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Abstract

In this paper, we obtain exact solutions of the (2+1)-dimensional combined KdV-mKdV
equation by using a symbol calculation approach. First, we give some background on
the equation. Second, the exp(−ϕ(z))-expansion method will be introduced to solve the
equation. After, using the exp(−ϕ(z))-expansion method to solve the equation, we can get
four types of exact solutions, which are hyperbolic, trigonometric, exponential, and rational
function solutions. Finally, we can observe the characteristics of the exact solutions via
computer simulation more easily.

1. Introduction

Seeking the exact solutions of nonlinear partial differential equations (NLPDEs) is a hotspot in nonlinear science research
and the related theory has developed rapidly in recent decades. Because many nonlinear phenomena existing in nature and
various fields can be described as NLPDEs. More importantly, the solutions of NLPDEs can account for these complex
phenomena as well as applying in these fields [1]-[12], such as atmosphere, optical fiber communications and fluid mechanics.
There is a series of NLPDEs, for example, the KdV equation, the KP equation and the Schrödinger equation. Also, there
are many effective methods to search exact solutions of NLPDEs, such as Lie symmetry [13], the Hirota bilinear method
[14, 15], the extended complex metho d[16], and the exp(−ϕ(z))-expansion method [17]. Particularly, the exp(−ϕ(z))-
expansion method first proposed by Zhao and Li [17] can be used to attain analytical traveling wave solutions of numerous
NLPDEs, such as the combined KdV-mKdV equation[18], the (1+1)-dimensional classical Boussinesq equations [19] and the
Caudrey-Dodd-Gibbon-Sawada-Kotera equation [20].
As we all know, the KdV equation becoming a kind of classical nonlinear partial differential equations can be used to describe
small amplitude shallow water waves, stratified internal waves, ion acoustic waves and its model has great practical value in
many fields [21]-[23], such as plasma physics, solid state physics and fluid mechanics. With the development of soliton theory
and the in-depth research in the KdV equation, we fully understand the properties of it and its abundant solutions. Meanwhile,
various extensions of KdV equations are derived. More recently, Wang and Kara [24] built the new (2+1)-dimensional KdV
and mKdV equations as

ut −6uux +6uuy−uxxx +uyyy +3uxxy−3uxyy = 0 (1.1)
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ut −6u2ux +6u2uy−uxxx +uyyy +3uxxy−3uxyy = 0 (1.2)

Then Malik et al. [25] proposed the (2+1)-dimensional combined KdV-mKdV equation by combining them, which is given by:

ut −a1uux +a1uuy−a2u2ux +a2u2uy−a3uxxx +a3uyyy +a4uxxy−a4uxyy = 0 (1.3)

By considering a1 = 6,a2 = 0,a3 = 1,a4 = 3 and a1 = 0,a2 = 6,a3 = 1,a4 = 3, Eq.(1.3) reduces to Eqs.(1.1) and (1.2)
respectively. Additionally, although the authors have obtained the analytical solutions to the combined KdV-mKdV equation in
[18], the (2+1)-dimensional combined KdV-mKdV equation in [25] has more dimensions and the mixed partial derivatives in
contrast to the former, which means a much broader researching space for scholars. Therefore, it makes sense to research the
the (2+1)-dimensional combined KdV-mKdV equation deeply. The integrability of the equation and some forms of its solutions
are illuminated in Sandeep Malik’s paper. In this article, we use the exp(−ϕ(z))-expansion method to attain exact solutions to
the (2+1)-dimensional combined KdV-mKdV equation and observe the characteristics of them by computer simulation, which
can obtain more abundant solutions to the equation and indicate the validity of the exp(−ϕ(z))-expansion method. The results
and simulations are gained by using Maple.

2. The exp(−ϕ(z))-expansion method

Considering the following nonlinear PDE:

F(u,ux,uy,ut ,uxx,uyy,utt , · · ·) = 0, (2.1)

in which F is a polynomial of the unknown function u(x,y, t) and its partial derivatives, and it also involves nonlinear terms.

Step 1. Insert traveling wave transform

u(x,y, t) = u(z), z = κx+λy+ωt,

into Eq.(2.1) to reduce it into the ODE,

P(u,u′,u′′,u′′′, · · ·) = 0, (2.2)

in which P is a polynomial of u and its derivatives, while ′ := d
dz .

