see [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 19]). In the study, we investigate the necessary and
sufficient conditions for A ∈ (

∣∣Nθ
p
∣∣(q),ζ ) where ζ = {c,c0, l∞}, and then we present some results.

A sequence space is a vector subspace of ω which is the set of all complex valued sequences. Some of the most important sequence spaces
in analysis are the set of all convergent, null and bounded sequences and the set of all convergent and bounded series spaces which are
represented by c,c0, l∞,cs,bs, respectively. Let U = (unv) be any infinite matrix with complex components and Λ,Γ be arbitrary sequence
spaces. It is denoted the U-transform of the sequence λ = (λv) by U(λ ) = (Un(λ )), if the series

Un(λ ) =
∞

∑
j=0

un jλ j,

is convergent for each n ∈ N. If U(λ ) ∈ Γ, whenever λ ∈ Λ, then it is said that U describes a matrix transformation from the space Λ into
another space Γ, and the class of all infinite matrices U such that U : Λ→ Γ is represented by matrix class (Λ,Γ). The concept of matrix
domain of an infinite matrix U in a sequence space Λ is described by the set

ΛU = {λ = (λn) ∈ ω : U(λ ) ∈ Λ} (1.1)

which is also a sequence space.
The Maddox’s space which is defined by

l(q) =

{
λ = (λn) :

∞

∑
n=0
|λn|qn < ∞

}
,
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is an FK−space which is a complete metrizable locally convex space with continuous coordinates rn : Λ→ C defined by rn(λ ) = λn for all
n ∈ N, according to its natural paranorm given by

g(λ ) =

(
∞

∑
n=0
|λn|qn

)1/H

,

where H = max{1,supn qn} . Also, with together this paranorm, the Maddox’s space l(q) has AK property i.e., every sequence λ ∈ l(q) has

a unique representation λ =
∞

∑
v=0

λve(v) where e(v) is the sequence whose only non-zero term is 1 in vth place for each v ∈ N. On the other

hand, if qv ≥ 1 for all v, also it is even a BK−space, normed FK-spaces, with respect to following norm

‖λ‖= inf

{
η > 0 :

∞

∑
v=0
|λv/η |qv ≤ 1

}
,

([14], [15], [16]).
Let take an infinite series ∑λv with the sequence of its partial sum (sn). Also, assume that (θn) is a sequence of positive numbers and
q = (qn) is a bounded sequence of non-negative terms. If

∞

∑
n=0

θ
qn−1
n |Un(s)−Un−1(s)|qn < ∞

then, the series ∑λv is said to be summable |U,θn|(q) (see[9]).
Considering the Nörlund matrix given by

av j =

{
pv− j/Pv, 0≤ j ≤ v

0, j > v

where (pv) is a sequence of complex numbers with Pv = p0 + p1 + ...+ pv 6= 0, and the concept of absolute summability, we immediately
get the absolute Nörlund summability |N, pn,θn|(q). Then, with a few calculation, the space consisting all series summable by the absolute
Nörlund summability method can be expressed as

∣∣∣Nθ
p

∣∣∣(q) ={λ ∈ ω :
∞

∑
n=0

θ
qn−1
n

∣∣∣∣∣ n

∑
j=0

(
Pn− j

Pn
−

Pn− j−1

Pn−1

)
λ j

∣∣∣∣∣
qn

< ∞

}
.

Note that according to the notation (1.1), the space is redefined by means of the domain of a matrix in the Maddox’s space l(q) as follows: if
we determine the infinite matrices L(q)(θ) and T (p) as

tn j(p) =

{
Pn− j
Pn

, 0≤ j ≤ n
0, j > n,

(1.2)

and

l(q)n j (θ) =


θ

1/q∗n
n , j = n
−θ

1/q∗n
n , j = n−1

0, j 6= n,n−1,
(1.3)

then, it is written that
∣∣Nθ

p
∣∣(q) = (l(q))L(q)(θ)◦T (p).

Moreover, it is known that every triangle matrix has a unique inverse which is also a triangle, so the matrices L(q)(θ) and T (p) have inverse
matrices L(q)(θ)−1 = (l(q)n j (θ)

−1) and T (p)−1 = (tn j(p)−1) given by

l(q)n j (θ)
−1 =

{
θ
−1/q∗j
j , 0≤ j ≤ n

0, j > n,
(1.4)

tn j(p)−1 =

{
Cn− jPj, 0≤ j ≤ n
0, j > n.

(1.5)

Here, p0 is a non-zero number and (Cn) is a sequence such that

n

∑
j=0

Pn− jC j =

{
1, n = 0
0, n > 0.

