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Abstract

In this work, we aim to prove the convergence of the sequences generated by the shrinking projection method and the
parallel monotone method to find a common fixed point of a finite family of G-nonexpansive mappings endowed with
graphs. We obtain strong convergence results under some mild conditions. We provide numerical examples and give
applications to signal recovery. Moreover, numerical experiments of our algorithms which different blurred matrices
on the algorithm to show the efficiency and the implementation for signal recovery.
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1. Introduction

Many application in applied science such as the signal recovery, image restoration [18, 19, 20, 31, 32, 33, 34] can
be explained by the linear equation system in one dimensional vector as follows:

v = F u + ϵ, (1)

where F : RN → RM(M < N) is the blurred matrix, u ∈ RN is an original signal with k nonzero components to be
recovered, ϵ is additive noise and v ∈ RM is the observed signal. It is known that solving the problem (1) can be seen
as the well-known regularized least square problem which is called LASSO problem:

min
u∈RN

(1
2
∥y − F u∥22 + λ∥u∥1

)
, (2)
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where λ > 0. Moreover, the problem (2) can be generalized by convex optimization problems as the following form:

minimize( f (u) + g(u)), (3)

where u ∈ H , f , g : H → R ∪ {+∞} are two proper, lower-semicontinuous and convex functions, and H is a real
Hilbert space. It is known that the problem (3) is equivalent to the fixed point problem as follows:

u = proxαg(u − α∇ f (u)), (4)

where α > 0, proxg = (I + ∂g)−1 is the proximal operator of g and ∂g is subdifferential of g and ∇ f denotes the
gradient of f . From this point of view, it is known that (4) can generate a classical forward-backward algorithm in the
following manner:

un+1 = proxαng(un − αn∇ f (un)), (5)

where αn is a suitable stepsize. Many mathematicians have used this algorithm (5) to modify in many ways such as
the proximal point algorithm [13, 21, 25, 28] and the gradient method [11, 30, 41, 42]. For its applications, there have
been modifications of the algorithm (5) in many various areas of science and physic etc., (see [7, 8, 10, 16, 17, 23, 26,
44, 36]).

In signal processing, the sound may be disturbed by many noises. The goal in this paper is to remove noise without
knowing the type of noise and different blurred matrixes. Here, we aim to focus on the following problem

min
u∈RN

(1
2
∥F1u − v1∥

2
2 + λ1∥u∥1

)
,

min
u∈RN

(1
2
∥F2u − v2∥

2
2 + λ2∥u∥1

)
,

...

min
u∈RN

(1
2
∥FNu − vN∥

2
2 + λN∥u∥1

)
. (6)

where Fk is a bounded linear operator, u is original signal and vk is observed signal with noisy for all k = 1, 2, ...,N.
Before we start solving the problem (6), we recall the concept of the fixed point problem of G−nonexpansive

mapping. Let K be a nonempty subset of a real Hilbert spaces H . Let ∆ be the diagonal of the cartesian product
K × K , i.e., ∆ = {(u, u) : u ∈ K} and G be a directed graph such that the set V(G) is vertices coincides of graph G
with K and the set E(G) is edges of graph G with ∆ ⊆ E(G). We assume G has on parallel edge, then the graph G is
the pair (V(G), E(G)). A mapping S : K → K is said to be

1. Contraction if S satisfies the following way: there exists α ∈ (0, 1) such that

∥Su − Sv∥ ≤ α∥u − v∥,

for all u, v ∈ K .
2. Nonexpansive if S satisfies the conditions:

∥Su − Sv∥ ≤ ∥u − v∥,

for all u, v ∈ K .
3. G − contraction if S satisfies the conditions:

(1) S preserves edges of G, i.e.,
(u, v) ∈ E(G)⇒ (S u, S v) ∈ E(G),

for all (u, v) ∈ E(G).
(2) S decreases weights of edges of G in the following way: there exists α ∈ (0, 1) such that

(u, v) ∈ E(G)⇒ ∥Su − Sv∥ ≤ α∥u − v∥,

for all (u, v) ∈ E(G).
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4. G − nonexpansive if S satisfies the conditions:
(1) S preserves edges of G, i.e.,

(u, v) ∈ E(G)⇒ (Su,Sv) ∈ E(G),

for all (u, v) ∈ E(G).
(2) S non-indecreases weights of edges of G in the following way:

(u, v) ∈ E(G)⇒ ∥Su − Sv∥ ≤ ∥u − v∥,

for all (u, v) ∈ E(G).