Step 2. Assume that the exact solutions of Eq.(2.2) have the following form:

u(z) =
n

∑
υ=0

Cυ(exp(−ϕ(z)))υ , (2.3)

in which Cυ , (0≤ υ ≤ n) are constants to be determined later, such that Cn 6= 0 and ϕ = ϕ(z) satisfies the ODE as follows:

ϕ
′(z) = b1 + exp(−ϕ(z))+b2 exp(ϕ(z)). (2.4)

where b1 and b2 are constants and the solutions of Eq.(2.4) are given as below:
When b2

1−4b2 > 0, b2 6= 0,

ϕ(z) = ln

−
√
(b2

1−4b2) tanh(
√

b2
1−4b2
2 (z+ ς))−b1

2b2

 , (2.5)

ϕ(z) = ln

−
√
(b2

1−4b2)coth(
√

b2
1−4b2
2 (z+ ς))−b1

2b2

 . (2.6)

When b2
1−4b2 < 0, b2 6= 0,

ϕ(z) = ln


√
(4b2−b2

1) tan(
√

(4b2−b2
1)

2 (z+ ς))−b1

2b2

 , (2.7)
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ϕ(z) = ln


√
(4b2−b2

1)cot(
√

(4b2−b2
1)

2 (z+ ς))−b1

2b2

 (2.8)

When b2
1−4b2 > 0, b1 6= 0, b2 = 0,

ϕ(z) =− ln
(

b1

exp(b1(z+ ς))−1

)
. (2.9)

When b2
1−4b2 = 0, b1 6= 0, b2 6= 0,

ϕ(z) = ln
(
−2(b1(z+ ς)+2)

b2
1(z+ ς)

)
. (2.10)

When b2
1−4b2 = 0, b1 = 0, b2 = 0,

ϕ(z) = ln(z+ ς). (2.11)

in which ς is an arbitrary constant and Cn 6= 0,b1,b2 are constants in Eqs.(2.5)-(2.11). Considering the homogeneous balance
between the highest order derivatives and nonlinear terms of Eq.(2.2), we define the degree of u(z) as D(u(z)) = n and the
positive integer n can be ascertained by the following expressions

D
(

dα u
dzα

)
= n+α,D

(
uβ

(
dα u
dzα

)s)
= nβ + s(n+α). (2.12)

Step 3. Plugging Eq.(2.3) into Eq.(2.2), we obtain a polynomial of exp(−ϕ(z)). Then collect all terms with the same power
about exp(−ϕ(z)) and let the coefficients of them equal zero respectively. After that, we get a set of algebraic equations and
by solving them we confirm the values of Cn 6= 0,b1,b2. Finally, we substitute the obtained values into Eq.(2.3) as well as
Eqs.(2.5)-(2.11) to achieve the determination of the exact solutions for the original PDE.

3. Exact solutions of the (2+1)-dimensional combined KdV-mKdV equation

Substituting traveling wave transform
u(x,y, t) = u(z), z = κx+λy+ωt,

into Eq.(1.3) and then integrating it, we obtain

u+(
1
2

a1λ − 1
2

a1κ)u2 +(
1
3

a2λ − 1
3

a2κ)u3 +(a3λ
3−a3κ

3 +a4κ
2
λ −a4κλ

2)u′′+δ = 0. (3.1)

where δ is the integration constant.
Taking the homogeneous balance between u3 and u′′ of Eq.(3.1) according to Eqs.(2.12), we can yield n = 1 and hence

u(z) =C0 +C1 exp(−ϕ(z)), (3.2)

where C1 6= 0, C0 are constants.
Plugging u,u2,u3,u′′ into Eq.(3.1) and equating the coefficients with the same order of exp(−ϕ(z)) to zero, we obtain

e0(−ϕ(z)) :ω C0 +1/2a1 λ C0
2−1/2a1 κ C0

2 +1/3a2 λ C0
3

−1/3a2 κ C0
3 +δ −C1 κ

3 a3b1 b2 +C1 λ
3 a3b1 b2

−C1 a4 κ λ
2b1 b2 +C1 a4 κ

2
λ b1 b2 = 0

e1(−ϕ(z)) :−C1 a3 b1
2
κ

3 +C1 a3 b1
2
λ

3 +C1 a4 b1
2
κ

2
λ

−C1 a4 b1
2
κ λ

2−2a3 κ
3b2 C1 +2a3 λ

3b2 C1

+2C1 λ a4b2 κ
2−2C1 λ

2a4 b2 κ−C0
2C1 a2 κ

+C0
2C1 a2 λ −C0 C1 a1 κ +C0 C1 a1 λ

+C1 ω = 0

e2(−ϕ(z)) :−3C1 a4 κ λ
2b1 +3C1 a4 κ

2
λ b1 +1/2a1 λ C1

2

−1/2a1 κ C1
2 +a2 λ C0 C1

2−a2 κ C0 C1
2

−3C1 a3 κ
3b1 +3C1 a3 λ

3b1 = 0
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e3(−ϕ(z)) :−2C1 a3 κ
3 +2C1 a3 λ

3 +1/3a2 λ C1
3

−1/3a2 κ C1
3−2C1 a4 κ λ

2 +2C1 a4 κ
2
λ = 0

Having solved the above algebraic equations,we get two different cases:

Case 1.

C0 =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2
,

C1 =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2
,

δ =
1

24a2
2

(
−3b1

√
−(a3 λ 2 +κ (a3−a4)λ +a3 κ2)a2

((
2
(
b1

2−4b2
)

(κ−λ )
(
a3 κ

2 +a3 κ λ +a3 λ
2−a4 κ λ

)
+4ω

)
a2

+a1
2 (κ−λ )

)√
6+2a1

(
6ω a2 +a1

2 (κ−λ )
))

, (3.3)

where b1 and b2 are arbitrary.
Plugging Eqs.(3.3) into Eq.(3.2), we can obtain

u(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2
exp(−ϕ(z)).

