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Abstract
Researchers focus on whether stock prices have a unit root, that is, whether they contain a random walk 
process. If stock prices have a stationary process, that is, if they return to the mean, the effects of shocks 
are temporary, and it is interpreted that they will return to the trend path over time. If stock prices have 
transitory shocks, it allows for the prediction of future movements based on past behavior in terms of 
investment. This study investigates whether stock prices revert to the mean and thus have a random walk 
process. For this purpose, the Fourier Threshold Unit Root (FTUR) test based on the test methodology of 
Caner and Hansen (2001) for the period January 1990–January 2021 for 26 OECD countries is applied. 
The FTUR test takes into account both structural breaks and nonlinearities. The purpose of using Fourier 
functions to account for structural changes is that they are not affected by the number, location, or shape 
of breaks. Thus, the power of the test increases. According to the results of this test, stock prices in Austria, 
Canada, Germany, Italy, New Zealand, Spain, and the UK are linear. Therefore, Fourier Augmented Dickey-
Fuller (FADF) unit root analysis was performed for these countries. The FTUR test was performed in other 
countries. According to the results of FTUR and FADF unit root tests, stock prices are found to contain unit 
roots in some countries except Italy. In some countries, stock prices have a partial unit root structure. In 
other words, the effects of shocks are permanent, and it is concluded that future returns cannot be predicted 
in these countries with the random walk process.
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Öz
Hisse senedi fiyatlarının birim köke sahip olup olmadığı yani rassal yürüyüş süreci içerip içermediği 
araştırmacıların odağı halindedir. Hisse senedi fiyatları durağan sürece sahip ise yani ortalamaya geri 
dönüyorsa şokların etkileri geçicidir ve zamanla trend yoluna döneceği yorumu yapılmaktadır. Eğer hisse 
senedi fiyatları geçici şoklara sahip ise yatırım açısından geçmiş davranışlara bağlı olarak gelecekteki 
hareketlerin tahmin edilebilmesini olanak tanımaktadır. Bu çalışma, hisse senedi fiyatlarının ortalamaya 
dönüp dönmediğini ve dolaysıyla rassal yürüyüş sürecine sahip olup olmadığını araştırmaktadır. Bu amaçla, 
26 OECD ülkesi için Ocak 1990-Ocak 2021 dönemi için Caner ve Hansen (2001) test metodolojisine 
dayanan Fourier Eşik Birim Kök (FTUR) testi ile ele alınan değişkenlerin sınamaları gerçekleştirilmiştir. 
FTUR testi, hem yapısal kırılmaları hem de doğrusal olmayan durumları dikkate almaktadır. Fourier 
fonksiyonlarının yapısal değişimleri hesaba katmak için kullanılmasındaki amaç kırılmaların sayısı, yeri 
ve şeklinden etkilenmemesidir. Böylece, testin gücü artmaktadır. Bu test sonuçlarına göre Avusturya, 
Kanada, Almanya, İtalya, Yeni Zelanda, İspanya ve İngiltere’de hisse senedi fiyatlarının doğrusal olduğu 
görülmektedir. Bu nedenle doğrusal olduğu gözlenen bu ülkeler için Fourier Augmented Dickey Fuller 
(FADF) birim kök analizi yapılmıştır. Diğer ülkeler için FTUR sınaması yapılmıştır. FTUR ve FADF 
birim kök testi sonuçlarına göre hisse senedi fiyatlarının İtalya dışında bazı ülkelerde birim kök içerdiği 
bulgusuna erişilmiştir. Bazı ülkelerde hisse senedi fiyatları kısmi bir birim kök yapısına sahiptir. Diğer bir 
deyişle, şokların etkileri kalıcıdır ve rassal yürüyüş süreci ile bu ülkelerde gelecekteki getirilerin tahmin 
edilemeyeceği sonucuna varılmaktadır.
Anahtar Kelimeler: Hisse senedi fiyatları, ortalamaya dönüş, yumuşak geçişli otoregresif (STAR) model, 
eşik birim kök, fourier fonksiyon
JEL Sınıflandırılması: P43, E6, C4, C58

1. Introduction

Fama (1970) proposed the stock market efficiency hypothesis, in which the dynamics of stock prices 
are defined using a random walk process with a shift. The efficient market hypothesis assumes that 
future returns cannot be predicted on the basis of historical information. That is to say, a market is 
efficient if the prices at any given time always fully reflect all available information. Researchers and 
economists investigate the efficient market hypothesis, one of the fundamental principles in finance 
literature. For this reason, the concept of efficiency in capital markets is one of the most frequently 
researched topics. Today, the constantly changing market system depending on economic and 
financial conditions and the development of current statistical techniques have led to the investigation 
of market efficiency with empirical analysis (Rehman et al., 2018). Market efficiency theory, which 
dominates the financial field because of scarce financial resources, explains the relationship between 
information and stock prices in financial markets. Therefore, the behavior of stock market prices in 
relation to the share of scarce monetary resources is necessary (Chitenderu et al., 2014). Uncertainty 
is the leading obstacle to estimating stock price indices (Patel et al., 2015). Lean and Smyth (2007) 
stated that in the random walk theory, stock price changes maintain the same probability distribution 
and are independent from each other; therefore, they noted that the past movement of the stock price 
cannot be used to predict future movements.
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Fama (1970) defined three types of efficiency: weak-form, semi-strong-form, and strong-form. It is 
assumed that all past information in weak form and all publicly available information in semi-strong 
form are reflected in stock prices. In strong form, stock prices reflect all publicly announced and 
unannounced information. Testing the mean reversion of stock prices in terms of market efficiency 
is at the center of research attention. The global financial crisis of 2008–2009 led to renewed interest 
in stock market inefficiency in emerging market economies. Stock market inefficiency may arise 
due to the existence of a financial crisis because investors often panic during this critical economic 
event, which negatively affects their ability to efficiently price stocks (Nartea et al., 2021). Therefore, 
whether stock prices can be characterized as random walk (unit root) or mean reversion (trend 
stationary) processes is constantly being investigated (Wang et al., 2015). If stock prices have a 
stationary process called reversion, the effects of shocks will be temporary. For this reason, they will 
return to the trend path over time. Stock prices with temporary shocks allow predictions of future 
movements based on past behavior in terms of investment. Conversely, if stock prices have a unit-
rooted structure, the effects of shocks will be permanent, and they will not return to the trend path 
over time. Therefore, trading strategies will not be developed to obtain abnormal returns (Narayan 
and Prasad, 2007).