The set of all fixed points ofS is denoted by F(S), i.e., F(S) = {z ∈ K : Sz = z}. If we setSu = proxαg(u−α∇ f (u))
where α ∈ (0, 2/L) and L is the Lipschitz constant of the gradient of functions f , then S is nonexpansive. It is
known that if S is nonexpansive, then S is G−nonexpansive. This is the reason that why we interested in studying
G−nonexpansive mapping.

In 2008, the Banach’s contraction principle was studied and extended to complete metric spaces endowed with a
graph by Jachymski [15]. In 2012, Aleomraninejed et al. [1] introduced some iterative scheme for G−contraction with
G−nonexpansive mappings in Banach spaces endowed with a graph. Recently, Alfuradan [3] studied the existence of
fixed point and proved the convergence result of monotone nonexpansive mapping on a Banach space endowed with a
directed graph. Since 2012, the Browders convergence theorem for G−nonexpansive mapping in a Hilbert space with
a directed graph, weak and strong convergence of some iterations for G−nonexpansive mappings were discussed by
many authors (see for example [1, 2, 3, 39, 40]).

Finding a common solution to a problem system is very useful in real-world problems. Many authors [9, 12, 27,
38] have proposed many algorithms to solve it. One of that is a parallel monotone hybrid algorithm was proposed for
solving common fixed point problems of a finite family of quasi ϕ-nonexpansive mappings {Si}

N
i=1 in Banach spaces

by Anh and Hieu [4, 5]. It was modified by using parallel methods and the Shrinking projection method [24] . It can
be seen in Hilbert spaces as follows:

u0 ∈ K ,

vk
n = αnun + (1 − αn)Skun, k = 1, 2, ...,N,

kn = argmax{∥vk
n − un∥ : k = 1, 2, ...,N}, v̄n := vkn

n ,

Cn+1 = {t ∈ Cn : ∥t − v̄n∥ ≤ ∥t − un∥},

un+1 = PCn+1u0, n ≥ 1,

(7)

where 0 < αn < 1, lim sup
n→∞

αn < 1. It can be seen that at the n−th iteration step of the algorithm (7), v̄n is chosen

from the parallel of vk
n for k = 1, 2, ...,N. For the final step, the projection on to ]the closed convex set Cn+1 which

can be more easily performed then existing algorithms specially when the number of variational inequalities N is
large. The parallel algorithm can solve the problem which is divided into sub-problem and are executed in parallel to
get individual outputs which are combined together to get the final desired out put, so it have be used to solve many
problem (see [9, 14, 37]).

Motivated by the previous works, we proposed a new algorithm with the modified parallel monotone algorithm
for finding a common fixed point. Using the Shrinking projection method, we obtain the strong convergence theorem
under suitable conditions in Hilbert spaces endowed with a directed graph. Further, we give an example and numerical
experiments for supporting our main results. Finally, we use our proposed algorithm for applying to solve the signal
recovery problem (6).

2. Main results

In this section, we prove strong convergence theorems of the modified parallel hybrid algorithm for a finite family
of G−nonexpansive mappings in real Hilbert spaces. Throughout this paper, we denote un → u and un ⇀ u as strong
and weak convergence of {un} to u, respectively.
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Algorithm 2.1. Let K be a nonempty closed and convex subset of a real Hilbert space H and let G = (V(G), E(G))
be a directed graph such that V(G) = K and E(G) is convex. Let Sk : K → K be a G−nonexpansive mapping for

all k = 1, 2, ...,N such that Ω :=
N⋂

k=1

F(Sk) , ∅, Ω is closed and F(Sk) × F(Sk) ⊆ E(G) for all k = 1, 2, ...,N. Take

C0 = C1 and u1 ∈ K arbitrarily and
Step1: Compute

vn = α
0
nun +

N∑
k=1

αk
nSkun.

Step2: Calculate
Cn+1 = {t ∈ Cn : ∥t − vn∥ ≤ ∥t − un∥}

and
un+1 = PCn+1u0, n ≥ 1

where {αk
n} is a sequence in [0, 1] for all k = 0, 1, ...,N and

N∑
k=0

αk
n = 1.

Theorem 2.2. Let {un} be generated by Algorithm 2.1. Assume that the following conditions hold:

(1) {un} dominates p for all p ∈ F and if there exists a subsequence {uni} of {un} such that uni ⇀ w ∈ K , then
(uni ,w) ∈ E(G);

(2) lim inf
n→∞

α0
nα

k
n > 0 for all k = 1, 2, ...,N.

