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   Abstract 
 

Thanks to the developing technology, Parkinson's disease can be detected by using datasets which 

are obtained from different sources. Gait activity analysis is one of the methods used to detect 

Parkinson’s disease.  The gait activity of Parkinson's disease differs from the gait of a normal 

person. In this study, a support vector machine-based classification method using low-dimensional 

feature vector representation is proposed to detect Parkinson's disease. Pressure sensors placed 

under the foot are divided into 3 categories, placed on the heel of the foot, the center of the foot, and 

the toe. Average stance duration, average stride duration, and average distance are extracted from 

the heel of the foot and toe. The frequency value obtained from the center of the foot during the 

walking period is used. Only 4 feature values having  time complexity are used for the 

classification process. Experimental results point out that the proposed method can compete with 

similar studies proposed in the literature, even under these few features. According to the 

experimental results, high classification performance, up to 85%, is obtained under the whole 

dataset. Moreover, superior classification performance, up to 91%, is obtained when the datasets are 

evaluated individually. 

 
 

 

 

1. Introduction* 

 

Diseases are defined as deteriorations or changes in 

the intra-corporeal or extra-corporeal [1]. In the literature, 

various research is carried out to understand the causes of 

these deteriorations or changes and to find appropriate 

solutions, accordingly. In this regard, high-performance 

approaches are proposed for the detection of different 

disease types. 

Diseases are classified based on the systems of the 

body. For example, Parkinson's disease (PD), Epilepsy [2, 

3], and Huntington's disease [4] originate from the body's 

nervous system. On the other hand, Hepatitis, Celiac, and 

Diabetes diseases may occur in the digestive system. 

Parkinson's Disease (PD) is a nervous system disease 

that occurs as a result of the deterioration of the "black 

matter" region in the nervous system, which produces very 

intense amounts of dopamine [5]. In this disease, the body 

                                                           
* Corresponding Author: emin.olmez@kocaeli.edu.tr 

 

is not only unable to produce dopamine at the desired level 

but also it can produce dopamine in a defective way. As a 

result of dopamine deficiency or defective dopamine, 

symptoms such as tremors, posture disorders, muscle 

stiffness, tendency to write small, loss of smell, sleep 

problems, movement and gait problems, voice disorders, 

and expressionless face occur in Parkinson's patients [6]. 

Symptoms of PD such as tremors, muscle stiffness, 

inconsistent and unbalanced gait, and posture disorder are 

examined by doctors [6]. However, these symptoms may 

not be noticed in the early stages of the disease. Therefore, 

the disease cannot be detected at an early stage. A delay in 

diagnosis of the patient negatively affects the life quality of 

the patient and causes a delay in the treatment. 

Gait pattern, which is among the symptoms of PD, 

naturally causes gait differences between healthy 

individuals and Parkinson's patients. Considering the 

literature studies, advanced approaches such as neural 

networks, deep learning, and machine learning approaches 

are adopted for the detection of gait-based PD. In [7], a Q-

backpropagated time delay-based neural network is 
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proposed to detect PD. In [8], the principal component 

approach (PCA) is used to reduce the number of features 

obtained in the gait analysis. 

It is possible to extract comprehensive features by 

considering the additive and differential relationships 

between sensor data obtained from the gait patterns of 

Parkinson's disease and healthy individuals [9, 10].  

In [11], statistical features are obtained using PD gait 

sensor data, then the best distinguishing features are 

selected among these features using Tabu and particle 

swarm optimization algorithms. 

Parkinson's disease has different symptoms. For 

example, in addition to the fact that the gait pattern of the 

PD is different from that of healthy individuals, finger 

tremors appear more than in healthy individuals. In this 

context, in [12,13], different datasets are utilized to 

diagnose PD. 

In [14], a support vector machine (SVM) based 

classification process is performed by evaluating the PD 

datasets separately. In the classification of Parkinson's 

patients, kinetic and kinematic features of gait data are 

used.  

In [15], the pre-processing stage is applied to PD and 

healthy individuals. Then, the histogram is obtained by 

using one-dimensional local binary patterns. Statistical 

features are obtained by using these histograms. In the 

classification phase, different approaches such as Logistic 

Regression, Random Forest, and K-Nearest Neighbor 

(KNN) are utilized to detect the PD. 

