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IDEAL CONVERGENCE OF A SEQUENCE OF CHEBYSHEV

RADII OF SETS

Hüseyin ALBAYRAK

Department of Statistics, Süleyman Demirel University, Isparta, TURKEY

Abstract. In this paper, we investigate the diameters, Chebyshev radii, Che-

byshev self-radii and inner radii of a sequence of sets in the normed spaces.
We prove that if a sequence of sets is I-Hausdorff convergent to a set, the

sequence of Chebyshev radii of that sequence is I-convergent. Similar relations

are showed for the sequence of diameters, Chebyshev self-radii and inner radii
of that sequence.

1. Introduction

The concept of statistical convergence, which is a generalization of the ordinary
convergence of sequences, was first introduced by Fast [3] and Stainhaus [13], in-
dependently. Fridy [4, 5] contributed greatly to the development of the theory of
statistical convergence. In 2000, Kostyrko et al [7] introduced ideal convergence,
which is a generalization of statistical convergence. Recently the ideal convergence
theory continues to be popularly studied (see [9,10]). On the other hand, Hausdorff
convergence of a sequence of sets, which is defined by the Hausdorff distance, cor-
responds to the uniform convergence of the sequence of distance (see [2,6,8]). The
theory of statistical convergence and the theory of ideal convergence were combined
with the theory of convergence of sequences of sets by Nuray and Rhoades [11] and
by Talo and Sever [14], respectively.

In [12], Papini andWu examined Kuratowski convergence and Hausdorff convergen-
ce of sequences of sets in Banach spaces. They showed that if a sequence of sets is
Hausdorff convergent then the sequences of diameters, Chebyshev radii, Chebyshev
self-radii, and inner radii, respectively, of this sequence are convergent.

2020 Mathematics Subject Classification. 40A05, 40A35, 54A20.

Keywords. Chebyshev radius, Hausdorff convergence, I-convergence, I-Hausdorff convergence.

huseyinalbayrak@sdu.edu.tr

0000-0001-8275-089X.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

944



IDEAL CONVERGENCE OF A SEQUENCE OF CHEBYSHEV RADII OF SETS 945

In this study, by generalizing some of the results in [12], we show that if a
sequence (An)n∈N of sets is I-Hausdorff convergent to a set A then the sequence
of Chebyshev radii of An’s is I-convergent to the Chebyshev radius of A. We give
similar relations for diameter, relative Chebyshev radius, Chebyshev self-radius and
inner radius.

2. Preliminaries

Let (X, ∥·∥) be normed space. We denote the family of all nonempty closed
subsets, the family of all nonempty closed and bounded subsets and the family of
all nonempty closed, convex and bounded subsets of X by Cl(X), B (X) and C (X),
respectively.

The distance d(x,A) from a point x ∈ X to a subset A of X is defined to be

d(x,A) = inf
a∈A

∥x− a∥ .

The set A is said to be bounded if diam(A) < ∞, where diameter diam(A) of a
nonempty set A in a normed space (X, ∥·∥) is defined by

diam(A) = sup
a1,a2∈A

∥a1 − a2∥ .

The open ball with centre x ∈ X and radius δ > 0 is the set

S(x, δ) = {y ∈ X : ∥x− y∥ < δ}.

Hausdorff distance of sets A,B ⊆ X is defined as

H (A,B) = max {h (A,B) , h (B,A)}

where h (A,B) = supa∈A d (a,B), or equivalently

H (A,B) = inf {ε > 0 : A ⊆ Bε and B ⊆ Aε}

where Aε =
⋃

a∈A {x ∈ X : ∥x− a∥ < ε} = {x ∈ X : d(x,A) < ε} is the ε-enlarge-
ment of A.

Briefly, we recall some of basic notations in the theory of I−convergence and we
refer readers to [7,8] for more details. A family I ⊆ 2N of subsets of N is said to be
an ideal in N if ∅ ∈ I, and A∪B ∈ I for each A,B ∈ I, and B ∈ I for each A ∈ I
such that B ⊆ A (see [8]). An ideal is called proper if N /∈ I, and a proper ideal is
called admissible if {n} ∈ I for each n ∈ N. Obviously, an admissible ideal includes
all finite subset of N (see [7]).