Bose (2005) mentioned the close relationship between the stock market and the real economy and 
stated that it is important in developing economic policies. Researchers have yet to agree on whether 
stock prices can be characterized as a random walk (unit root) or mean reversal (trend stationary) 
process. Durusu-Ciftci et al. (2019) suggested that the differences in the findings may be due to several 
reasons. First, they said that numerous economic events, such as economic crises, liberalization 
processes, or changes in economic policy, might have an impact on financial markets. Second, they 
stressed that it would be very restrictive to assume only a certain number of structural breaks in 
the financial series. They stated that it would be beneficial to use a nonlinear Fourier function-
augmented Dickey–Fuller (ADF) type unit root approach that allows for an unknown number of 
structural breaks with unknown functional forms in time series data, as proposed by Enders and Lee 
(2012a). This does not require prior knowledge of numbers, dates, or the forms of multiple breaks. 
Many economic or financial series may contain more than one soft break at unknown dates.

According to Nartea et al. (2021), the reason for constant interest in this issue is that the main question 
suggested by the efficient market hypothesis is naturally an empirical question, and it is difficult to 
answer without returning to the data at some point. They explained that the answer to this question 
is that the dynamic behavior of stock prices depends on the appropriate specification. Empirical 
work on this topic suggests that the behavior of stock prices is due to non-linear elements attributable 
to institutional constraints, market friction, and transaction costs. If the process of creating real 
data is not linear because of reasons such as linear unit root tests and the presence of heterogeneity, 
transaction costs, taxes, and regulations will become unsuitable, as stated in studies by Taylor and 
Peel (2000) (Killian and Taylor, 2003). In this context, there are also studies that extend the literature 
by considering the nonlinearity in the data generation process and using individual nonlinear unit 
root tests. Li and Chen (2010), Tan et al. (2010), Mishra and Mishra (2011), Gozbasi et al. (2014), 
Lee et al. (2014), Wang et al. (2015), Mishra et al. (2015), Moghaddam and Li (2017), and Nartea et 
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al. (2021). Apart from this, there are different tests in the literature on testing mean reversion as a 
way to examine market efficiency. Some studies in the literature use the variance ratio test (Fama 
and French (1988a); Lo and MacKinlay (1988); Poterba and Summers (1988); Kim et al. (1991); 
Urrutia (1995); Huber (1997); Grieb and Reyes (1999); Kawakatsu and Morey (1999); Chaudhuri and 
Wu (2003); Buguk and Brorsen (2003)). Some studies have used the regression coefficient approach 
(Fama and French, 1988b; Fama, 1990; Buguk and Brorsen, 2003). Some studies used univariate 
unit root tests (Liu et al. (1997), Choudhry (1997), Kawakatsu and Morey (1999); Appiah-Kusi, 
J., and Menyah (2003); Chaudhuri and Wu (2003); Buguk and Brorsen (2003); Worthington and 
Higgs (2004); Narayan and Smyth (2005); Narayan, P. K. (2006); Hamid et al. (2010); Murthy et al. 
(2011); Nisar and Hanif (2012); Mishra et al. (2015); Some studies have used panel unit root tests 
(Chaudhuri and Wu (2004); Balvers et al. (2000); Zhu (1998); Lean and Smyth (2007); Narayan and 
Narayan (2007); Narayan (2008); Lee et al. (2010); Ahmad et al. (2010); Yilanci (2012); Shen and 
Holmes (2014a); Shen and Holmes (2014b); Durusu-Çiftçi et al. (2019)). Some studies have used the 
opposite strategy (Richards, 1995, 1997; Balvers et al., 2000) to examine the average conversion in 
stock prices developed by Debondt and Thaler (1985).

There are many studies in the literature on efficient markets. These studies present very different results 
for different samples. These different results show that there is no consensus on efficient markets in 
the literature. The efficient market hypothesis will continue to be tested with the development of 
new and powerful testing methodologies. Because this study tests the efficient market hypothesis 
for OECD countries, some studies on OECD countries will be mentioned. However, there are not 
many studies investigating efficient markets for OECD countries. The first study is known as the 
work of Cheung and Lai (1995). Of the 18 countries included in this study, 16 are OECD countries. 
Although not all OECD countries have been examined comprehensively, since the majority of them 
are among the OECD countries, this study is included in the literature as the first study examining 
the returns of stock markets for OECD countries. In this study, a modified rescaled range test and 
fractional differencing test methods were used between January 1970 and August 1992. The results 
of this study generally show that stock returns do not have long-term memory. Anagnostidis et al. 
(2016) also partially examined OECD countries. In the study involving 12-euro countries, daily stock 
prices between August 24, 2004 and September 15 were examined using the Hurst Exponent method. 
The results of this study show that the 2008 crisis had a negative impact on stock prices, resulting 
in stock prices reverting to the mean. In the study by Shen and Holmes (2014), the mean reversion 
trend of stock prices was investigated for 16 OECD countries, covering the years 1970–2011. For 
this purpose, linear (SURADF) and non-linear panel unit root (SURKSS) tests based on seemingly 
unrelated regression (SUR) models were used. The results of this study show that most OECD 
countries have a mean-reverting trend. Lee et al. (2014) tested the efficient market hypothesis of 
stock prices for country groups consisting of seven different panels. These country groups consist of 
panels covering low, middle, and high-income countries as well as OECD, G6, Asian, and European 
countries. For this purpose, a nonlinear panel unit root test was used. The results for the OECD 
countries show that stock prices do not have a mean-reverting trend in any country except Poland. 
In his study, Adekoya (2021) tested the efficient market hypothesis using monthly data that differed 



5

Testing Mean Reversion of Stock Prices in OECD Countries: Evidence from Fourier Threshold Unit Root Test

by country for 26 OECD countries. For this purpose, the fractional frequency nonlinear unit root 
test was used. The results of the study showed that in linear models, the market was efficient in 8 
countries and inefficient in the other 18 countries. Additionally, nonlinearity exists in only nine 
countries. For non-linear countries, it was concluded that only Greece has an efficient market.

This study investigated the mean reversion of stock prices in 26 OECD countries. In this context, an 
answer was sought with a test that considers nonlinear and structural breaks and whether the shocks 
to stock prices are temporary or permanent. Depending on whether the series contains a unit root 
or not is important in terms of predicting future movements by examining price movements in the 
past. This study is expected to contribute to the literature in three aspects. First, the use of Fourier 
functions to consider structural breaks. Second, determining whether the effect of structural breaks 
is permanent using fractional frequencies. Finally, both linearity and nonlinearity are considered. In 
this respect, the second section includes the dataset and economical method used within the scope 
of the study, and the findings obtained because of the Fourier Threshold Unit Root (FTUR) test are 
given in the third section of the study. Finally, in the conclusion and evaluation section, the subject 
examined within the scope of the study and the empirical findings obtained because of the analysis 
are evaluated.