In [16], a perceptron network is used for the detection 

of PD. In [17], 2-dimensional images were created by 

utilizing 1-dimensional sensor data. Then, a convolutional 

neural network (CNN) is applied to these images to detect 

Parkinson's disease. In [18], the spectrogram 2D images 

are generated utilizing 1D sensor data. Then, these images 

are fed into the neural network. In that method, the voice 

dataset is also used to detect Parkinson's disease. An 

Artificial Neural Network (ANN) based deep learning 

model is integrated for the voice dataset. In Table 1, a 

concise comparison among the related works is provided. 

The features, the domain information, and the contents of 

the methods are elaborated in Table 1. 

The main contribution of the proposed method (PM) 

is to use a very small number of features in the detection of 

Parkinson's disease. By exploring only 1st order statistics of 

the gait sensor data, a low dimensional feature vector 

representation is obtained. Using these feature vectors, a 

simple machine learning-based classification system is 

proposed to classify Parkinson's patients and healthy 

individuals.  

In Section 2, general information about the Parkinson 

dataset is given. The proposed method is introduced in 

Section 3. The experimental results are given and 

discussed in Section 4. Finally, the conclusion of the paper 

is given in Section 5. 

 

Table 1. A concise comparison of the related works in terms of domains, features, and methods. 

References Domains Features Methods 

[7] Time Raw Sensor Data 
Q-backpropagated Time-

Delay Neural Network 

[8] Time Stance Phase and Swing Phase PCA 

[9] Frequency Statistical Features 

Neural Network with 

Resilient Backpropagation 

Algorithm 

[10] Frequency Statistical Features 

Neural Network with 

Weighted Fuzzy Membership 

Functions 

[11] Time Statistical Features 

Best First Tree, 

Backpropagation  Artificial 

Neural  Network, SVM and 

KNN 

[12] 
Time-

Frequency 
Phases of Gait Cycle Linear Discriminant Analysis 

 

[13] 

Time-

Frequency 
Phases of Gait Cycle SVM 

[14] Time Phases of Gait Cycle SVM 

[15] Time Statistical Features 
KNN, Random Forest. 

 

[16] Time Statistical Features MLP 

[17] Time Raw Sensor Data CNN 

[18] Time Raw Sensor Data CNN and ANN 

https://www.sciencedirect.com/topics/computer-science/neural-networks
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Table 2. PhysioNet Dataset. 

Dataset Status 
Number of 

Participants 
Average Age Gender (Male) 

Average 

Height (m) 

Average 

Weight (kg) 

GA 

Healthy 

Individuals 
18 72 %56  1,67 72 

PD Patients 29 71 %69  1,70 74 

JU 

Healthy 

Individuals 
25 65 %48  1,69 71 

PD Patients 29 67 %55  1,66 70 

SI 

Healthy 

Individuals 
29 58 %65  1,68 74 

PD Patients 35 62 %63  1,67 73 

ALL 

Healthy 

Individuals 
72 66 %56  1,68 72 

PD Patients 93 64 %63  1,68 73 
 

2. Parkinson Dataset 
 

In this study, the PhysioNet dataset [19], which 

depends on pressure sensor data placed under the foot, is 

used. The dataset consists of three different sub-datasets, 

namely GA, JU, and SI [20-23]. Detailed information 

about the dataset is given in Table 2. 

During the walking activity, 8 sensors, , are 

placed on the right and left soles, respectively, as shown in 

Figure 1.  corresponds to the length of the sensor data. 

Vertical ground reaction force (VGRF) data is gathered 

from these sensors. 100 samples are taken per second as a 

result of the sampling process. Necessary data is obtained 

from a 2-minute walking period. Walking activities are 

applied to Parkinson's patients and healthy individuals 

under the same conditions. 

 

Figure 1. Locations of the sensors placed on the sole of the 

foot. 
 

3. Proposed Method (PM) 
 

In this section, some important notions about gait are 

provided before introducing the PM. Gait is defined as 

moving from one place to another as a result of the 

coordinated movement of muscle and bone structures [24]. 

The gait consists of two phases, the stance phase and the 

swing phase. The stance phase begins with the heel of the 

foot in contact with the ground. It continues until the 

contact of the toe with the ground is cut off. It is sufficient 

to evaluate the stance phase for only one foot. The time 

elapsed during the stance phase is called the stance 

duration. The swing phase starts from the moment the toes 

stop contacting the ground. It ends when the heel of the 

foot comes into contact with the ground. It is sufficient to 

evaluate the swing phase for only one foot. The time 

elapsed during the swing phase is called the swing 

duration. During the gait, the stance and swing phases 

continue in cycles. Evaluation of both together corresponds 

to the stride. The stride begins as soon as the heel of the 

foot touches the ground. It continues until the next heel 

contact of the same foot. The time elapsed during the stride 

is called stride duration. The distance traveled in one step 

corresponds to the stride distance. 