The definition of ideal convergence for real numbers is as follows: Let (xn)n∈N
be a sequence in R and x0 ∈ R. Let I be any ideal on N. If for every ε > 0

{n ∈ N : |xn − x0| ≥ ε} ∈ I

then (xn) is said to be ideal convergent (briefly, I-convergent) to x0. Then we write
I − limxn = x0 (see [7]).
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Define If = {A ⊂ N : the set A has finite number of elements}. Then If -conver-
gence and classical convergence is equivalent to each other. Similarly, if we denote
Id = {A ⊂ N : the set A has natural density zero} , then Id-convergence and statis-
tical convergence is equivalent to each other. We note that the ideals If and Id are
admissible.

Let I ⊂ 2N be a proper ideal in N. We say that the sequence (An) is I-Hausdorff
convergent to the set A if{

n ∈ N : sup
x∈X

|d(x,An)− d(x,A)| ≥ ε

}
∈ I

for every ε > 0, or if I − limH (An, A) = 0, i.e., for every ε > 0

{n ∈ N : H (An, A) ≥ ε} ∈ I

or equivalently

{n ∈ N : h (An, A) ≥ ε or h (A,An) ≥ ε} ∈ I.

In this case, we write An
I-H−→ A (see [14]).

Now, we list some definitions of radii and centers associated with these radii
(see [1, 12,15]). Let A be a bounded subset of X and Y ⊆ X.

R (x,A) = supa∈A ∥a− x∥ (x ∈ X)
RY (A) = infy∈Y R (y,A)

= infy∈Y supa∈A ∥a− y∥
: Relative Chebyshev radius of A in Y

R (A) = RX (A) : Chebyshev radius of A
RA (A) : Chebyshev self-radius of A
R′ (A) = supa∈A infx/∈A ∥x− a∥ : Inner radius of A
ZY (A) = {y ∈ Y : R (y,A) = RY (A)} : Relative Chebyshev center set of A in Y
Z (A) = {x ∈ X : R (x,A) = R (A)} : Chebyshev center set of A
ZA (A) = {a ∈ A : R (a,A) = RA (A)} : Chebyshev self center set of A
Z ′ (A) = {a ∈ A : R (a,A) = R′ (A)} : Inner center set of A

Example 1. Consider the normed space
(
R2, ∥·∥1

)
where ∥·∥1 is the ℓ1 norm (aka

the taxicab norm). Let A be a square whose vertices are on the points (−1,−1),
(−1, 1), (1,−1) and (1, 1), and let Y =

{
(x, y) ∈ R2 : x = 3

}
. We have the following

results:

R (A) = 2 Z (A) = {(0, 0)}
RA (A) = 3 ZA (A) = {(−1, 0) , (1, 0) , (0,−1) , (0, 1)}
R′ (A) = 0 Z ′ (A) = ∅
RY (A) = 5 ZY (A) = {(3, 0)}

Lemma 1. Let A ∈ B (X) , Y ⊆ X and ε > 0. Then the following is provided:
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(i) diam (Aε) ≤ diam (A) + 2ε

(ii) R (x,Aε) ≤ R (x,A) + ε for every x ∈ X

(iii) RY (Aε) ≤ RY (A) + ε

(iv) R (Aε) ≤ R (A) + ε

(v) RAε (Aε) ≤ RA (A) + ε

Proof. (i)

α1, α2 ∈ Aε =⇒ ∃a1, a2 ∈ A such that ∥α1 − a1∥ < ε and ∥α2 − a2∥ < ε

Then, for every α1, α2 ∈ Aε we have

∥α1 − α2∥ ≤ ∥α1 − a1∥+ ∥a1 − a2∥+ ∥α2 − a2∥
< ∥a1 − a2∥+ 2ε
≤ sup

a1,a2∈A
∥a1 − a2∥+ 2ε

= diam (A) + 2ε

and so

diam (Aε) = sup
α1,α2∈Aε

∥α1 − α2∥ ≤ diam (A) + 2ε.

(ii)

α ∈ Aε =⇒ ∃a ∈ A such that ∥α− a∥ < ε

Let x ∈ X. For every α ∈ Aε we have

∥α− x∥ ≤ ∥α− a∥+ ∥a− x∥
< ∥a− x∥+ ε
≤ sup

a∈A
∥a− x∥+ ε

= R (x,A) + ε

and so

R (x,Aε) = sup
α∈Aε

∥α− x∥ ≤ R (x,A) + ε.

(iii) From (ii), we have R (y,Aε) ≤ R (y,A) + ε for every y ∈ Y . Then we get

inf
y∈Y

R (y,Aε) ≤ inf
y∈Y

R (y,A) + ε

RY (Aε) ≤ RY (A) + ε.