2. Dataset and Econometric Methodology

In this study, the aim was to investigate whether stock prices returned to the average for 26 OECD 
countries with monthly data covering the period from January 1990 to January 2021. The Fourier 
Threshold Unit Root (FTUR) test based on Ylanc et al. (2020) and the tests of Caner and Hansen 
(2001) and Christopoulos and León-Ledesma (2010) was used to determine if the stock prices for the 
selected nation group are stationary or have a random wandering process. In this test, a model with 
a Fourier function is first predicted, and residuals are estimated to eliminate the effects of structural 
breaks. Next, nonlinear models with residuals are predicted to test the stationarity of the series. Yılancı 
et al. (2020) chose to use a threshold-type unit root test instead of a smooth transition autoregressive 
(STAR) model-type unit root test in the last stage of their proposed test. Furthermore, the Fourier 
functions included in the model contribute to the validity and dependability of the findings gained 
by capturing smooth transitions as opposed to abrupt breaks in the series.

2.1. Fourier Threshold Unit Root (FTUR) Test

Perron (1989) suggested that structural breaks should be considered in stationarity tests. Zivot 
and Andrews (1992), Lee and Strazicich (2003), and Lumsdaine and Papell (2004) created tests in 
which the shape and timing of structural breaches are known and the effect of the breaks is detected 
abruptly. These tests provide accurate results for situations where the times and numbers of breaks are 
known and their effects cause sudden shocks. Recently, it has been considered that the effects of this 
structural change may be softer and more gradual than sudden. In other words, nonlinear unit root 
tests were introduced in the literature for cases where the break structures were not sharp. These tests 
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are Fourier function approximations that do not require predetermined break numbers or structures. 
In this approach, the movements of unknown functions are captured by using trigonometric terms. 
In this context, unit root tests based on frequency component selection were developed using the 
Fourier function approach, where it is not necessary to determine the break numbers and structure 
in advance. Studies have revealed that unit root tests developed using the Fourier approach can 
detect unknown behaviors even if the breaks do not occur in their own period. Yılancı et al. (2020) 
considered the two-step methodology of Christopoulos and León-Ledesma (2010) to allow structural 
breaks while testing the stationarity of a series. They expressed the data generation process as follows:

break numbers or structures. In this approach, the movements of unknown functions are captured 

by using trigonometric terms. In this context, unit root tests based on frequency component 

selection were developed using the Fourier function approach, where it is not necessary to 

determine the break numbers and structure in advance. Studies have revealed that unit root tests 

developed using the Fourier approach can detect unknown behaviors even if the breaks do not 

occur in their own period. Yılancı et al. (2020) considered the two-step methodology of 

Christopoulos and León-Ledesma (2010) to allow structural breaks while testing the stationarity 

of a series. They expressed the data generation process as follows: 

𝑦𝑦𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1 sin (2𝜋𝜋𝜋𝜋𝜋𝜋
𝑇𝑇 ) + 𝑎𝑎2 cos (2𝜋𝜋𝜋𝜋𝜋𝜋

𝑇𝑇 ) + 𝑢𝑢𝑡𝑡      (1)  

Here, 𝑘𝑘 is the frequency number of the Fourier function, 𝑡𝑡 is the time term, and 𝑇𝑇 is the sample 

size. The true value of 𝑘𝑘 is usually unknown, and to find the appropriate number of frequencies, 

the value of 𝑘𝑘 that gives the least residual square sum is chosen as the appropriate number of 

frequencies. The existence of unknown breaks in the data generation process of 𝑦𝑦𝑡𝑡 is investigated 

by testing the null hypothesis (𝐻𝐻0: 𝑎𝑎1 = 𝑎𝑎2 = 0) against the alternative hypothesis (𝐻𝐻1: 𝑎𝑎1 =
𝑎𝑎2 ≠ 0). F statistics can be used to test this basic hypothesis. This test for constrained 

(temporary) structural breaks performs particularly well compared with other tests when the 

breaks are temporary and tend to be in opposite directions. In the second stage of the test, the 

OLS residuals of equation (1) are obtained and are as follows: 

𝑢̂𝑢𝑡𝑡 = 𝑦𝑦𝑡𝑡 − (𝑎̂𝑎0 + 𝑎̂𝑎1 sin(2𝜋𝜋𝑘̂𝑘𝑡𝑡/𝑇𝑇) + 𝑎̂𝑎2 cos(2𝜋𝜋𝑘̂𝑘𝑡𝑡/𝑇𝑇))     (2) 

Christopoulos and León-Ledesma (2010) applied the unit root test to the OLS residuals obtained 

in equation (2) and proposed three different models for the unit root test in linear and nonlinear 

form, as follows: 

Δ𝑢𝑢𝑡𝑡 = 𝛼𝛼1𝑢𝑢𝑡𝑡−1 + ∑ 𝛽𝛽𝑗𝑗Δ𝑢𝑢𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + 𝑒𝑒𝑡𝑡        (3) 

Δ𝑢𝑢𝑡𝑡 = 𝜌𝜌𝑢𝑢𝑡𝑡−1(1 − exp(−𝜃𝜃Δ𝑢𝑢𝑡𝑡−𝑖𝑖
2 )) + ∑ 𝛼𝛼𝑗𝑗Δ𝑢𝑢𝑡𝑡−𝑗𝑗

𝑝𝑝
𝑗𝑗=1 + 𝑒𝑒𝑡𝑡,   𝑖𝑖 = 1,2, … 𝐿𝐿   (4) 

Δ𝑢𝑢𝑡𝑡 = 𝜆𝜆1𝑢𝑢𝑡𝑡−1
3 + ∑ 𝛽𝛽𝑗𝑗Δ𝑢𝑢𝑡𝑡−𝑗𝑗

𝑝𝑝
𝑗𝑗=1 + 𝑒𝑒𝑡𝑡        (5) 