In this study, stride durations, stride distances, and 

stance durations are considered feature vectors for the 

detection of Parkinson's disease. PM also leverages the 

frequency information of the sensors to show how 

dominant each sensor is during gait activity. Using the 

introduced feature vectors, a machine learning-based 

classification method is proposed. The flowchart of the 

classification stage of the PM is shown in Figure-2. Each 

step of the classification method is discussed in the 

subsections given below. 

 

3.1. Pre-Processing 

 

Sensor data is an inherently noisy form. In this 

regard, the PhysioNet dataset used in this study is also 

noisy. To remove noise from data, a 5-points median 

filtering is used. After the filtering process, the data are 

normalized according to the body mass index of the 

individual. 



Emin ÖLMEZ et al. / Koc. J. Sci. Eng., 6(1): (2023) 35-43 

 

38 

 
Figure 2. Classification stage of the PM 

 

Moreover, to ignore the initial effect of the gait, the 

first 20 seconds of the gait are not taken into consideration.  

 

3.2. Feature Extraction 
 

To distinguish individuals with PD from healthy 

individuals, distinctive features are necessary to be used as 

a medium. At this stage, features are obtained by using 8 

sensors ( )  data placed on the sole of the 

left foot. The methods used to obtain the feature matrix are 

given in Figure 3. Each feature extraction stage is 

explained in the following sections. 

 

 

Figure 3. Feature extraction stage of the PM. 

 

3.2.1. Frequency Value of the Sensors 
 

At the feature extraction stage, first of all, the 

maximum pressure values of the sensor data of the GA, 

JU, and SI datasets are considered. The distribution of the 

maximum pressure values for each observation value of 

the sensors is examined. In this context, histograms are 

created using the frequency values of the dominant 

sensors. Sensor-based histogram graphs of GA, JU, and SI 

datasets are given in Figure 4, Figure 5, and Figure 6, 

respectively. Histograms are obtained separately for 

healthy individuals and people with Parkinson's disease. 

According to the histogram graphs, the differences in the 

frequency values of the 4th sensor between Parkinson's 

patients and healthy individuals can be seen. While the 

difference is clear in the JU and SI datasets, the difference 

is less so      in the GA dataset. In all datasets, the 

frequency value of the related sensor is found to be lower 

for healthy individuals than for Parkinson's patients. 

Exploiting the frequency differences, the frequency value 

of the 4th sensor for Parkinson's patients and healthy 

individuals is determined as a feature. 

 

3.2.2. Average Stride Duration and Average 

Stride Distance 
 

When Figure 4, Figure 5, and Figure 6 are examined, 

it can be seen that the frequency values of the S1, S2, and S3 

sensors are distinctive between healthy individuals and 

individuals with PD. These sensors are located at the heel 

of the left foot, as shown in Figure 1. To alleviate 

computational complexity, S1, S2, and S3 sensors are 

combined, and the combined sensor is used for the feature 

extraction process. In this context, the sensor to represent 

the sole of the foot was calculated by the average of the S1, 

S2, and S3 sensors. The averaging process is given in 

Equation (1).  

 

 



Emin ÖLMEZ et al. / Koc. J. Sci. Eng., 6(1): (2023) 35-43 

39 

  

a) b) 

Figure 4. Frequency values of the sensors for the GA 

dataset. a) Healthy individuals. b) Parkinson's patients. 

 

  

a) b) 

Figure 5. Frequency values of the sensors for the JU 

dataset. a) Healthy individuals. b) Parkinson's patients. 

 

 

 

a) b) 

Figure 6. Frequency values of the sensors for the SI 

dataset. a) Healthy individuals. b) Parkinson's patients. 

 

 

(1) 

 

Stride duration and stride distance are calculated 

using . Then, the average of the stride duration and 

stride distance is calculated. Similarly, the average stride 

distance is obtained by taking the average of the stride 

distance. 