(3.4)

Employing Eqs.(2.5) to (2.11) into Eq.(3.4) respectively, attains the exact solutions to the (2+1)-dimensional combined
KdV-mKdV equation in the following.

Case 1.1. When b2
1−4b2 > 0, b2 6= 0,

u11(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

− 2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(b2

1−4b2) tanh(
√

b2
1−4b2
2 (z+ ς))+b1)

,

u12(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

− 2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(b2

1−4b2)coth(
√

b2
1−4b2
2 (z+ ς))+b1)

.

Case 1.2. When b2
1−4b2 < 0, b2 6= 0,

u13(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+
2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(4b2−b2

1) tan(
√

4b2−b2
1

2 (z+ ς))−b1)
,

u14(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+
2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(4b2−b2

1)cot(
√

4b2−b2
1

2 (z+ ς))−b1)
.

Case 1.3. When b2
1−4b2 > 0, b1 6= 0, b2 = 0,

u15(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1

a2(exp(b1(z+ ς))−1)
.
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Case 1.4. When b2
1−4b2 = 0, b1 6= 0, b2 6= 0,

u16(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

− b2
1(z+ ς)

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

2a2(b1(z+ ς)+2)
.

Case 1.5. When b2
1−4b2 = 0, b1 = 0, b2 = 0,

u17(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(z+ ς)
.

Case 2.

C0 =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2
,

C1 =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2
,

δ =
1

24a2
2

(
3b1

√
−(a3 λ 2 +κ (a3−a4)λ +a3 κ2)a2

((
2
(
b1

2−4b2
)

(κ−λ )
(
a3 κ

2 +a3 κ λ +a3 λ
2−a4 κ λ

)
+4ω

)
a2

+a1
2 (κ−λ )

)√
6+2a1

(
6ω a2 +a1

2 (κ−λ )
))

, (3.5)

where b1 and b2 are arbitrary constants.
Plugging Eqs.(3.5) into Eq.(3.2), we can obtain

u(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2
exp(−ϕ(z)).

(3.6)

Employing Eqs.(2.5) to (2.11) into Eq.(3.6) respectively, attains the exact solutions to the (2+1)-dimensional combined
KdV-mKdV equation in the following.

Case 2.1. When b2
1−4b2 > 0, b2 6= 0,

u21(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

+
2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(b2

1−4b2) tanh(
√

b2
1−4b2
2 (z+ ς))+b1)

,

u22(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

+
2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(b2

1−4b2)coth(
√

b2
1−4b2
2 (z+ ς))+b1)

.

Case 2.2. When b2
1−4b2 < 0, b2 6= 0,

u23(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

− 2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(4b2−b2

1) tan(
√

4b2−b2
1

2 (z+ ς))−b1)
,
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u24(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

− 2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(4b2−b2

1)cot(
√

4b2−b2
1

2 (z+ ς))−b1)
.

Case 2.3. When b2
1−4b2 > 0, b1 6= 0, b2 = 0,

u25(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1

a2(exp(b1(z+ ς))−1)
.

Case 2.4. When b2
1−4b2 = 0, b1 6= 0, b2 6= 0,

u26(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

+
b2

1(z+ ς)
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

2a2(b1(z+ ς)+2)
.

Case 2.5. When b2
1−4b2 = 0, b1 = 0, b2 = 0,

u27(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(z+ ς)
.

4. Computer simulations

In this section, the results are illustrated by computer simulations respectively.

Figure 4.1: 3D profile of u11(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 3.
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Figure 4.2: 3D profile of u12(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 3.

Figure 4.3: 3D profile of u13(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1
10 , λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 5.

Figure 4.4: 3D profile of u14(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1
10 , λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 5.
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Figure 4.5: 3D profile of u15(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, and b1 = 1.

Figure 4.6: 3D profile of u16(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, and b1 = 1.

5. Conclusion

In this study, we use the exp(−ϕ(z))-expansion method to obtain abundant new exact solutions to the (2+1)-dimensional
combined KdV-mKdV equation. Except the types of hyperbolic and exponential function solutions which are the same as
those of Sandeep Malik’s paper [25], we also get new types of function solutions including trigonometric and rational solutions.
Additionally, the results indicate that utilizing the exp(−ϕ(z))-expansion method to the combined KdV-mKdV equation
and the (2+1)-dimensional combined KdV-mKdV equation can get the same forms of solutions, while the solutions to the
(2+1)-dimensional combined KdV-mKdV equation have one more case. These solutions can widely stimulate mathematicians
and physicists’ interest and have potential value to be applied in mathematics and physics. Meanwhile, the effectiveness of
the exp(−ϕ(z))-expansion method to seek exact solutions for nonlinear differential equations can be seen from the obtained
results.
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