
Plates are used in the many engineering applica-
tions such as civil, mechanical and aerospace. 

In the service conditions, they are used as dynamic 
conditions. Therefore, it is an important point to 
understand the dynamic behaviour of the plate like 
structures.

Vibration of the isotropic plates were considered in 
many of the previous studies. They were summarized 
in the work of Leissa [1-3]. Different theories were deve-
loped in order to study vibration of plates. The classical 
plate theory is the first model developed by Kirchhoff 
[4]. In this theory, it is assumed that the normal lines be-
fore the deformation will be normal to the mid-surface 
of the plate after deformation.  This theory is acceptab-
le for the isotropic thin plates. In order to improve the 
accuracy the first and higher order shear deformation 
theories were proposed by some authors (see for examp-
le: Mindlin [5], Reissner [6] for the first order shear de-
formation theory and Reddy [7], Touratier [8], Soldatos 
[9] theories for the higher order models.). Noor and
Burton [10] developed three-dimensional solutions for
the free vibration and buckling analysis of multilayered
angle-ply composite plates. Vibration of delaminated
composite plates has been investigated using three-di-
mensional theory of linear elasticity in [11]. A finite ele-
ment method has been developed for vibration analysis
of delaminated composite plates and obtained results
were compared with the experimental observations in
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that paper. Liew et al. [12] studied the vibration analysis 
of thick rectangular plates using a continuum three-
dimensional Ritz formulation. In another study [13], 
static and dynamic analyses of thick laminated plates 
have been examined using three-dimensional theory 
of linear elasticity and approximate Ritz method. Chen 
and Lü [14] investigated the three-dimensional free vib-
ration analysis of cross-ply laminated plates. They used 
differential quadrature method in solution of the prob-
lem. The free vibration analysis of cross-ply laminated 
rectangular plates with clamped boundaries has been 
investigated in the framework of the three-dimensional 
elasticity in [15]. The results obtained from that paper 
were given for either isotropic or cross-ply laminated 
plates having different combinations of simply sup-
ported and clamped boundaries. Three-dimensional 
elasticity solutions have been presented for the free vib-
rations of rectangular plates based on the differential 
quadrature method in [16]. So and Leissa [17] studied 
the three-dimensional vibration analysis of thick cicular 
and annular plates. The flexural thickness-shear, in pla-
ne stretching, and torsional modes are included in the 
analyses in that paper. Liew and Yang [18] investigated 
the vibrational characteristics of annular plates based 
on the three-dimensional elasticity theory. Recently, 
Huang et al. [19] have developed a three-dimensional 
exact solution for the vibration analysis of functionally 
graded rectangular plates. The free vibrations of three-
dimensional orthotropic rectangular plates have been 

A B S T R A C T

In this study, vibration of plates embedded in a rigid enclosure has been investigated ana-
lytically for the first time in the literature. It is assumed that the isotropic plate is always 

in contact with outer enclosure. Therefore, the normal displacement at a boundary surface 
is constrained but tangential displacement at a surface is allowed. The displacement field is 
assumed in trigonometric function form. This analytical solution is the only available exact 
solution of three-dimensional isotropic plate. Numerical results were presented for various 
geometrical parameters. It is believed that the present formulation and the results can be 
used as a benchmark for the numerical methods where the exact solution is not possible.

INTRODUCTION 
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pectively. By using small strain assumption, normal and 
shear strain displacement relations are written as

, , ,

, ,

x y z

xy yz xz

u v w
x y z
u v v w u w
y x z y z x

ε ε ε

γ γ γ

∂ ∂ ∂
= = =
∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= + = + = +
∂ ∂ ∂ ∂ ∂ ∂

              (4)

Here, εx, εy and εz represent the normal strains and γxy, γyz 
and γxz represent the shear strains. For an isotropic plate, 
stress-strain relations can be written using Hooke’s law 
as follows

2x xe Gσ λ ε= +      (5)

2y ye Gσ λ ε= +       (6)

2z ze Gσ λ ε= +       (7)

xy

xy G
γτ =               (8)

yz

yz G
γτ =    (9)

xz
xz G

γτ = (10)

where

x y ze ε ε ε= + +      (11)

(1 )(1 2 )
vE

v vλ + −=   (12)

2(1 )
vE

vG += (13)

Here, λ denotes the Lamé constant, G denotes the shear 
modulus, E denotes the Young’s modulus and ν denotes 
the Poisson’s ratio. Inserting Eqs. (5), (6), (7) and (12) into 
Eqs. (1-3) leads to

2
2

2

( , )( ) ( , )e u x tG G u x t
x t

λ ρ∂ ∂
+ + ∇ =

∂ ∂
                         (14)