Then {un} convergence strongly to w = PΩu1.

Proof. We split the proof into five steps.
Step 1. Show that PCn+1 is well-defined for every u1 ∈ H . As shown in Theorem 3.2 of Tiammee et al. [2], F(Sk) is
convex for all k = 1, 2, ...,N. It follows from our assumption thatΩ is closed and convex. Hence, PΩu1 is well-defined.
We see that C1 = K is closed and convex. Assume that Cn is closed and convex. From the definition of Cn+1 and
Lemma 1.3 in [22], we get Cn+1 is closed and convex. Let p ∈ Ω. Since {un} dominates p and Sk is edge-preserving for

all k = 1, 2, ...,N, we have (Skun, p) ∈ E(G) for all k = 1, 2, ...,N. This shows that (vn, p) = (α0
nun +

N∑
k=1

αk
nSkun, p) ∈

E(G) by E(G) is convex, we get

∥vn − p∥ = ∥α0
nun +

N∑
k=1

αk
nSkun − p∥

≤ α0
n∥un − p∥ +

N∑
k=1

αk
n∥Skun − p∥

≤ ∥un − p∥.

Thus, we have p ∈ Cn+1. Therefore Ω ⊂ Cn+1. This implies that PCn+1u1 is well-defined.
Step 2. Show that lim

n→∞
∥un − u1∥ exists. By the property of the metric projection PΩ when Ω is a nonempty, closed

and convex subset ofH , then there exists a unique v ∈ Ω such that v = PΩu1. From un+1 ∈ Cn, for all n ≥ 1, we get

∥PCnu1 − u1∥ ≤ ∥un+1 − u1∥, ∀n ≥ 1. (8)

On the other hand, as Ω ⊂ Cn, we obtain

∥un − u1∥ ≤ ∥v − u1∥, ∀n ≥ 1. (9)
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It follows from (8) and (9) that the sequence {un} is bounded and nondecreasing. Therefore lim
n→∞
∥un − u1∥ exists.

Step 3. Show that un → w ∈ K as n → ∞. For j > n, by the definition of Cn, since u j = PC ju1 ∈ C j ⊂ Cn, it is from
the metric projection that

∥u j − un∥
2 ≤ ∥u j − u1∥

2 − ∥un − u1∥
2.

Since lim
n→∞
∥un − u1∥ exists, by Step 2, we have u j → un, as n→ ∞ i.e., {un} is a Cauchy sequence. Hence, there exists

w ∈ K such that un → w as n→ ∞. In particular, we have

lim
n→∞
∥un+1 − un∥ = 0. (10)

Step 4. Show that w ∈ Ω. Since un+1 ∈ Cn+1 ⊂ Cn, it follows from (10) that

∥vn − un∥ ≤ ∥vn − un+1∥ + ∥un+1 − un∥ ≤ 2∥un+1 − un∥ → 0 (11)

as n→ ∞. For p ∈ Ω, it follows from Lemma 2.5 in [6] and {un} dominates p that

∥vn − p∥2 = ∥α0
nun +

N∑
k=1

αk
nSkun − p∥2

≤ α0
n∥un − p∥2 +

N∑
k=1

αk
n∥Skun − p∥2 −

N∑
k=1

α0
nα

k
n∥Skun − un∥

2

≤ ∥un − p∥2 −
N∑

k=1

α0
nα

k
n∥Skun − un∥

2.

This implies that
N∑

k=1

α0
nα

k
n∥Skun − un∥

2 ≤ ∥un − p∥2 − ∥vn − p∥2.

It follows from the assumption (2) and (11), we obtain

lim
n→∞
∥Skun − un∥ = 0

for all k = 1, 2, ...,N. From un → w as n→ ∞, the assumption (1) and Lemma 6 in [35], we have w ∈ Ω.
Step 5. Show that w = PΩu1. By the property of the metric projection PCnu1, we have

⟨u1 − PCnu1, PCnu1 − p⟩ ≥ 0, ∀p ∈ Cn. (12)

By taking the limit in (12), we obtain
⟨u1 − w,w − p⟩ ≥ 0, ∀p ∈ Cn.

Since Ω ⊂ Cn, so w = PΩu1. This completes the proof. □

We know that if S is nonexpansive, that S is G−nonexpansive. Applying from Theorem 2.1, we obtain the
following corollary.