 

3.2.3. Average Stance Duration 
 

When Figure 4, Figure 5, and Figure 6 are examined, 

it can be seen that the frequency values of the S6, S7, and S8 

sensors are distinctive between healthy individuals and 

Parkinson's patients. As shown in Figure 1, the S6, S7, and 

S8 sensors are located at the tip of the left foot. The same 

procedure applied for the heel of the foot is performed for 

the sensors at the tip of the foot. The sensor to represent 

the tip of the foot is calculated by averaging the S6, S7, and 

S8 sensors. The averaging process is given in Equation (2). 

 

 

(2) 

 

Stance duration is calculated using   and 

. The average of the stance duration is then 

calculated. 

The features to be used in the classification stage are 

determined as average stride duration, average stride 

distance, average stance duration, and the frequency value 

of the 4th sensor. 

3.3. Classification Stage 
 

In this study, an SVM-based binary classification 

algorithm is preferred. The classification performance of 

the PM is evaluated under Linear, Gaussian, Polynomial, 

and RBF kernel functions, separately. 

In the classification phase, a 5-fold cross-validation 

method is applied. Since the number of observations in the 

dataset is not high, 10-fold cross-validation, which is 

frequently used in the literature, is not preferred. 

 

4. Results and Discussion 
 

In classification performance evaluation, datasets are 

considered separately and as a whole. The accuracy, 

sensitivity, and specificity values are used as performance 

criteria. To calculate the accuracy, the number of correctly 

classified predictions is divided by all predictions, as 

shown in Equation (3). 

 

 

(3) 

 

The TP value represents the number of positive 

predictions assigned to the correct class. The TN value 

indicates the number of negative predictions assigned to 

the correct class. The FP value corresponds to the number 

of positive predictions assigned to the wrong class. The FN 

value corresponds to the number of negative predictions 

assigned to the wrong class. In the classification process, 

the TP corresponds to Parkinson's patients, while the TN 

corresponds to healthy individuals. In this paper, 

sensitivity, specificity, and Matthew’s correlation 

coefficient (MCC) criteria are also considered for 

performance comparison. MCC score takes a value 

between -1 and 1 where +1 corresponds to the perfect 

prediction and -1 means the worst prediction.  

Sensitivity, which is known as the true positive rate, 
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is calculated in the following Equation (4).  

 

 

(4) 

 

Specificity, namely true negative rate, is calculated in 

Equation (5). 

 

(5) 

 

MCC is calculated as follows, 

 

(6) 

 

The classification results of the proposed method 

under different kernel functions are given in Table 3 and 

Table 4. The experimental results in Table 3 are obtained 

under maximum classification performance while the 

experimental results in Table 4 are achieved under average 

classification performance. 

According to the results given in Table 3 and Table 4, 

it is seen that gaussian and linear kernel classification 

performs better classification performance, in general. It is 

important to note that, in the GA, SI, and JU datasets, the 

numbers of Parkinson's patients and healthy individuals are 

few. Therefore, incorrect classification of an observation 

value can cause serious deviations in accuracy values. 

 

Table 3. Maximum classification results according to 

cross-validation. 

 5- Fold Cross Validation 

                  Dataset 

Kernel 
GA SI JU All 

Linear 88.9 84.0 90.9 84.8 

Gaussian 88.9 84.6 90.9 84.8 

Polynomial 88.9 84.6 90.0 81.8 

RBF 88.9 84.6 81.8 78.8 

 

Table 4.  Average classification results according to cross-

validation. 

 5- Fold Cross Validation 

                  Dataset 

Kernel 
GA SI JU All 

Linear 81.1 73.2 85.1 76.9 

Gaussian 78.9 78.1 79.6 75.7 

Polynomial 78.9 74.8 83.4 74.5 

RBF 78.9 75.1 76.0 75.7 

 

Figure 7 shows the receiver operating characteristic 

(ROC) curve of the proposed classification model. The 

ROC curve is obtained by calculating Sensitivity and (1-

Specificity) values at different threshold values. 

Considering the area under the curve (AUC), the PM 

achieves robust classifier performance under different 

thresholds. 

 
Figure 7. ROC Curve of the Classification Model 

 

Performance comparison between PM and other 

methods in terms of accuracy is provided in Tablo 5. 

Similarly, a performance comparison between PM and 

other methods in terms of sensitivity, specificity, and MCC 

criteria is given in Tablo 6. The results of the PM in both 

Tables are obtained under the Gaussian kernel. 