2
2

2
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y t

λ ρ∂ ∂
+ + ∇ =

∂ ∂
                          (15)

2
2

2

( , )( ) ( , )e w z tG G w z t
z t

λ ρ∂ ∂
+ + ∇ =

∂ ∂
                          (16)

where 2∇  is the three-dimensional Laplaćian operator 
which is defined as

2 2 2
2

2 2 2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

(17)

The boundary conditions which involved combination 
of displacements and stresses on any face can be used for the 
present problem. In this context, the exact vibration soluti-
on of Eqs. 14-17 can be assumed as

( , , , ) A ( ) ( ) ( )u x y z t sin x cos y cos z sin tα β γ ω=          (18a)

investigated by Wang et al. [20]. An extended separation of 
variable method for the free vibration of orthotropic rec-
tangular plates has been presented in that study. In addition 
to the studies mentioned above, there are some important 
papers related to mechanical analyses of one-dimensional, 
two-dimensional and three-dimensional structures [21-25].

It is well known that analytical closed form solutions 
are possible for all edge simply supported plates in two-
dimensional plate theories.. This solution method is known 
as Navier-type solution method in which trigonometric 
displacement functions are used in the displacement field 
in the solution. Levy type solution method is proposed for 
plates with at least two opposite simply supported edges. In 
this method, trigonometric functions are used for simply 
supported boundaries and equations of motion are con-
verted to the ordinary differential equations. Then, they 
are solved using remaining boundary conditions. Other 
than these six boundary conditions, the remaining fifteen 
boundary conditions can not be solved analytically. Three-
dimensional vibration of plates is a complicated problem 
and there is no analytical solution for many of the boundary 
conditions. Vibration of plates embedded in a rigid enclo-
sure has been investigated analytically in the present study. 
These kind of dynamic problems can be encountered in 
machine elements or in some manufacturing processes like 
forging. This problem has not been investigated previously 
in the open literature. An isotropic plate is inserted in a rigid 
enclosure. Isotropic material properties were considered for 
the elastic plate and it is always in contact with outer enclo-
sure. So, the normal displacement at a boundary surface is 
constrained but tangential displacement at a surface is allo-
wed. The displacement fields are assumed in trigonometric 
function form since they satisfy the equations of motion and 
boundary conditions. Numerical results were presented for 
various geometrical parameters.

THEORY

The equations of motion of a three-dimensional plate for 
free vibration are defined as

2

2

( , )xyx xz u x t
x y z t

τσ τ ρ
∂∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

(1)

2

2

( , )xy y yz v x t
x y z t
τ σ τ

ρ
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

(2)

2

2

( , )yzxz z w x t
x y z t

ττ σ ρ
∂∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

(3)

where ρ is the mass density, t is the time , xσ  , yσ  and 
zσ are normal stress in x,y and z-axes, τxy, τyz and τxz are 

shear stress in x-y, y-z and x-z planes, and u ,v ,w are the 
displacement components in x, y and z directions, res-
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( , , , ) ( ) ( ) ( )v x y z t Bcos x sin y cos z sin tα β γ ω=          (18b)

( , , , ) ( ) ( ) ( )sinw x y z t C cos x cos y sin z tα β γ ω=        (18c)

where

, , .m n p
a b h
π π πα β γ= = =   (19)

Here, ω is the circular frequency, m, n, p are integers 
which represent the half wave number, a, b, h are the 
length components of the isotropic three-dimensional 
plate about x, y and z-axis, respectively.

These boundary conditions can be considered as “an 
elastic block is enclosed by a much more rigid outer material 
or block which is well lubricated contact surface between 
two bodies” as stated by Leissa [1] (p.316) (Fig. 1).

It should be noted that an initial stress is required for 
continuous contact between elastic plate and outer enclo-
sure. Although this boundary conditions are not common, 
it can be considered in a manufacturing process of a closed 
die forging.  A more important point is the present results 
can be considered as a benchmark solution for the approxi-
mate solutions such as finite element method, finite diffe-
rence method, differential quadrature method, etc.