Corollary 2.3. Let K be a nonempty closed and convex subset of a real Hilbert space H . Let Sk : K → K be a

nonexpansive mapping for all k = 1, 2, ...,N such that Ω :=
N⋂

k=1

F(Sk) , ∅. Let {un} be a sequence generated by



u1 ∈ K ,

vn = α
0
nun +

N∑
k=1

αk
nSkun,

Cn+1 = {t ∈ Cn : ∥t − vn∥ ≤ ∥t − un∥},

un+1 = PCn+1u0, n ≥ 1,

(13)
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where {αk
n} is a sequence in [0, 1] for all k = 0, 1, ...,N and

N∑
k=0

αk
n = 1 with lim inf

n→∞
α0

nα
k
n > 0 for all k = 1, 2, ...,N.

Then {un} convergence strongly to w = PΩu1.

3. Numerical Experiments

In this section, we provide the numerical experiments and apply the convex minimization problem 3 to signal
restoration problem. All experiments and visualizations are performed on a computer (Intel(R) Core(TM) i7-2600 16
GB RAM/Windows 10/64-bit) with MATLAB 2022a.

In this experiments, firstly, we give an example in Euclidian space R3 which shows numerical experiment for
supporting our main theorem.

Example 3.1. Let H = R3 and K = [0,∞) × (−∞, 5] × [−5, 5]. Assume that (u, v) ∈ E(G) if and only if 1 ≤ u1, v1,
u2, v2 ≤ 0, −1.5 ≤ u3, v3 ≤ −0.5 for all u = (u1, u2, u3), v = (v1, v2, v3) ∈ K . Define mappings S1,S2,S3 : K → K by

S1u = (log
u1

3
+ 3,−1,−1);

S2u = (3,−1,
tan(u3 + 1)

3
− 1);

S3u = (3,
eu2+1

2
−

3
2
,−1)

for all u = (u1, u2, u3) ∈ K . It is easy to check that S1, S2 and S3 are G-nonexpansive such that F(S1) ∩ F(S2) ∩
F(S3) = {(3,−1,−1)}. On the other hand, S1 is not nonexpansive since for u = (0.23,−5, 5) and v = (0.15,−5, 5). This
implies that ∥S1u−S1v∥ > 0.1 > ∥u−v∥. S2 is not nonexpansive since for u = (10,−7, 0.1) and v = (10,−7, 0.29). We
have ∥S2u−S2v∥ > 0.3 > ∥u− v∥. Moreover, S3 is not nonexpansive since for u = (0.5, 0.48, 1) and v = (0.5, 0.49, 1).
We have ∥S3u − S3v∥ > 0.5 > ∥u − v∥. We use the mean squared error (MSE) to measure quantitatively, which is
defined by

MSE =
1
N
∥uk − u∗∥2 < ε,

where uk is an estimated point of u∗. In our experiment, we give cases as follows in Table 1. The numerical results
are reported by Table 2.
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Table 1: Choose parameters α for S i, i = 1, 2, 3 and stop condition(Cauchy error) < 10−9.

Initail point Cases Inputting
S 1 S 2 S 3 S 1S 2 S 1S 3 S 2S 3 S 1S 2S 3

(7.61,−1.29,−7.98) C1 α0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α1 0.9 - - 0.5 0.5 - 0.2
α2 - 0.9 - 0.4 - 0.5 0.3
α3 - - 0.9 - 0.4 0.4 0.4

C2 α0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α1 0.9 - - 0.6 0.6 - 0.2
α2 - 0.9 - 0.3 - 0.6 0.4
α3 - - 0.9 - 0.3 0.3 0.3

C3 α0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α1 0.9 - - 0.5 0.5 - 0.3
α2 - 0.9 - 0.4 - 0.5 0.2
α3 - - 0.9 - 0.4 0.4 0.4

C4 α0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α1 0.9 - - 0.7 0.7 - 0.3
α2 - 0.9 - 0.2 - 0.7 0.4
α3 - - 0.9 - 0.2 0.2 0.2

C5 α0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α1 0.9 - - 0.7 0.7 - 0.4
α2 - 0.9 - 0.2 - 0.7 0.3
α3 - - 0.9 - 0.2 0.2 0.2

C6 α0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α1 0.9 - - 0.6 0.6 - 0.4
α2 - 0.9 - 0.3 - 0.6 0.2
α3 - - 0.9 - 0.3 0.3 0.3