Throughout the whole paper, we suppose that q = (q j) is any bounded sequence of positive real numbers with 0 < in f q j < ∞ and q∗j is the
conjugate of q j such that 1/q j +1/q∗j = 1 for q j > 0, 1/q∗j = 0 for q j = 1.
Before stating the main theorems, we remind some lemmas which have significant place in the remaining part of the study.
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Lemma 1.1. [11] Let q = (q j) be arbitrary bounded sequence of strictly positive numbers.

(a) If q j ≤ 1, for all j, then,

U ∈ (l(q),c)⇔ (i) lim
n→∞

un j exists for each j,(ii)sup
n, j
|un j|q j < ∞

U ∈ (l(q),c0)(iii)⇔ lim
n→∞

un j = 0 for each j,(ii) holds,

and

U ∈ (l(q), l∞)⇔ (ii) holds.

(b) If q j > 1 for all j, then,

U ∈ (l(q),c)⇔ (i
′
) lim

n→∞
un j exists for each j,(ii

′
) there is a number K > 1 such that

sup
n

∞

∑
j=0
|K−1un j|q

∗
j < ∞,

U ∈ (l(q),c0)⇔ (iii
′
) lim

n→∞
un j = 0 for each j,(ii

′
) holds,

and

U ∈ (l(q), l∞)⇔ (ii
′
) holds.

Lemma 1.2. [17] Let Λ be an FK space with AK, Γ be any subset of ω , R be triangle and S be its inverse. Then, U ∈ (ΛR,Γ) if and only if

Ũ ∈ (Λ,Γ) and V (n) ∈ (Λ,c) for all n, where

ũn j =
∞

∑
i= j

unisi j; n, j = 0,1, ...,

and

v(n)m j =


m
∑

i= j
unisi j, 0≤ j ≤ m

0, j > m.

Lemma 1.3. [18] Let R be a triangle. Then, for Λ,Γ ∈ ω,U ∈ (Λ,ΓR) if and only if B = RU ∈ (Λ,Γ).

Lemma 1.4. [20] Matrix transformations between FK-spaces are continuous.

2. Main Theorems

Theorem 2.1. [8] Assume that q = (q j) is a bounded sequence of non-negative numbers and θ = (θn) is a sequence of positive numbers.

Then, the set
∣∣Nθ

p
∣∣(q) is a vector space with the coordinate-wise addition and scalar multiplication. Besides, it is an FK-space with respect

to the paranorm

‖λ‖|Nθ
p |(q) =

(
∞

∑
n=0

∣∣∣(L(q)(θ)◦T (p)(λ )
)

n
(λ )
∣∣∣qn

)1/H

,

where H = max{1,supqn}. Also, there is a linearly isomorphism between the spaces
∣∣Nθ

p
∣∣(q) and l(q), that is,

∣∣Nθ
p
∣∣(q)∼= l(q).

After this point, let take

σn j =
n

∑
v= j

Cn−vPv

for ease of notation where p0 is non-zero number.
Now, we continue with the theorem characterizing the matrix class

(∣∣Nθ
p
∣∣(q),ζ) where ζ = {c,c0, l∞}:

Theorem 2.2. Let U =
(
un j
)

be an infinite matrix of complex components, (θn) be any sequence of positive numbers,
(
q j
)

be any bounded

sequence of non-negative numbers with q j ≤ 1 for all j ∈ N and p0 be non-zero number.

(i) For U ∈
(∣∣Nθ

p
∣∣(q),c) the necessary and sufficient conditions are, for n = 0,1, ...,

∞

∑
i= j

θ
−1/q∗j
j uniσi j converges for each j, (2.1)
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sup
m, j

∣∣∣∣∣θ−1/q∗j
j

m

∑
i= j

uniσi j

∣∣∣∣∣
q j

< ∞ (2.2)

sup
n, j

∣∣∣∣∣θ−1/µ∗j
j

∞

∑
i= j

uniσi j

∣∣∣∣∣
q j

< ∞ (2.3)

and

lim
n→∞

θ
−1/q∗j
j

∞

∑
i= j

uniσi j exists for all j. (2.4)

(ii) U ∈
(∣∣Nθ

p
∣∣(q),c0

)
if and only if (2.1), (2.2), (2.3) and

θ
−1/q∗j
j

∞

∑
i= j

uniσi j = 0 for each j, (2.5)

(iii) U ∈
(∣∣Nθ

p
∣∣(q), l∞) if and only if the conditions (2.1), (2.2) and (2.3) hold.