They named equations (3), (4), and (5) the Fourier ADF, Fourier KSS, and Fourier KJ unit root 

tests, respectively. However, Yılancı et al. (2020) applied Caner and Hansen’s (2001) test 

procedure in the second stage instead of using these unit root tests. They named this test the 
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They named equations (3), (4), and (5) the Fourier ADF, Fourier KSS, and Fourier KJ unit root tests, 
respectively. However, Yılancı et al. (2020) applied Caner and Hansen’s (2001) test procedure in the 
second stage instead of using these unit root tests. They named this test the Fourier Threshold Unit 
Root (FTUR) test. The following model is used to implement the FTUR test:
Fourier Threshold Unit Root (FTUR) test. The following model is used to implement the FTUR 

test: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1
′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2

′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡𝑡      (6) 

Where 𝑢̂𝑢𝑡𝑡 is the residual from Equation (2) and 𝑟𝑟𝑡𝑡 represents the deterministic component vector 

containing a constant and probable trend term 𝑢̂𝑢𝑡𝑡−1 = (𝑢̂𝑢𝑡𝑡−1𝑟𝑟𝑡𝑡
′∆𝑢̂𝑢𝑡𝑡−1, … , 𝑢̂𝑢𝑡𝑡−𝑘𝑘). 𝑍𝑍𝑡𝑡−1 is the 

threshold variable defined as 𝑢̂𝑢𝑡𝑡 − 𝑢̂𝑢𝑡𝑡−𝑚𝑚 for 𝑚𝑚 ≥ 1. 𝜆𝜆 represents the unknown threshold 

parameter and has a value between 𝜆𝜆1 and 𝜆𝜆2. The values of 𝜆𝜆1 and 𝜆𝜆2are selected as 𝑃𝑃(𝑍𝑍 ≤
𝜆𝜆1) = 𝜋𝜋1 > 0 and 𝑃𝑃(𝑍𝑍 ≤ 𝜆𝜆2) = 𝜋𝜋2 < 1. It is 𝜋𝜋1 = 1 − 𝜋𝜋2. Yilancı et al. (2020), following the 

suggestion of Andrews (1998), set them to 𝜋𝜋1 = 0.15 and 𝜋𝜋2 = 0.85. The components of the 

parameter vectors are defined as 𝜃𝜃1 = (
𝜌𝜌1
𝛽𝛽1
𝛼𝛼1

) and 𝜃𝜃2 = (
𝜌𝜌2
𝛽𝛽2
𝛼𝛼2

). Here (𝜌𝜌1, 𝜌𝜌2) represents the slope 

coefficients, (𝛽𝛽1, 𝛽𝛽2) the slope coefficients of the deterministic components, and (𝛼𝛼1, 𝛼𝛼2) the 

slope coefficients of the lagged differences in the dependent variable. For each value of the 

threshold parameter, equation (6) is estimated using the least squares method and is expressed as 

follows: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡̂𝑡(𝜆𝜆)     (7) 

The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 

effect is established as 𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2. To test linearity, Caner and Hansen (2001) proposed the 

following test statistic: 

𝑊𝑊𝑡𝑡(𝜆𝜆) = T ( 𝜎̂𝜎02

𝜎̂𝜎2(𝜆̂𝜆)−1)           (9) 

Here, 𝜎̂𝜎0
2 is the residual variance under the null hypothesis, and 𝜎̂𝜎2 shows the variance of the 

threshold model. In addition, Yılancı et al. (2020) proposed using the Fourier ADF unit root test 

process for linearity. The prediction of the unit root process is based on the threshold 

autoregressive (TAR) model, and the null and alternative hypothesis is established as follows: 
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slope coefficients of the lagged differences in the dependent variable. For each value of the 

threshold parameter, equation (6) is estimated using the least squares method and is expressed as 

follows: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡̂𝑡(𝜆𝜆)     (7) 

The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 

effect is established as 𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2. To test linearity, Caner and Hansen (2001) proposed the 

following test statistic: 

𝑊𝑊𝑡𝑡(𝜆𝜆) = T ( 𝜎̂𝜎02

𝜎̂𝜎2(𝜆̂𝜆)−1)           (9) 

Here, 𝜎̂𝜎0
2 is the residual variance under the null hypothesis, and 𝜎̂𝜎2 shows the variance of the 

threshold model. In addition, Yılancı et al. (2020) proposed using the Fourier ADF unit root test 

process for linearity. The prediction of the unit root process is based on the threshold 

autoregressive (TAR) model, and the null and alternative hypothesis is established as follows: 

 and 

Fourier Threshold Unit Root (FTUR) test. The following model is used to implement the FTUR 

test: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1
′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2

′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡𝑡      (6) 

Where 𝑢̂𝑢𝑡𝑡 is the residual from Equation (2) and 𝑟𝑟𝑡𝑡 represents the deterministic component vector 

containing a constant and probable trend term 𝑢̂𝑢𝑡𝑡−1 = (𝑢̂𝑢𝑡𝑡−1𝑟𝑟𝑡𝑡
′∆𝑢̂𝑢𝑡𝑡−1, … , 𝑢̂𝑢𝑡𝑡−𝑘𝑘). 𝑍𝑍𝑡𝑡−1 is the 

threshold variable defined as 𝑢̂𝑢𝑡𝑡 − 𝑢̂𝑢𝑡𝑡−𝑚𝑚 for 𝑚𝑚 ≥ 1. 𝜆𝜆 represents the unknown threshold 

parameter and has a value between 𝜆𝜆1 and 𝜆𝜆2. The values of 𝜆𝜆1 and 𝜆𝜆2are selected as 𝑃𝑃(𝑍𝑍 ≤
𝜆𝜆1) = 𝜋𝜋1 > 0 and 𝑃𝑃(𝑍𝑍 ≤ 𝜆𝜆2) = 𝜋𝜋2 < 1. It is 𝜋𝜋1 = 1 − 𝜋𝜋2. Yilancı et al. (2020), following the 

suggestion of Andrews (1998), set them to 𝜋𝜋1 = 0.15 and 𝜋𝜋2 = 0.85. The components of the 

parameter vectors are defined as 𝜃𝜃1 = (
𝜌𝜌1
𝛽𝛽1
𝛼𝛼1

) and 𝜃𝜃2 = (
𝜌𝜌2
𝛽𝛽2
𝛼𝛼2

). Here (𝜌𝜌1, 𝜌𝜌2) represents the slope 

coefficients, (𝛽𝛽1, 𝛽𝛽2) the slope coefficients of the deterministic components, and (𝛼𝛼1, 𝛼𝛼2) the 

slope coefficients of the lagged differences in the dependent variable. For each value of the 

threshold parameter, equation (6) is estimated using the least squares method and is expressed as 

follows: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡̂𝑡(𝜆𝜆)     (7) 

The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 

effect is established as 𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2. To test linearity, Caner and Hansen (2001) proposed the 

following test statistic: 