C7 α0 0.25 0.25 0.25 0.25 0.25 0.25 0.25
α1 0.75 - - 0.5 0.5 - 0.25
α2 - 0.75 - 0.25 - 0.5 0.25
α3 - - 0.75 - 0.25 0.25 0.25

(11,−0.9,−0.1) C8 α0 0.25 0.25 0.25 0.25 0.25 0.25 0.25
α1 0.75 - - 0.5 0.5 - 0.25
α2 - 0.75 - 0.25 - 0.5 0.25
α3 - - 0.75 - 0.25 0.25 0.25

C9 α0 0.4 0.4 0.4 0.4 0.4 0.4 0.4
α1 0.6 - - 0.3 0.3 - 0.1
α2 - 0.6 - 0.3 - 0.3 0.2
α3 - - 0.6 - 0.3 0.3 0.3

C10 α0 0.4 0.4 0.4 0.4 0.4 0.4 0.4
α1 0.6 - - 0.5 0.5 - 0.2
α2 - 0.6 - 0.1 - 0.5 0.3
α3 - - 0.6 - 0.1 0.1 0.1

C11 α0 0.4 0.4 0.4 0.4 0.4 0.4 0.4
α1 0.6 - - 0.5 0.5 - 0.2
α2 - 0.6 - 0.1 - 0.5 0.3
α3 - - 0.6 - 0.1 0.1 0.1

C12 α0 0.4 0.4 0.4 0.4 0.4 0.4 0.4
α1 0.6 - - 0.5 0.5 - 0.3
α2 - 0.6 - 0.1 - 0.5 0.2
α3 - - 0.6 - 0.1 0.1 0.1

C13 α0 0.7 0.7 0.7 0.7 0.7 0.7 0.7
α1 0.3 - - 0.2 0.2 - 0.1
α2 - 0.3 - 0.1 - 0.2 0.1
α3 - - 0.3 - 0.1 0.1 0.1
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Table 2: The convergence behavior of Table 1-??.

Cases Inputting operators
S 1 S 2 S 3 S 1S 2 S 1S 3 S 2S 3 S 1S 2S 3

C1 Time 0.0585 0.0069 0.0074 0.0073 0.0069 0.0076 0.0074
*Iter 55 53 34 46 41 58 48

C2 Time 0.0491 0.0088 0.0073 0.0068 0.0073 0.0070 0.0074
*Iter 53 53 39 50 43 46 55

C3 Time 0.0571 0.0067 0.0067 0.0072 0.0082 0.0073 0.0082
*Iter 53 56 34 48 47 53 39

C4 Time 0.0454 0.0068 0.0073 0.0068 0.0069 0.0086 0.0070
*Iter 59 53 39 46 45 47 40

C5 Time 0.0499 0.0071 0.0072 0.0071 0.0074 0.0080 0.0070
*Iter 53 54 34 42 54 63 45

C6 Time 0.0499 0.0074 0.0072 0.0069 0.0073 0.0074 0.0067
*Iter 52 55 34 41 48 44 42

C7 Time 0.0513 0.0068 0.0103 0.0106 0.0084 0.0080 0.0073
*Iter 71 63 50 54 55 59 47

C8 Time 0.0503 0.0071 0.0071 0.0068 0.0074 0.0081 0.0070
*Iter 66 61 47 50 54 50 46

C9 Time 0.0545 0.0079 0.0086 0.0073 0.0076 0.0078 0.0086
*Iter 81 73 54 66 70 65 64

C10 Time 0.0549 0.0077 0.0073 0.0074 0.0073 0.0073 0.0075
*Iter 83 75 57 66 65 60 58

C11 Time 0.0548 0.0069 0.0071 0.0075 0.0073 0.0077 0.0069
*Iter 84 74 54 66 75 77 66

C12 Time 0.0497 0.0069 0.0100 0.0079 0.0079 0.0075 0.0073
*Iter 84 75 55 69 95 67 67

C13 Time 0.0489 0.0071 0.0078 0.0077 0.0077 0.0073 0.0077
*Iter 161 146 114 128 148 126 129

The results are presented in Table ??, where the CPU time and number of iterations for all cases under the three
operators S 1, S 2 and S 3 by using the main algorithm. It is shown that in the CPU time and number of iterations of
proposed algorithm decrease when α set by case C7 and C8, it has an effect on the number of iterations for input many
mapping S i.