Comparison is carried out according to each dataset and to 

the whole dataset, separately. Considering the 

classification accuracies denoted in Table 5, it has been 

seen that the classification results obtained with the PM 

can compete with the other methods in terms of accuracy. 

Considering the classification results given in Table 6, the 

PM has satisfactory performance with regard to the 

compared methods in terms of sensitivity and specificity. 

As seen in Table 6, the PM has balanced accordance 

between the predicted classes and the real classes in terms 

of MCC score. 

 

Table 5. Performance comparison between PM and other 

methods in terms of accuracy. 

 Accuracy 

                              Dataset 

 

Related works 
GA SI JU ALL 

[7] 91.49 92.19 90.91 - 

[8] - - - 81.0 

[9] - - - 86.7 

[10] - - - 77.3 

[12] 92.25 90.0 92.5 86.9 

[14] 88.88 100 100 - 

[15] 92.92 90.70 76.56 92.9 

[16] - - - 88.9 

[17] - - - 88.7 

[18] - - - 88.1 

PM 88.9 84.6 90.9 84.8 
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Table 6. Performance comparison between PM and other methods in terms of sensitivity, specificity, and MCC. 

 Sensitivity Specificity MCC 

Dataset 

 

Related works 

GA SI JU 

 

ALL GA SI JU ALL GA SI JU ALL 

[7] 0.77 0.94 0.74 - 0.55 0.90 0.83 - - - - - 

[8] - - - 0.86 - - - 0.76 - - - - 

[9] - - - - - - - - - - - - 

[10] - - - 0.81 - - - 0.65 - - - - 

[12] - - - 0.72 - - - 0.81 - - - - 

[14] - - - - - - - - - - - - 

[15] - - - 0.88 - - - 0.88 - - - - 

[16] - - - 0.89 - - - 0.82 - - - - 

[17] - - - - - - - - - - - - 

[18] - - - - - - - - - - - - 

PM 0.86 1 1 0.92 1 0.60 0.80 0.80 0.76 0.70 0.83 0.71 

 

Table 7. Comparison of feature dimension between PM and other methods. 

Related works [7] [8] [9] [10] [12] [14] [15] [16] [17] [18] PM 

Number of Features 60 100 156 40 10 12 30 108 2328 1472 4 

 

4.1. Time Complexity Analysis in Feature 

Extraction 
 

In a typical classification task, the feature extraction 

stage can be crucial for the performance of classification. 

An increase in the number of features can lead to a curse of 

dimensionality as well as increase the classification 

performance. As the number of features increases, the 

feature space also grows.  In this regard, the execution time 

generally increases with the number of features. So, a huge 

amount of computation can be needed for the classification 

task. This paper proposes a low-dimensional feature vector 

representation for the PD classification task.  

Table 7 shows the number of features used in PM and 

in other methods. It can be seen that the number of features 

used in PM is significantly less than the compared 

methods. The methods in [17,18] apply to deep learning 

approaches to obtain features while the method in [8] uses 

the PCA approach to reduce the dimension of the feature 

space. On the other hand, the methods in [12, 14] make use 

of the time-frequency domain, while the methods in [11, 

13] use only the frequency domain. Thanks to PM, only 4 

features are considered in the time domain. 

Besides the number of features, time complexity also 

needs to be taken into account. Table 8 shows the time 

complexity of the feature extraction methods used in PM. 

As seen in the Table, the features can be extracted with 

 complexity at the worst case. 

 

 

 

Table 8. Time Complexity in Feature Extraction 

Features Time Complexity 

Frequency Value of the Sensors 
 

Average Stance Duration 
 

Average Stride Duration 
 

Average Stride Distance 
 

Total 
 

 

5. Conclusions  
 

In this study, a low-dimensional feature vector 

representation is proposed to detect Parkinson's disease. 

Thanks to the proposed method, a small number of features 

with low time complexity can be used without 

compromising the classification performance.  

In the literature, a large number of features are 

usually utilized at the classification stage. In addition, 

extracting the features from different domains such as time 

and frequency can increase the computational cost. By 

implementingthe proposed method, satisfactory 

classification results are achieved using a small number of 

features obtained from only the time domain. 

According to the classification results obtained with 

the accuracy criterion, high classification performance, up 

to 85%, is obtained under the whole dataset. On the other 

hand, superior classification performance, up to 91%, is 

obtained when the datasets are evaluated individually. 

Moreover, according to the sensitivity criterion, the 

proposed method exhibits the best performance among the 

compared methods. 
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