(iv) It is easily obtained by taking Y = X in (iii).
(v) From (ii), we have

R (a,Aε) ≤ R (a,A) + ε
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for every a ∈ A, and so

inf
a∈A

R (a,Aε) ≤ inf
a∈A

R (a,A) + ε.

From the fact that

inf
α∈Aε

R (α,Aε) ≤ inf
a∈A

R (a,Aε) ,

we get

inf
α∈Aε

R (α,Aε) ≤ inf
a∈A

R (a,A) + ε

RAε (Aε) ≤ RA (A) + ε.

□

We cannot give similar results above for the inner radius, i.e., the inequality
R′ (Aε) ≤ R′ (A) + ε may not be satisfied. Such as, if we take ε = 3

2 in Example 1,
we get

R′ (Aε) =
5

2
̸≤ R′ (A) + ε = 0 +

3

2
.

Also, we cannot say a general upper bound for the difference R′ (Aε) − R′ (A).
For example, in the Euclidean space R2, let the set A be a spiral with r = θ
(0 ≤ θ ≤ 2nπ, n ∈ N) polar equation. Let’s take ε > π. Then we have R′ (A) = 0
and R′ (Aε) ≥ (2n− 1)π. Thus the difference R′ (Aε) − R′ (A) depends not only
on ε but also on n.

3. Main Results

For a sequence of closed and bounded sets, we show that I-Hausdorff conver-
gence implies I-convergence of the sequence of Chebyshev radii (diameters, relative
Chebyshev radii and Chebyshev self-radii, respectively) of this sequence. If the sets
are convex as an additional condition, this proposition is also true for the sequence
of inner radii.

Proposition 1. Let A,An ∈ B (X) (n ∈ N) and Y ⊆ X. If An
I−H−→ A then the

following hold:

(i) I − lim diam (An) = diam (A)
(ii) I − limRY (An) = RY (A)
(iii) I − limR (An) = R (A)
(iv) I − limRAn

(An) = RA (A)
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Proof. (i) Let ε > 0. From An
I−H−→ A we have

L (ε) :=
{
n ∈ N : H(An, A) ≥

ε

3

}
∈ I.

For every n ∈ N \ L (ε) we have

A ⊆ Aε/3
n and An ⊆ Aε/3.

Then

A ⊆ Aε/3
n =⇒ diam (A) ≤ diam

(
A

ε/3
n

)
≤ diam (An) +

2ε

3

=⇒ diam (A)− diam (An) ≤
2ε

3

An ⊆ Aε/3 =⇒ diam (An) ≤ diam
(
Aε/3

)
≤ diam (A) +

2ε

3

=⇒ diam (An)− diam (A) ≤ 2ε

3

for every n ∈ N \ L (ε). Hence we get

{n ∈ N : |diam (An)− diam (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |diam (An)− diam (A)| ≥ ε} ∈ I

for every ε > 0. Consequently, we obtain I − lim diam (An) = diam (A).

(ii) Let Y be any subset of X. From the triangle inequality, we have

∥an − y∥ − ∥a− y∥ ≤ ∥an − a∥ (1)

∥a− y∥ − ∥an − y∥ ≤ ∥an − a∥ (2)

where y ∈ Y, an ∈ An and a ∈ A. Then, from (1)

inf
a∈A

(∥an − y∥ − ∥a− y∥) ≤ inf
a∈A

∥an − a∥

∥an − y∥ − sup
a∈A

∥a− y∥ ≤ inf
a∈A

∥an − a∥

sup
an∈An

∥an − y∥ − sup
a∈A

∥a− y∥ ≤ sup
an∈An

inf
a∈A

∥an − a∥

RY (An)−RY (A) = inf
y∈Y

sup
an∈An

∥an − y∥ − inf
y∈Y

sup
a∈A

∥a− y∥

≤ sup
an∈An

inf
a∈A

∥an − a∥ = h (An, A)
(3)

and similarly, from (2)

RY (A)−RY (An) = inf
y∈Y

sup
a∈A

∥a− y∥ − inf
y∈Y

sup
an∈An

∥an − y∥

≤ sup
a∈A

inf
an∈An

∥an − a∥ = h (A,An) .
(4)

Take ε > 0. From An
I−H−→ A, we have

L (ε) := {n ∈ N : h (An, A) ≥ ε or h (A,An) ≥ ε} ∈ I.



950 H. ALBAYRAK

From (3) and (4), we get

RY (An)−RY (A) ≤ h (An, A) < ε,

RY (A)−RY (An) ≤ h (A,An) < ε

and so

|RY (An)−RY (A)| < ε

for every n ∈ N \ L (ε). Hence we get

{n ∈ N : |RY (An)−RY (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |RY (An)−RY (A)| ≥ ε} ∈ I

for every ε > 0. This means that I − limRY (An) = RY (A).