Next,we apply the Algorithm 2.1 to solve the LASSO problem in signal recovery (6) by setting

S iu = proxλigi
(un − λi∇ fi(un)).

In our experiment, the sparse vector u ∈ RN is generated from uniform distribution in the interval [-2,2] with n nonzero
elements. The matrix Ai ∈ R

M×N is generated from a normal distribution with mean zero and invariance one. The
observation vi is generated by with Gaussian noise white signal-to-noise ratio (SNR).

In what follows, let the initial point is picked randomly. Let the step size αk
n = 1/4 in Algorithm 2.1. The

numerical results are shown in Table 3.
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Table 3: The computational result for solving the LASSO problem (6).

Cases Size Inputting m = 10 m = 20 m = 40
Time Iter Time Iter Time Iter

1-A1 M = 512 A1 15.7565 7573 14.5070 7406 29.4638 10643
1-A2 N = 256 A2 13.4425 7141 15.1371 7594 29.0689 10459
1-A3 A3 16.0106 7798 12.7354 6917 27.2869 10206
1-A12 A1A2 0.6685 1521 0.6461 1489 0.6962 1627
1-A13 A1A3 0.8720 1672 0.6313 1411 0.9151 1731
1-A23 A2A3 0.8203 1594 0.6989 1440 1.0820 1843

1-A123 A1A2A3 0.1480 481 0.1172 441 0.1437 546
2-A1 M = 1024 A1 87.6031 12791 85.5404 12693 139.0744 16075
2-A2 N = 512 A2 85.2670 13402 102.9699 13979 139.0744 16075
2-A3 A3 99.7328 13691 109.2934 14155 149.6947 16789
2-A12 A1A2 6.0965 2634 6.8648 2819 6.9998 2859
2-A13 A1A3 6.1098 2587 6.7377 2654 7.0165 2837
2-A23 A2A3 5.8777 2383 8.3323 2923 8.736 3004

2-A123 A1A2A3 1.644 617 1.2883 698 1.2076 635
3-A1 M = 512 A1 13.4005 7094 16.1148 7781 32.4653 11103
3-A2 N = 256 A2 13.8487 7258 16.6190 7811 34.5990 11543
3-A3 A3 11.6239 6647 15.8769 7696 40.2163 12264
3-A12 A1A2 0.5897 1390 0.6758 1489 0.7678 1671
3-A13 A1A3 0.7108 1569 0.7120 1460 0.5935 1385
3-A23 A2A3 0.8484 1600 1.2158 1816 0.9180 1428

3-A123 A1A2A3 0.1400 461 0.1888 539 0.1531 474

The Table 3, we set Case1-2 by input Ai, i = 1, 2, 3, SNR=40 and in Case 3 input A1, SNR=40, A2, SNR=60
and A3, SNR=70. It is shown that the recovered signal by inputting Ai, i = 1, 2, 3 has less number of iterations and
CPU time than inputting Ai, i = 1, 2 and Ai, i = 1 for all cases. Next, we give some numerical experiments for two
cases in Table 3 to illustrate the convergence behavior of cases in comparison. We plot the number of iterations versus
MSE< 10−5 are shown in Figure 11 and the original signal, observation data and recovered signal are shown in Figure
1, Figure 2, Figure 3-5, respectively.

Figure 1: The original signal size N = 512,M = 256 and 20 spikes.
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The different types of three blurred matrices are shown in Figure 2.

Figure 2: The measurred values with Ai, i = 1, 2, 3, SNR=40.

Figure 3: The recovered signal by Table 3 with m = 20 in case 2-A1 (12693 Iter, CPU=85.5404), case 2-A2 (13979 Iter,
CPU=102.9699), case 2-A3 (14155 Iter, CPU=109.2934), respectively.
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Figure 4: The recovered signal by Table 3 with m = 20 in case 2-A12 (2819 Iter, CPU=6.8648), case 2-A13 (2654 Iter,
CPU=6.7377), case 2-A23 (2923 Iter, CPU=8.3323), respectively.

Figure 5: The recovered signal by Table 3 with m = 20 in case 2-A123 (698 Iter, CPU=1.2883).

Next, we provide the signal recovery by different type of inputting SNR. The original signal, observation data and
recovered signal are shown in Figure 6, Figure 7, Figure 8-10, respectively.

Figure 6: The original signal size N = 1024,M = 512 and 40 spikes.