𝑊𝑊𝑡𝑡(𝜆𝜆) = T ( 𝜎̂𝜎02

𝜎̂𝜎2(𝜆̂𝜆)−1)           (9) 

Here, 𝜎̂𝜎0
2 is the residual variance under the null hypothesis, and 𝜎̂𝜎2 shows the variance of the 

threshold model. In addition, Yılancı et al. (2020) proposed using the Fourier ADF unit root test 

process for linearity. The prediction of the unit root process is based on the threshold 

autoregressive (TAR) model, and the null and alternative hypothesis is established as follows: 

 The components of the parameter vectors are 
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Fourier Threshold Unit Root (FTUR) test. The following model is used to implement the FTUR 

test: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1
′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2

′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡𝑡      (6) 

Where 𝑢̂𝑢𝑡𝑡 is the residual from Equation (2) and 𝑟𝑟𝑡𝑡 represents the deterministic component vector 

containing a constant and probable trend term 𝑢̂𝑢𝑡𝑡−1 = (𝑢̂𝑢𝑡𝑡−1𝑟𝑟𝑡𝑡
′∆𝑢̂𝑢𝑡𝑡−1, … , 𝑢̂𝑢𝑡𝑡−𝑘𝑘). 𝑍𝑍𝑡𝑡−1 is the 

threshold variable defined as 𝑢̂𝑢𝑡𝑡 − 𝑢̂𝑢𝑡𝑡−𝑚𝑚 for 𝑚𝑚 ≥ 1. 𝜆𝜆 represents the unknown threshold 

parameter and has a value between 𝜆𝜆1 and 𝜆𝜆2. The values of 𝜆𝜆1 and 𝜆𝜆2are selected as 𝑃𝑃(𝑍𝑍 ≤
𝜆𝜆1) = 𝜋𝜋1 > 0 and 𝑃𝑃(𝑍𝑍 ≤ 𝜆𝜆2) = 𝜋𝜋2 < 1. It is 𝜋𝜋1 = 1 − 𝜋𝜋2. Yilancı et al. (2020), following the 

suggestion of Andrews (1998), set them to 𝜋𝜋1 = 0.15 and 𝜋𝜋2 = 0.85. The components of the 

parameter vectors are defined as 𝜃𝜃1 = (
𝜌𝜌1
𝛽𝛽1
𝛼𝛼1

) and 𝜃𝜃2 = (
𝜌𝜌2
𝛽𝛽2
𝛼𝛼2

). Here (𝜌𝜌1, 𝜌𝜌2) represents the slope 

coefficients, (𝛽𝛽1, 𝛽𝛽2) the slope coefficients of the deterministic components, and (𝛼𝛼1, 𝛼𝛼2) the 

slope coefficients of the lagged differences in the dependent variable. For each value of the 

threshold parameter, equation (6) is estimated using the least squares method and is expressed as 

follows: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡̂𝑡(𝜆𝜆)     (7) 

The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 

effect is established as 𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2. To test linearity, Caner and Hansen (2001) proposed the 

following test statistic: 

𝑊𝑊𝑡𝑡(𝜆𝜆) = T ( 𝜎̂𝜎02

𝜎̂𝜎2(𝜆̂𝜆)−1)           (9) 

Here, 𝜎̂𝜎0
2 is the residual variance under the null hypothesis, and 𝜎̂𝜎2 shows the variance of the 

threshold model. In addition, Yılancı et al. (2020) proposed using the Fourier ADF unit root test 

process for linearity. The prediction of the unit root process is based on the threshold 

autoregressive (TAR) model, and the null and alternative hypothesis is established as follows: 
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Fourier Threshold Unit Root (FTUR) test. The following model is used to implement the FTUR 

test: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1
′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2

′ 𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡𝑡      (6) 

Where 𝑢̂𝑢𝑡𝑡 is the residual from Equation (2) and 𝑟𝑟𝑡𝑡 represents the deterministic component vector 

containing a constant and probable trend term 𝑢̂𝑢𝑡𝑡−1 = (𝑢̂𝑢𝑡𝑡−1𝑟𝑟𝑡𝑡
′∆𝑢̂𝑢𝑡𝑡−1, … , 𝑢̂𝑢𝑡𝑡−𝑘𝑘). 𝑍𝑍𝑡𝑡−1 is the 

threshold variable defined as 𝑢̂𝑢𝑡𝑡 − 𝑢̂𝑢𝑡𝑡−𝑚𝑚 for 𝑚𝑚 ≥ 1. 𝜆𝜆 represents the unknown threshold 

parameter and has a value between 𝜆𝜆1 and 𝜆𝜆2. The values of 𝜆𝜆1 and 𝜆𝜆2are selected as 𝑃𝑃(𝑍𝑍 ≤
𝜆𝜆1) = 𝜋𝜋1 > 0 and 𝑃𝑃(𝑍𝑍 ≤ 𝜆𝜆2) = 𝜋𝜋2 < 1. It is 𝜋𝜋1 = 1 − 𝜋𝜋2. Yilancı et al. (2020), following the 

suggestion of Andrews (1998), set them to 𝜋𝜋1 = 0.15 and 𝜋𝜋2 = 0.85. The components of the 

parameter vectors are defined as 𝜃𝜃1 = (
𝜌𝜌1
𝛽𝛽1
𝛼𝛼1

) and 𝜃𝜃2 = (
𝜌𝜌2
𝛽𝛽2
𝛼𝛼2

). Here (𝜌𝜌1, 𝜌𝜌2) represents the slope 

coefficients, (𝛽𝛽1, 𝛽𝛽2) the slope coefficients of the deterministic components, and (𝛼𝛼1, 𝛼𝛼2) the 

slope coefficients of the lagged differences in the dependent variable. For each value of the 

threshold parameter, equation (6) is estimated using the least squares method and is expressed as 

follows: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡̂𝑡(𝜆𝜆)     (7) 

The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 

effect is established as 𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2. To test linearity, Caner and Hansen (2001) proposed the 

following test statistic: 

𝑊𝑊𝑡𝑡(𝜆𝜆) = T ( 𝜎̂𝜎02

𝜎̂𝜎2(𝜆̂𝜆)−1)           (9) 