Then, substituting Eqs. (18) and (19) into the equations 
of motion (14-16) gives a sixth-order characteristic equati-
on of the present vibration problem of three-dimensional 
isotropic plate enclosed in a rigid body with the following 
equation:

11 12 13

21 22 23

31 32 33

0
0
0

K K K A
K K K B
K K K C

     
     =     
          

(20)

For a non-trivial solution, the determinant of the coeffi-
cient matrix in the previous equation (20) must be zero. 
Thus, it can be obtained the sixth-order frequency deter-
minant. The positive roots of the sixth-order frequency 
determinant obtained from Eq. (20) give three positive 
frequencies of isotropic three-dimensional plate. These 
three positive vibration frequencies represent the first, 
second and third spectrum frequencies for each half 
wave number. It should be noted that the first and se-

cond spectrum frequencies give same values for the pre-
sent problem. The elements of the coefficient matrix of 
Eq. (20) can be obtained in dimensionless form as follows:

2 2 2 2 2 2 2
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where dimensionless terms are

1 2 2, , , , , .a a Dk k D
a b y b h ha
α β γα β γ

λ
= = = = = = (22)

and the dimensionless frequency parameter (Ω2) of 
three-dimensional isotropic plate is defined as

3
2

2, D .
12(1 v )

h Eha
D
ρωΩ = =

−
(23)

The roots of the characteristic equations obtained from 
Eq. (20) are

2 2 2 2 2
1 2

,1 ,2

( k k )
mnp mnp

DG
D

λ β α γ
λ
+ +

Ω = Ω =          (24a)

2 2 2 2 2
1 2

,3

(2 )( k k )
mnp

D G
D

λ λ β α γ
λ

+ + +
Ω =    (24b)

Here, Ωmnp,1, Ωmnp,2 and Ωmnp,3 denote the first, second and 
third set frequency roots of isotropic three-dimensional 
plate for each half wave number.

RESULTS AND DISCUSSION

The numerical results of the formulation presented in 
Section 2 are given for various geometrical parameters. 
Three sets of frequencies are obtained for a given set of 
wave numbers (m, n, p). The frequencies with only one 
wave number in one of the coordinate axes can be obtai-
ned by selecting the corresponding half wave integer (m, 
n, p) as a nonzero integer and zero for other integers in 
Table 1a. They are Ω100, Ω010 and Ω001 frequencies. These 
cases are pure axial deformations along the correspon-Figure 1. The structure of the model.
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Table 1a. The dimensionless vibration frequencies (Ω) for different 
mode numbers (Ω100,Ω010,Ω001).

Ω100

a/h a/b Ω100,1Ω(100,2) Ω100,3

5

1 32.1917 60.2252

2 32.1917 60.2252

3 32.1917 60.2252

5 32.1917 60.2252

20

1 128.7669 240.9009

2 128.7669 240.9009

3 128.7669 240.9009

5 128.7669 240.9009

100

1 643.8349 1204.5048

2 643.8349 1204.5048

3 643.8349 1204.5048

5 643.8349 1204.5048

Ω010

a/h a/b Ω010,1Ω(010,2) Ω010,3

5

1 32.1917 60.2252

2 64.3834 120.4504

3 96.5752 180.6757

5 160.9587 301.1262

20

1 128.7669 240.9009

2 257.5339 481.8019

3 386.3009 722.7028

5 643.8349 1204.5048

100

1 643.8349 1204.5048

2 1287.6698 2409.0096

3 1931.5047 3613.5144

5 3219.1745 6022.5240

Ω001

a/h a/b Ω001,1Ω(001,2) Ω001,3

5

1 160.9587 301.1262

2 160.9587 301.1262

3 160.9587 301.1262

5 160.9587 301.1262

20

1 2575.3396 4818.0192

2 2575.3396 4818.0192

3 2575.3396 4818.0192

5 2575.3396 4818.0192

100

1 64383.4904 120450.4814

2 64383.4904 120450.4814

3 64383.4904 120450.4814

5 64383.4904 120450.4814

Table 1b. The dimensionless vibration frequencies (Ω) for different 
mode numbers (Ω110,Ω101,Ω011).