K.Kankam, P.Cholamjiak, W.Cholamjiak, Results in Nonlinear Anal. 5 (2022), 393–411. 404

The different types of three blurred matrices are shown in Figure 7.

Figure 7: The measurred values with input A1, SNR=40 A2, SNR=60, A3, SNR=70, respacetively.

Figure 8: The recovered signal by Table 3 with m = 40 in case 3-A1 (11103 Iter, CPU=32.4653), case 3-A2 (11543 Iter,
CPU=34.5990), case 3-A3 (12264 Iter, CPU=40.2163), respectively.
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Figure 9: The recovered signal by Table 3 with m = 40 in case 3-A12 (1671 Iter, CPU=0.7678), case 3-A13 (1385 Iter,
CPU=0.5935), case 3-A23 (1428 Iter, CPU=0.9180), respectively.

Figure 10: The recovered signal by Table 3 with m = 40 in case 3-A123 (474 Iter, CPU=0.5131).

Figure 11: The MSE of Algorithm 2.1 with Table 3 with case 2, m = 20 and case 3, m = 40, respectively.

From Table 3 and Figure 11, we see that the CPU time and the numbers of iterations of Ai, i = 1, 2, 3 of Algorithm
2.1 are better than inputting Ai, i = 1, 2 and Ai, i = 1 of all cases for solving the LASSO problem in signal recovery.
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Next, we provide a comparison among Algorithms 2.1, MSP algorithm [29] and NMTS algorithm [43]. Let the
stepsize αi = 1/4 in Algorithms 2.1 and let αn = βn = γn = 0.1 in SP algorithm [29] and NMTS algorithm [43]. The
numerical results are shown in Table 4.

Table 4: The computational result for solving the LASSO problem (6).

Cases Size Inputting m = 10 m = 20 m = 40
Time Iter Time Iter Time Iter

1 M = 512 Algorithm 2.1 0.1480 481 0.1172 441 0.1437 546
N = 256 MSP 0.2044 669 0.1738 614 0.2451 756

NMTS 0.1979 663 0.1598 630 0.2537 746
2 M = 1024 Algorithm 2.1 1.644 617 1.2883 698 1.2076 635

N = 512 MSP 1.5547 857 1.9789 959 1.6240 879
NMTS 2.2776 1096 2.431 1136 2.3807 1180

3 M = 512 Algorithm 2.1 13.4005 7094 16.1148 7781 0.1531 474
N = 256 MSP 0.2111 628 0.2262 731 0.2580 677

NMTS 0.1759 604 0.1802 628 0.2466 738
4 M = 1024 Algorithm 2.1 1.640 622 1.2736 664 1.1695 624

N = 512 MSP 1.5744 858 1.6933 911 1.5577 860
NMTS 1.8619 982 2.5307 1215 2.5862 1233

Next, we give two cases in Table 3 to show the efficiency of Algorithm 2.1 in case A123 with tho other algorithms
by MSE versus the number of iterations.

The original signal are shown in Figure 12-15, the observation signal are shown in Figure 13-16 and the recovered
signal are shown in Figure 14-17, respectively.

Figure 12: The original signal size N = 512,M = 256 and 10 spikes.



K.Kankam, P.Cholamjiak, W.Cholamjiak, Results in Nonlinear Anal. 5 (2022), 393–411. 407

Figure 13: The measurred values with Ai, i = 1, 2, 3, SNR=40.

Figure 14: The recovered signal by Table 4 case 1 with m = 10 in Algorithm 2.1 (481 Iter, CPU=0.1480), MSP algorithm (669
Iter, CPU=0.2044), NMTS algorithm (1233 Iter, CPU=0.1979), respectively.
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Figure 15: The original signal size N = 1024,M = 512 and 40 spikes.

Figure 16: The measurred values with input A1, SNR=40 A2, SNR=60, A3, SNR=70, respacetively.
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Figure 17: The recovered signal by Table 4 case 4 with m = 40 in Algorithm 2.1 (624 Iter, CPU=1.1695), MSP algorithm (860
Iter, CPU=1.5577), NMTS algorithm (1233 Iter, CPU=2.5862), respectively.

Figure 18: The MSE of Algorithm 2.1 by Table 4 with case 1, m = 10 and case 4, m = 40, respectively.

From Table 4 and Figure 18, we see that the CPU time and the numbers of iterations of Algorithm 2.1 are better
than those of MSP algorithm and NMTS algorithm.
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