Proof. Let q j ≤ 1 for all j ∈N. Note that
∣∣Nθ

p

∣∣(q) = (l(q))L(q)(θ)◦T (p). So, considering by Lemma 1.2, it is easy to see that U ∈
(∣∣Nθ

p
∣∣(q),c)

is equal to Ũ ∈ (l(q),c) and V (n) ∈ (l(q),c). Here the matrices Ũ and V (n) are defined by

ũn j = θ
−1/q∗j
j

∞

∑
i= j

uniσi j.

v(n)m j =

 θ
−1/q∗j
j

m
∑

i= j
uniσi j, 0≤ j ≤ m

0, j > m.

It can be obtained easily by Lemma 1.1 that V (n) ∈ (l(q),c) iff the conditions (2.1) and (2.2) hold. Again, to applying Lemma 1.1 to Ũ , we

get that Ũ ∈ (l(q),c) if and only if the conditions (2.3) and (2.4) hold, which completes the first part of proof.

Because the remaining part of the proof can be proved similar way, it left to reader.

Theorem 2.3. Suppose that U =
(
un j
)

is an infinite matrix of complex components and (θn) is a sequence of positive numbers. If p0 is

non-zero number and
(
q j
)

is arbitrary bounded sequence of non-negative numbers such that q j > 1 for all j ∈ N, then

(i) U ∈
(∣∣Nθ

p
∣∣(q),c) if and only if there exists an integer K > 1 such that, for n = 0,1, ...,

∞

∑
i= j

θ
−1/q∗j
j uniσi j converges for each j, (2.6)

sup
m

∞

∑
j=0

∣∣∣∣∣θ−1/q∗j
j

m

∑
i= j

uniσi jK−1

∣∣∣∣∣
q∗j

< ∞ (2.7)

sup
n

∞

∑
j=0

∣∣∣∣∣θ−1/q∗j
j

∞

∑
i= j

uniσi jK−1

∣∣∣∣∣
q∗j

< ∞ (2.8)

and (2.4) hold.

(ii) U ∈
(∣∣Nθ

p
∣∣(q),c0

)
if and only if (2.5),(2.6),(2.7) and (2.8) hold.

(iii) U ∈
(∣∣Nθ

p
∣∣(q), l∞) if and only if (2.6),(2.7) and (2.8) hold.

Proof. Let qn > 1 for all n ∈ N. From Lemma 1.2, it is obtained immediately that U ∈
(∣∣Nθ

p
∣∣(q), l∞) if and only if Ũ ∈ (l(q), l∞) and

V (n) ∈ (l(q),c). Applying Lemma 1.1 to the matrices V (n) and Ũ which are given in above theorem, the conditions (2.6), (2.7) and the

condition (2.8) holds, respectively.

The remaining part of the theorem can be proved by the similar method.

Theorem 2.4. Let U = (un j) be an infinite matrix of complex components, θ = (θn) be any sequence of positive real numbers, q = (q j) be

any bounded sequence of positive numbers and ζ = {c,c0, l∞}. If U ∈ (
∣∣Nθ

p
∣∣(q),ζ ), then U defines a bounded linear operator.

Proof. Since the spaces c,c0, l∞ are BK- spaces, normed FK-spaces, using Lemma 1.4 and Theorem 2.1, the proof of Theorem can be

obtained immediately.
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Since bs = (l∞)Z and cs = (c)Z where the matrix Z = (zn j) is given by

zn j =

{
1, 0≤ j ≤ n
0, j > n,

the matrix classes
(∣∣Nθ

p
∣∣(q),bs

)
and

(∣∣Nθ
p
∣∣(q),cs

)
can be characterized as follows with Lemma 1.3:

Corollary 2.5. Take u(n,k) =
n
∑

j=0
u jk instead of unk in the Theorem 2.2 and Theorem 2.3. Then

(i) if qv > 1 for all v,

U ∈
(∣∣∣Nθ

p

∣∣∣(q),cs

)
⇔ (2.4), (2.6), (2.7) and (2.8) hold.

U ∈
(∣∣∣Nθ

p

∣∣∣(q),bs

)
⇔ (2.6), (2.7) and (2.8) hold.

(ii) if qv ≤ 1 for all v,

U ∈
(∣∣∣Nθ

p

∣∣∣(q),cs

)
⇔ (2.1), (2.2), (2.3) and (2.4) hold.

U ∈
(∣∣∣Nθ

p

∣∣∣(q),bs

)
⇔ (2.1), (2.2) and (2.3) hold.

Note that, with the special selections, the absolute Nörlund series space
∣∣Nθ

p
∣∣(q) is reduced to some well-known spaces. For instance, if

we take qn = k for all n, the space is reduced to
∣∣Nθ

p
∣∣
k studied by Hazar and Sarıgöl [12] and also it is reduced to the space |Cα |k [19] for

qn = k, θn = n and Pn = Eα
n for all n, where

Eα
n =

(α +1)(α +2)...(α +n)
n!