Here, 𝜎̂𝜎0
2 is the residual variance under the null hypothesis, and 𝜎̂𝜎2 shows the variance of the 

threshold model. In addition, Yılancı et al. (2020) proposed using the Fourier ADF unit root test 

process for linearity. The prediction of the unit root process is based on the threshold 

autoregressive (TAR) model, and the null and alternative hypothesis is established as follows: 
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Fourier Threshold Unit Root (FTUR) test. The following model is used to implement the FTUR 

test: 
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Where 𝑢̂𝑢𝑡𝑡 is the residual from Equation (2) and 𝑟𝑟𝑡𝑡 represents the deterministic component vector 

containing a constant and probable trend term 𝑢̂𝑢𝑡𝑡−1 = (𝑢̂𝑢𝑡𝑡−1𝑟𝑟𝑡𝑡
′∆𝑢̂𝑢𝑡𝑡−1, … , 𝑢̂𝑢𝑡𝑡−𝑘𝑘). 𝑍𝑍𝑡𝑡−1 is the 

threshold variable defined as 𝑢̂𝑢𝑡𝑡 − 𝑢̂𝑢𝑡𝑡−𝑚𝑚 for 𝑚𝑚 ≥ 1. 𝜆𝜆 represents the unknown threshold 

parameter and has a value between 𝜆𝜆1 and 𝜆𝜆2. The values of 𝜆𝜆1 and 𝜆𝜆2are selected as 𝑃𝑃(𝑍𝑍 ≤
𝜆𝜆1) = 𝜋𝜋1 > 0 and 𝑃𝑃(𝑍𝑍 ≤ 𝜆𝜆2) = 𝜋𝜋2 < 1. It is 𝜋𝜋1 = 1 − 𝜋𝜋2. Yilancı et al. (2020), following the 

suggestion of Andrews (1998), set them to 𝜋𝜋1 = 0.15 and 𝜋𝜋2 = 0.85. The components of the 
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). Here (𝜌𝜌1, 𝜌𝜌2) represents the slope 

coefficients, (𝛽𝛽1, 𝛽𝛽2) the slope coefficients of the deterministic components, and (𝛼𝛼1, 𝛼𝛼2) the 

slope coefficients of the lagged differences in the dependent variable. For each value of the 

threshold parameter, equation (6) is estimated using the least squares method and is expressed as 

follows: 

∆𝑢̂𝑢𝑡𝑡 = 𝜃𝜃1(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1<𝜆𝜆} + 𝜃𝜃2(𝜆𝜆)′𝑢̂𝑢𝑡𝑡−11{𝑍𝑍𝑡𝑡−1≥𝜆𝜆} + 𝜀𝜀𝑡̂𝑡(𝜆𝜆)     (7) 

The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 

effect is established as 𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2. To test linearity, Caner and Hansen (2001) proposed the 

following test statistic: 

𝑊𝑊𝑡𝑡(𝜆𝜆) = T ( 𝜎̂𝜎02

𝜎̂𝜎2(𝜆̂𝜆)−1)           (9) 

Here, 𝜎̂𝜎0
2 is the residual variance under the null hypothesis, and 𝜎̂𝜎2 shows the variance of the 

threshold model. In addition, Yılancı et al. (2020) proposed using the Fourier ADF unit root test 

process for linearity. The prediction of the unit root process is based on the threshold 

autoregressive (TAR) model, and the null and alternative hypothesis is established as follows: 
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follows: 
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The least squares estimator of the 𝜆𝜆 parameter is reached by minimizing the residual variance of 

𝜎𝜎2(𝜆𝜆) as follows: 

𝜆̂𝜆 = argmin𝜎̂𝜎2(𝜆𝜆)
𝜆𝜆∈Λ           (8) 

After the model is estimated, the basic hypothesis established to test the linearity and threshold 
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𝐻𝐻0: 𝜌𝜌1 = 𝜌𝜌2 = 0 

𝐻𝐻1: 𝜌𝜌1 < 0, 𝜌𝜌2 < 0 

where the null hypothesis indicates the unit root structure in both regimes. The one-way Wald 

test statistics for the alternative hypothesis are as follows: 

𝑅𝑅𝑇𝑇 = 𝑡𝑡121(𝜌̂𝜌1<0) + 𝑡𝑡221(𝜌̂𝜌1<0)         (9) 

Here, 𝑡𝑡1 and 𝑡𝑡2 are the 𝑡𝑡 statistics of the coefficients 𝜌̂𝜌1 and 𝜌̂𝜌2 obtained from the OLS estimation. 

Caner and Hansen (2001) determined the critical values using the bootstrap method for situations 

in which the threshold values are known and unknown. 

 

3. Empirical Findings 

In this study, 26 OECD countries were considered to investigate the reversionary mean of stock 

prices. The descriptive statistics for these countries are presented in Table 1. As can be seen from 

the descriptive statistics, all countries except Spain and Finland have a non-normal distribution. 

Denmark is mesokurtic, whereas Greece, Japan, and New Zealand are leptokurtic. All the 

remaining countries are platykurtic. The country with the highest mean is Greece, while Mexico 

has the lowest mean. In addition, according to descriptive statistics, the country with the highest 

standard deviation is Greece. This shows that stock prices in Greece during the analysis had great 

volatility. We also present the time paths for the series with Fourier approximations in Appendix 

I. 

Table 1: Descriptive Statistics 
Countries Mean Median Max. Min. Std. Dev. Skewness Kurtosis Jarque-Bera 
Australia 71.02 71.69 127.13 23.30 28.77 0.02 1.74 24.69* 
Austria 86.17 82.67 196.87 35.51 39.13 0.73 2.68 34.77* 

Belgium 64.22 63.63 112.84 23.43 25.32 -0.01 1.87 19.99* 
Canada 68.44 67.95 124.22 21.49 29.94 -0.03 1.67 27.50* 

Denmark 49.19 35.87 165.46 9.27 36.36 1.01 3.01 63.19* 
Finland 74.87 77.52 201.35 6.78 40.69 0.13 2.80 1.75 
France 73.00 74.80 124.39 26.70 27.42 -0.11 1.84 21.71* 

Germany 65.53 64.60 117.97 25.24 25.59 0.19 1.91 20.76* 
Greece 244.79 159.57 815.84 66.40 177.22 1.22 3.50 96.01* 
Ireland 71.82 75.93 156.82 18.15 33.31 0.14 2.16 12.21* 
Italy 92.81 92.33 174.61 30.03 34.34 0.35 2.47 11.97* 
Japan 87.72 88.83 177.84 47.05 22.28 0.29 3.59 10.50* 
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3. Empirical Findings

In this study, 26 OECD countries were considered to investigate the reversionary mean of stock 
prices. The descriptive statistics for these countries are presented in Table 1. As can be seen from 
the descriptive statistics, all countries except Spain and Finland have a non-normal distribution. 
Denmark is mesokurtic, whereas Greece, Japan, and New Zealand are leptokurtic. All the remaining 
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countries are platykurtic. The country with the highest mean is Greece, while Mexico has the lowest 
mean. In addition, according to descriptive statistics, the country with the highest standard deviation 
is Greece. This shows that stock prices in Greece during the analysis had great volatility. We also 
present the time paths for the series with Fourier approximations in Appendix I.