(iii) It is the special case of (ii), with Y = X.

(iv) Let ε > 0. From An
I−H−→ A we have

L (ε) :=
{
n ∈ N : h (An, A) ≥

ε

2
or h (A,An) ≥

ε

2

}
∈ I.

If a0 ∈ ZA (A) then a0 ∈ A and

R (a0, A) = sup
a∈A

∥a− a0∥ = RA (A) . (5)

Take n ∈ N \ L (ε). From h (A,An) <
ε
2 we have

sup
a∈A

d (a,An) <
ε

2
. (6)

From the closeness of An there exists an a
(1)
n ∈ An such that∥∥∥a0 − a(1)n

∥∥∥ <
ε

2
. (7)

Also, there exists an a
(2)
n ∈ An such that

sup
an∈An

∥∥∥an − a(1)n

∥∥∥ =
∥∥∥a(2)n − a(1)n

∥∥∥ . (8)

From h (An, A) <
ε
2 we get

d
(
a(2)n , A

)
≤ sup

an∈An

d (an, A) <
ε

2
(9)

and so ∥∥∥a0 − a(2)n

∥∥∥ < RA (A) +
ε

2
. (10)

From (7) and (10) we obtain

RAn
(An) ≤

∥∥∥a(1)n − a(2)n

∥∥∥ ≤
∥∥∥a(1)n − a0

∥∥∥+
∥∥∥a0 − a

(2)
n

∥∥∥
< RA (A) + ε
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for every n ∈ N \ L (ε).
Similarly, it can be shown that

RA (A) < RAn
(An) + ε

for every n ∈ N \ L (ε).
Consequently, we get

{n ∈ N : |RAn (An)−RA (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |RAn (An)−RA (A)| ≥ ε} ∈ I

for every ε > 0, and so I − limRAn
(An) = RA (A).

□

Lemma 2. (see [12, Lemma 1]) Let A,B ∈ C (X). If R′ (A) > 0 and H (A,B) <
R′ (A)

2
then

R′ (B) ≥ R′ (A)−H (A,B) > 0.

As a result of the above lemma we can give the following corollary.

Corollary 1. Let A ∈ C (X) and ε > 0. If R′ (Aε) > 2ε then

R′ (A) ≥ R′ (Aε)− ε

(That is, R′ (Aε) ≤ R′ (A) + ε). Of course, for the condition here to be satisfied,
R′ (A) > ε must be.

Proposition 2. Let A,An ∈ C (X) (n ∈ N). If An
I−H−→ A then

I − limR′ (An) = R′ (A) .

Proof. First let’s assume that R′ (A) = 0. Suppose that I − limR′ (An) ̸= 0. Then
there is an ε0 > 0 such that

K (ε0) := {n ∈ N : R′ (An) ≥ ε0} /∈ I.

From An
I−H−→ A we have

L (ε0) :=
{
n ∈ N : H(An, A) ≥

ε0
2

}
∈ I.

Then (N \ L (ε0)) ∩K (ε0) ̸= ∅ and so we have

H(An, A) <
ε0
2

≤ 1

2
R′ (An)

for every n ∈ (N \ L (ε0)) ∩K (ε0). From Lemma 2, we get

R′ (A) > 0
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and this is a contradiction. Therefore, I − limR′ (An) = 0 = R′ (A) holds.

Now let’s assume that R′ (A) > 0. Let 0 < ε <
R′ (A)

3
. From An

I−H−→ A we have

L (ε) := {n ∈ N : H (An, A) ≥ ε} ∈ I.
Then we have

H (An, A) < ε <
R′ (A)

3
<

R′ (A)

2
for every n ∈ N \ L (ε). From Lemma 2, we get

R′ (An) ≥ R′ (A)−H (An, A) > R′ (A)− ε (11)

for every n ∈ N \ L (ε). We also have

H (An, A) < ε <
1

2
(R′ (A)− ε) <

R′ (An)

2

for every n ∈ N \ L (ε). Again from Lemma 2, we get

R′ (A) ≥ R′ (An)−H (A,An) > R′ (An)− ε (12)

for every n ∈ N \ L (ε). From (11) and (12) we obtain

{n ∈ N : |R′ (An)−R′ (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |R′ (An)−R′ (A)| ≥ ε} ∈ I

for every ε > 0, and so I − limR′ (An) = R′ (A). □
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