Ω110

a/h a/b Ω110,1Ω(110,2) Ω110,3

5

45.5260 85.1713 85.1713

71.9829 134.6677 134.6677

101.7992 190.4489 190.4489

164.1463 307.0896 307.0896

20

182.1040 340.6854 340.6854

287.9317 538.6709 538.6709

407.1969 761.7957 761.7957

656.5853 1228.3587 1228.3587

100

910.5200 1703.4270 1703.4270

1439.6586 2693.3546 2693.3546

2035.9847 3808.9786 3808.9786

3282.9267 6141.7935 6141.7935

Ω101

a/h a/b Ω101,1Ω(101,2) Ω101,3

5

1 164.1463 307.0896

2 164.1463 307.0896

3 164.1463 307.0896

5 164.1463 307.0896

20

1 2578.5567 4824.0380

2 2578.5567 4824.0380

3 2578.5567 4824.0380

5 2578.5567 4824.0380

100

1 64386.7095 120456.5037

2 64386.7095 120456.5037

3 64386.7095 120456.5037

5 64386.7095 120456.5037

Ω011

a/h a/b Ω011,1Ω(011,2) Ω011,3

5

1 164.1463 307.0896

2 173.3578 324.3228

3 187.7085 351.1704

5 227.6300 425.8567

20

1 2578.5567 4824.0380

2 2588.1842 4842.0494

3 2604.1510 4871.9204

5 2654.5993 4966.3005

100

1 64386.7095 120456.5037

2 64396.3659 120474.5690

3 64412.4565 120504.6719

5 64463.9196 120600.9505
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Table 1c. The dimensionless vibration frequencies (Ω) for different 
mode numbers (Ω221,Ω211,Ω121).

Ω221

a/h a/b Ω221,1Ω(221,2) Ω221,3

5

1 184.9274 345.9676

2 215.9487 404.0031

3 259.5381 485.5514

5 365.6279 684.0272

20

1 2600.9655 4865.9609

2 2638.9378 4937.0006

3 2701.0389 5053.1812

5 2890.8115 5408.2132

100

1 64409.2387 120498.6519

2 64447.8418 120570.8717

3 64512.1289 120691.1419

5 64717.4186 121075.2038

Ω211

a/h a/b Ω211,1Ω(211,2) Ω211,3

5

1 176.3214 329.8672

2 184.9274 345.9676

3 198.4432 371.2533

5 236.5600 442.5633

20

1 2591.3855 4848.0383

2 2600.9655 4865.9609

3 2616.8542 4895.6860

5 2667.0622 4989.6166

100

1 64399.5843 120480.5902

2 64409.2387 120498.6519

3 64425.3261 120528.7487

5 64476.7789 120625.0081

Ω121

a/h a/b Ω121,1Ω(121,2) Ω121,3

5

1 176.3214 329.8672

2 208.6263 390.3041

3 253.4780 474.2140

5 361.3514 676.0266

20

1 2591.3855 4848.0383

2 2629.4961 4919.3368

3 2691.8151 5035.9250

5 2882.1951 5392.0933

100

1 64399.5843 120480.5902

2 64438.1932 120552.8208

3 64502.4899 120673.1090

5 64707.8102 121057.2281

Table 1d. The dimensionless vibration frequencies (Ω) for different 
mode numbers (Ω331,Ω321,Ω231).

Ω331

a/h a/b Ω331,1Ω(331,2) Ω331,3

5

1 211.0953 394.9233

2 269.3354 503.8805

3 345.2180 645.8437

5 518.0771 969.2335

20

1 2632.6471 4925.2318

2 2716.3424 5081.8113

3 2850.3786 5332.5701

5 3242.2697 6065.7312

100

1 64441.4095 120558.8380

2 64528.1907 120721.1907

3 64672.5672 120991.2944

5 65132.4214 121851.6028

Ω321

a/h a/b Ω321,1Ω(321,2) Ω321,3

5

1 198.4432 371.2533

2 227.6300 425.8567

3 269.3354 503.8805

5 372.6463 697.1575

20

1 2616.8542 4895.6860

2 2654.5993 4966.3005

3 2716.3424 5081.8113

5 2905.1155 5434.9734

100

1 64425.3261 120528.7487

2 64463.9196 120600.9505

3 64528.1907 120721.1907

5 64733.4295 121105.1573

Ω231

a/h a/b Ω231,1Ω(231,2) Ω231,3

5

1 198.4432 371.2533

2 259.5381 485.5514

3 337.6298 631.6476

5 513.0519 959.8323

20

1 2616.8542 4895.6860

2 2701.0389 5053.1812

3 2835.7985 5305.2933

5 3229.4594 6041.7654

100

1 64425.3261 120528.7487

2 64512.1289 120691.1419

3 64656.5413 120961.3127

5 65116.5086 121821.8328
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ding directions. The frequencies are given in Table 1a for 
various a/h and a/b ratios for the first three frequencies. 
The frequencies for Ω100 and Ω001 are independent from 
a/h and a/b ratios.

Similar to one-dimensional waves, plane waves can be 
obtained by setting one of the half wave integer to zero. The-
refore, the integers are Ω110, Ω101, Ω011 (Table 1b). For examp-
le Ω110 is a wave in the xy plane with zero flexure (w=0). 
Plane wave frequencies are higher than one-dimensional 
frequencies. This fact can be seen from Eq. (24).

Table 2a. The first three dimensionless vibration frequencies (Ω) for 
a/b=1.