Table 1: Descriptive Statistics
Countries Mean Median Max. Min Std. Dev. Skewness Kurtosis Jarque-Bera
Australia 71.02 71.69 127.13 23.30 28.77 0.02 1.74 24.69*
Austria 86.17 82.67 196.87 35.51 39.13 0.73 2.68 34.77*
Belgium 64.22 63.63 112.84 23.43 25.32 -0.01 1.87 19.99*
Canada 68.44 67.95 124.22 21.49 29.94 -0.03 1.67 27.50*

Denmark 49.19 35.87 165.46 9.27 36.36 1.01 3.01 63.19*
Finland 74.87 77.52 201.35 6.78 40.69 0.13 2.80 1.75
France 73.00 74.80 124.39 26.70 27.42 -0.11 1.84 21.71*

Germany 65.53 64.60 117.97 25.24 25.59 0.19 1.91 20.76*
Greece 244.79 159.57 815.84 66.40 177.22 1.22 3.50 96.01*
Ireland 71.82 75.93 156.82 18.15 33.31 0.14 2.16 12.21*

Italy 92.81 92.33 174.61 30.03 34.34 0.35 2.47 11.97*
Japan 87.72 88.83 177.84 47.05 22.28 0.29 3.59 10.50*

South Korea 65.32 53.96 153.09 15.52 31.90 0.29 1.65 33.62*
Mexican 47.31 31.90 116.68 1.01 40.22 0.29 1.40 44.89*

Netherlands 79.04 81.28 135.32 23.29 30.11 -0.26 2.04 18.54*
New Zealand 81.18 68.82 189.85 34.97 30.61 1.33 4.47 144.15*

Norway 56.40 41.40 161.00 6.73 43.47 0.76 2.44 40.70*
Portugal 86.86 92.97 173.88 21.72 35.97 -0.27 2.28 12.75*

Spain 75.07 80.69 157.07 17.91 32.60 -0.04 2.64 2.10
Sweden 56.79 52.78 152.88 7.86 34.19 0.54 2.45 22.54*

Switzerland 69.85 73.11 127.13 15.41 29.01 -0.29 2.14 16.47*
Turkey 47.62 32.29 189.15 0.033 46.62 0.62 2.14 35.34*

England 78.84 84.85 116.69 31.55 22.98 -0.45 2.12 24.65*
USA 66.81 64.25 138.83 16.64 30.75 0.16 2.13 13.25*
Chile 62.77 49.78 153.45 4.26 42.85 0.40 1.73 35.11*
Israel 51.38 49.61 105.94 4.48 31.30 0.027 1.45 37.34*

Note: * denote the significance level at 1%.

Before proceeding with the unit root analysis, the first step is to consider the significance of Fourier 
terms and the appropriate frequency selection for the analysis of stock prices. For this purpose, optimal 
frequency values, which are the first step of Christopoulos and León-Ledesma’s (2011) two-step 
method, were determined. The optimal frequency value was determined in the model where the sum 
of the squares residual is the minimum. Christopoulos and León-Ledesma (2011) considered fractional 
frequencies in the range of k = (0,5, 1, ..., 2,5, 3) for optimal frequency values. The main purpose of 
using fractional frequencies is to determine whether the effect of structural breaks is permanent. The 
fractional value of the optimal frequency indicates that the effect of structural breakage is permanent. 
Table 2 presents the F statistics and optimal frequency values of the analysis regarding the significance 
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of Fourier terms. According to these results, the optimal frequency value was fractional in all countries 
except Greece and the Netherlands. Therefore, the impact of ruptures is permanent in all countries 
except Greece and the Netherlands. In addition, Fourier terms are meaningful for all countries. The 
meaning of the Fourier terms requires that this analysis be continued with unit root tests based on the 
Fourier approach. Otherwise, there will be a specification error.

Table 2: Significance of Fourier Terms

Countries k Min. SSR F Countries k Min. SSR F
Australia 0.5 38299.77 1302.621* Mexican 0.5 29057.80 3645.58*
Austria 0.5 276177.29 196.467* Netherlands 2 201317.16 124.9457*
Belgium 0.5 76278.93 393.2698* New Zealand 0.5 114620.67 377.5147*
Canada 0.5 28491.13 1979.683* Norway 0.5 58663.53 2031.939*

Denmark 0.5 55251.10 1461.975* Portugal 0.5 163466.73 359.6848*
Finland 0.5 311094.06 181.228* Spain 0.5 109796.96 481.0276*
France 0.5 106703.47 300.0104* Sweden 0.5 67811.11 1001.06*

Germany 0.5 80273.92 376.337* Switzerland 0.5 87318.73 478.1086*
Greece 1 4875221.58 258.378* Turkey 0.5 32165.07 4465.182*
Ireland 0.5 246892.32 124.2367* England 0.5 64195.46 381.321*

Italy 1.5 209174.14 203.0235* USA 0.5 52082.37 1064.862*
Japan 0.5 105014.29 140.4143* Chile 0.5 54423.42 2136.752*

South Korea 0.5 44272.13 1396.841* Israel 0.5 21423.25 2962.595*
Note: * denote the significance level at 1%. Critical values at 1% for constant and trend are 6.730 and 6.873, respectively.

After determining the significance of the Fourier terms and obtaining the appropriate frequency 
values, a linearity test is performed on the residuals obtained from equation (2) to determine 
whether the stock prices of the countries are linear. The linearity test results are shown in Table 3. 
According to the linearity test results, stock prices in Austria, Canada, Germany, Italy, New Zealand, 
Spain, and England are linear. As a result, these nations were subjected to the FADF test devised by 
Christopoulos and León-Ledesma (2011). According to the FADF test results, stock prices in Austria, 
Canada, Germany, New Zealand, Spain, and England are unit-rooted, and therefore, these markets 
are weakly efficient. For Italy, it is concluded that stock prices are stationary, they are not weak-form 
efficient, and there is mean reversion.