,

Eα
0 = 1, Eα

−n = 0, n≥ 1

[2, 19]. With this information, the following results are immediately obtained from Theorem 2.2 and Theorem 2.3.

Corollary 2.6. Let U = (unv) be an infinite matrix of complex components and (θn) be a sequence of positive numbers. If p0 is non-zero

number, then,

(i) U ∈
(∣∣Nθ

p
∣∣ ,c) if and only if for n = 0,1, ...,

∞

∑
j=v

un jσ jv converges for all v, (2.9)

sup
m,v

∣∣∣∣∣ m

∑
j=v

un jσ jv

∣∣∣∣∣< ∞ (2.10)

sup
n,v

∣∣∣∣∣ ∞

∑
j=v

un jσ jv

∣∣∣∣∣< ∞ (2.11)

lim
n→∞

∞

∑
j=v

un jσ jv exists for all v. (2.12)

(ii) U ∈
(∣∣Nθ

p
∣∣ ,c0

)
if and only if (2.9), (2.10), (2.11) and

∞

∑
j=v

un jσ jv = 0 for each v.

(iii) U ∈
(∣∣Nθ

p
∣∣ , l∞) if and only if the conditions (2.9), (2.10) and (2.11) hold.

Corollary 2.7. Assume that U = (unv) is an infinite matrix of complex components and (θn) is a sequence of positive numbers. If p0 is

non-zero number and k > 1, then

(i) U ∈
(∣∣Nθ

p
∣∣
k ,c
)

if and only if for n = 0,1, ...,

∞

∑
j=v

θ
−1/k∗
v un jσ jv converges for each v, (2.13)

sup
m

∞

∑
v=0

∣∣∣∣∣θ−1/k∗
v

m

∑
j=v

un jσ jv

∣∣∣∣∣
k∗

< ∞ (2.14)
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sup
n

∞

∑
v=0

∣∣∣∣∣θ−1/k∗
v

∞

∑
j=v

un jσ jv

∣∣∣∣∣
k∗

< ∞ (2.15)

and (2.12) hold.

(ii) U ∈
(∣∣Nθ

p
∣∣
k ,c0

)
if and only if (2.13),(2.14), (2.15) and

∞

∑
j=v

θ
−1/k∗
v un jσ jv = 0 for each v

hold.

(iii) U ∈
(∣∣Nθ

p
∣∣
k , l∞

)
if and only if (2.13),(2.14) and (2.15) hold.

Corollary 2.8. Let λ be non-negative integers, U = (unv) be an infnite matrix of complex numbers. Then U ∈ (|Cα |,c) if and only if

∞

∑
j=v

E−α−1
j−v

j
un j converges for all v≥ 1 (2.16)

sup
m,v≥1

∣∣∣∣∣vEα
v

m

∑
j=v

E−α−1
j−v

j
un j

∣∣∣∣∣< ∞ (2.17)

sup
n,v≥1

∣∣∣∣∣vEα
v

∞

∑
j=v

E−α−1
j−v

j
un j

∣∣∣∣∣< ∞ (2.18)

lim
n→∞

∞

∑
j=v

vEα
v E−α−1

j−v

j
un j exists for each v≥ 1. (2.19)

(ii) U ∈ (|Cα |,c0) if and only if (2.16), (2.17),(2.19) and

lim
n→∞

∞

∑
j=v

vEα
v E−α−1

j−v

j
un j = 0 for each v≥ 1.

hold.

(iii) U ∈ (|Cα |, l∞) if and only if ( (2.16), (2.17),(2.19) hold.

Corollary 2.9. Let α be non-negative integers, U = (unv) be an infinite matrix of complex numbers. Then U ∈ (|Cα |k,c) if and only if

∞

∑
j=v

E−α−1
j−v

j
un j converges for all v≥ 1 (2.20)

sup
m

m

∑
v=1

∣∣∣∣∣v1/kEα
v

m

∑
j=v

E−α−1
j−v

j
un j

∣∣∣∣∣
k∗

< ∞ (2.21)

sup
n≥1

∞

∑
v=1

∣∣∣∣∣v1/kEα
v

∞

∑
j=v

E−α−1
j−v

j
un j

∣∣∣∣∣
k∗

< ∞ (2.22)

lim
n→∞

∞

∑
j=v

v1/kEα
v E−α−1

j−v

j
un j exists for each v≥ 1. (2.23)

(ii) U ∈ (|Cα |k,c0) if and only if (2.20), (2.21), (2.22) and

lim
n→∞

∞

∑
j=v

v1/kEα
v E−α−1

j−v

j
un j = 0 for each v≥ 1

hold.

(iii) U ∈ (|Cα |k, l∞) if and only if (2.20), (2.21), (2.22) hold.
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