First mode

a/h Ω111,1Ω(111,2) Ω111,3

1 11.1515 20.8626

2 31.5413 59.0084

3 64.0607 119.8467

5 167.2732 312.9395

10 650.2413 1216.4902

20 2581.7699 4830.0492

30 5800.9489 10852.5816

50 16102.3096 30124.6629

70 31554.3498 59032.7797

100 64389.9285 120462.5258

Second mode

a/h Ω222,1Ω(222,2) Ω222,3

1 22.3030 41.7252

2 63.0826 118.0168

3 128.1215 239.6934

5 334.5464 625.8790

10 1300.4827 2432.9804

20 5163.5398 9660.0985

30 11601.8978 21705.1633

50 32204.6193 60249.3259

70 63108.6997 118065.5594

100 128779.8570 240925.0516

Third mode

a/h Ω333,1Ω(333,2) Ω333,3

1 33.4546 62.5879

2 94.6240 177.0253

3 192.1822 359.5401

5 501.8196 938.8185

10 1950.7241 3649.4706

20 7745.3098 14490.1478

30 17402.8467 32557.7450

50 48306.9290 90373.9889

70 94663.0496 177098.3391

100 193169.7855 361387.5775

Table 2b. The first three dimensionless vibration frequencies (Ω) for 
a/b=2.

First mode

a/h Ω111,1Ω(111,2) Ω111,3

1 15.7706 29.5042

2 38.6301 72.2702

3 72.2702 135.2053

5 176.3214 329.8672

10 659.7344 1234.2501

20 2591.3855 4848.0383

30 5810.5877 10870.6142

50 16111.9604 30142.7179

70 31564.0021 59050.8408

100 64399.5843 120480.5902

Second mode

a/h Ω222,1Ω(222,2) Ω222,3

1 31.5413 59.0084

2 77.2601 144.5405

3 144.5405 270.4106

5 352.6429 659.7344

10 1319.4689 2468.5003

20 5182.7710 9696.0767

30 11621.1754 21741.2284

50 32223.9209 60285.4358

70 63128.0042 118101.6816

100 128799.1687 240961.1805

Third mode

a/h Ω333,1Ω(333,2) Ω333,3

1 47.3120 88.5126

2 115.8902 216.8108

3 216.8108 405.6159

5 528.9643 989.6016

10 1979.2033 3702.7504

20 7774.1565 14544.1150

30 17431.7631 32611.8427

50 48335.8813 90428.1537

70 94692.0063 177152.5224

100 193198.7530 361441.7707
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More general vibration case can be obtained by setting 
all of the wave number integers to a nonzero value. The cor-
responding results for various a/h and a/b ratios for the first 
three frequencies. The first three frequency parameters of 
plates are given in Tables 1 and 2 for various modes and a/h 
and a/b ratios. It is seen that first two sets of frequencies are 
identical for the all cases considered. This can be seen from 
Eq. (24). It is interesting to note that third set frequency is 
1.87 times of the first set frequency approximately. The fre-
quency parameters are increasing with a/h ratio.

The variation of first three frequencies parameters with 
a/b ratios were given in Fig. 2. The frequency parameters of 
thicker plates are more sensitive to a/b ratio when compared 
to thinner plates. It should be also noted that a/b ratio is also 
more effective for the higher modes of vibration.  Plate outer 
surfaces are always in contact with the outer body.  First two 
frequencies are in-plane dominated frequencies whereas the 
third frequency is flexural dominated frequency.

Some mode shapes of vibrating plates are given in Fig. 3. 
These mode shapes are given for a/h=5. For the first mode, 
there is a nodal line at y=b/2. The highest displacement is 
observed at x=a/2. The v-mode shape is obtained by rota-
ting a 90° in the clockwise direction. The first mode shape 
of w is in a shape of saddle with the symmetry axis located 
at y=-x+1.

CONCLUSION

The analytical solution of isotropic three-dimensional 
plate in a rigid enclosure has been presented in the pre-
sent study. Dimensionless frequencies of three-dimen-
sional plate have been obtained for various geometrical 
values. Three sets of frequencies are obtained for each set 
of wave numbers and the first and second set frequenci-
es become identical. It is obtained that one-dimensional 
frequencies Ω100 and Ω001 are independent from a/h and 
a/b ratios. Plane wave frequencies give higher values than 
one-dimensional frequencies. The frequencies of thicker 
plates are more sensitive to a/b ratio when compared to 
thinner plates. Two groups of frequencies have been ob-
served as in-plane dominated (the first two set frequenci-
es) and flexural dominated (third set frequency).
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Figure 2. Variation of the first three dimensionless frequencies with a/b.
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Figure 3. Mode shapes for a/b=1 and a/h=5.
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