Table 3: Results of Fourier Threshold Unit Root Tests

Countries
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Ireland -6.60 6 59.8 (0.007)* 19.2 (0.009)* 4.00 (0.009)* 1.80 (0.277)
Italy 14.1 6 39.1 (0.123) -3.312***

Japan -6.36 2 40.8 (0.051)*** 9.29 (0.108) 1.78 (0.255) 2.47 (0.102)
South Korea 13.8 12 53.9 (0.004)* 5.81 (0.332) 2.12 (0.179) 1.15 (0.487)

Mexican -0.275 1 73.0 (0.000)* 3.60 (0.545) 1.17 (0.464) 1.49 (0.354)
Netherlands -2.08 1 55.9 (0.012)** 12.1 (0.053)*** 3.07 (0.038)** 1.63 (0.317)
New Zealand 14.3 12 43.5 (0.176) -0.9883

Norway 9.78 8 88.1 (0.004)* 25.2 (0.007)* -0.836 (0.940) 4.95 (0.002)*
Portugal 15.8 7 63.0 (0.001)* 0.680 (0.936) 0.565 (0.663) -0.601 (0.911)

Spain -1.95 1 38.7 (0.129) -2.9179
Sweden 9.69 8 72.3 (0.019)** 0.882 (0.912) -0.736 (0.934) 0.583 (0.675)

Switzerland -3.84 3 50.5 (0.030)** 3.04 (0.637) -0.544 (0.900) 1.71 (0.299)
Turkey 1.23 1 47.2 (0.048)** 15.8 (0.015)** 2.68 (0.070)*** -2.94 (0.999)

England 9.49 12 36.1 (0.273) -2.6817
USA -1.53 1 67.0 (0.028)** 0.541 (0.948) 0.682 (0.628) -0.277 (0.878)
Chile -3.76 4 82.2 (0.001) 8.91 (0.153) -1.54 (0.980) 2.56 (0.101)
Israel 11.3 12 70.3 (0.009)* 10.8 (0.107) -0.333 (0.881) 3.27 (0.033)**

Note: *, **, and *** denote significance at 1%, 5%, and 10%, respectively. The critical values at the 10% significance level for the 
FADF unit root test for values of k=0.5 and k=1.5 are – 3.64 and – 3.12, respectively. The number of simulations was 10000.

The underlying reasons for the nonlinearity of financial data are related to market dynamics, 
participant behavior, and exogenous factors. Because these factors may cause financial series to 
contain nonlinear components, it is expected to obtain more accurate results with nonlinear analysis 
methods. The results of the FTUR test, which is a nonlinear test, are presented in Table 3. According to 
these results, Austria, Denmark, France, Japan, South Korea, Mexico, Portugal, Sweden, Switzerland, 
the United States, and Chile have unit roots both together and in separate regimes. According to 
these results, the stock markets of these countries have weak form efficiency and exhibit the same 
behavior in both regimes. While stock prices in Finland are stationary for the unrestricted model, 
they contain a unit root in both regimes. In this case, it can be stated that Finland is stationary in the 
case where the regimes are evaluated together, i.e., mean reversion is in question. However, when 
the regimes are evaluated separately, they have a unit root, and the stock market has weak form 
efficiency. Belgium, Norway, and Israel have unit roots in the first regime and are stationary in the 
second regime. Greece, the Netherlands, Ireland, and Turkey were stationary in the first regime and 
had unit roots in the second regime. Based on these results, the stock markets of Belgium, Norway, 
Israel, Greece, the Netherlands, Ireland, and Turkey have partial weak-form efficiency because they 
have a unit root in one of the two regimes.

According to FADF and FTUR test results, Italy does not have weak form efficiency and has a return-
to-average process. Stock markets in Belgium, Finland, Greece, Ireland, the Netherlands, Norway, 
Turkey, and Israel were found to have partially weak form efficiency and partially return to average. 
It was determined that Australia, Austria, Canada, Denmark, France, Germany, Japan, South Korea, 
Mexico, New Zealand, Portugal, Spain, Sweden, Switzerland, England, the United States, and Chile 
stock markets have unit root processes, and these markets have weak form efficiency.
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4. Conclusion and Discussion

Market efficiency means that prices respond quickly and accurately to relevant information. 
An efficient market is characterized by a random walk process, which indicates that the returns 
of a stock market cannot be predicted from previous price changes. During the random walk 
process, shocks have a permanent effect. The persistence of shocks causes stock prices to reach 
a new equilibrium, which means that future returns cannot be predicted according to historical 
movements of stock prices. Unit root analysis helps establish whether the shocks are lasting or 
not. According to Shively (2003), several studies show that financial series are not linear. For these 
reasons, it is essential to use tests that consider nonlinearity in the analysis of stock prices, which 
is a financial series.

This study examined whether the stock markets of 26 OECD countries from January 1991 
to January 2021 had weak form efficiency. For this purpose, the FADF test developed by 
Christopoulos and León-Ledesma (2011), considering structural breaks, and the FTUR test of 
Yılancı et al. (2020), which developed the nonlinear unit root test of Caner and Hansen (2001) with 
Fourier functions, were used. First, whether the Fourier functions are meaningful for structural 
breaks was investigated. Fourier functions were found to be significant for structural breaks in all 
units. Fractional frequencies are used for Fourier functions. It was determined that the optimal 
frequency values are fractional for all countries except Greece and the Netherlands. According to 
this result, the structural breaks in the stock prices of Greece and Holland were permanent; for 
other countries, the effect was temporary. According to the linearity test results, Austria, Canada, 
Germany, Italy, New Zealand, Spain, and England have a non-linear process; in other countries, 
stock prices are linear. Because of the linear and nonlinear unit root tests, the stock markets of 
some countries, except Italy, are weakly efficient, and some are partially weakly efficient. The 
findings of this study are similar to those of Lee et al. (2014), who used panel data analysis among 
the studies reviewed in the literature. The results are also similar to those of Appiah-Kusi, J., and 
Menyah (2003), Worthington and Higgs (2004), Hamid et al. (2010), Nisar and Hanif (2012), Shen 
and Holmes (2014a), and Shen and Holmes (2014b), which use time series methods and make 
evaluations for countries or country groups.

This study examines the stock markets of 26 OECD countries using monthly data from January 1990 
to January 2021. Future research could also consider equity markets from different geographical 
regions or emerging markets to provide a broader perspective. They can also obtain new results using 
data with different frequencies, compare different analysis methods or models, and evaluate the 
efficiency of stock markets under the influence of macroeconomic variables. They can also examine 
market efficiency in a broader context by investigating the efficiency of stock prices within different 
sectors or industries.
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Appendix I

Relative output and the Fourier functions
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