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Abstract
In this paper, the problem of inferencing on the stress-strength reliability under Weibull-F
Models when the stress and strength systems belong to the different families of distribu-
tions from the Weibull-F Model is considered. Some stochastic comparisons between the
survival distribution functions of this model are obtained. Also, the asymptotic and several
bootstrap confidence intervals of stress-strength reliability are studied. The efficiency of
asymptotic and bootstrap confidence intervals are analyzed by simulation. The numerical
example based on real-life data is displayed as an illustration.
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1. Introduction
Industrial, engineering and mechanical systems during the period of their operation are

usually under the different controllable and uncontrollable stresses such as temperature,
humidity, material quality and system configuration, and so on. Therefore, so many of the
systems are a type of stress-strength model and the study of their features is important.
In the stress-strength system, R = P (X < Y ) is a measure of assurance of the component
performance with the random strength Y when it is subjected to the random stress X. In
a stress-strength model, the system fails if and only if, at any time, the applied stress is
greater than its strength. It is worth noting that the stress-strength reliability is used not
only in reliability but also in other sciences as a measure to compare two populations. For
example, in medicine, if the random variables X and Y be the number of cancer patients
treated with two different chemotherapeutic methods, then R is a comparison between
the above two methods to find a more effective method of treatment. Also, in engineering
, if the random variables X and Y are the strength of two materials in an engineering
design, then R is the probability that the strength of X is less than the strength of Y .
The parametric and non-parametric inferences on R for several specific distributions of
random variables X and Y under different sampling schemes have been studied by various
authors. We refer the readers to [5, 7, 11, 12, 14–17, 19–21, 24]. In this paper, we study
the stress-strength reliability in Weibull-F family of distributions. In many real examples,
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some generalizations of Weibull distribution are more desired as their hazard rate function
can take any form for different values of parameters. Zografos and Balakrishnan [25]
developed a convertible and transformative gamma-G class of distributions based on Stacys
generalized gamma distribution and record value theory. Recently, Bourguignon et al. [8]
presented the Weibull-F family of distributions affected by the Zografos-Balakrishnan-F
class. For any parent continuous distribution F , the corresponding Weibull-F distribution
characterized by the notation of W-F (α, β, F ) with the cumulative distribution function
(CDF) of

G(y; α, β) = 1 − e
−α( F (y)

F̄ (y) )β

, (1.1)
and the probability density function (PDF)

g(y; α, β) = αβ
f(y)

F̄ 2(y)
(F (y)
F̄ (y)

)β−1e
−α( F (y)

F̄ (y) )β

, (1.2)

where F (y) indicates the baseline distribution function and α, β > 0 are positive parame-
ters. Intuitively, let X be a random lifetime of a component with cdf F . The odds ratio
of the component with the lifetime X which will be failed at time y is F (y)

F̄ (y) . Assume that
the variability of this odds of failure is represented by the random variable Y and assume
that it follows the Weibull model with scale parameter α and shape parameter β such as
Equation (1.1). It is worth noting that the CDF of Weibull-F distribution in Equation
(1.1) can be regarded as a distorted distribution.

Equation (1.1) contains an inclusive family of continuous distribution functions. Each
of the Weibull-F distributions can be obtained from a specified baseline CDF F (y), e.g.,
Weibull-Frechet is obtained by taking F (y) as the CDF of the Frechet distribution. The
Weibull-Gompertz, Weibull-Log-logistic, Weibull-Pareto and Weibull- Normal distribu-
tions can be obtained similarly by taking F (y) as the CDF of the Gompertz, Log-logistic,
Pareto and normal distributions, respectively.
The aim of this paper is to compare two Weibull-F distributions with parameters (α1, β1)
and (α2, β2). More specifically, we are interested in estimating R = P (X < Y ), where X
and Y are two random variables with Weibull-F distributions with parameters (α1, β1)
and (α2, β2), respectively. The outline of this paper is as follows. In Section 2, some useful
definitions and some stochastic orderings between the stress and strength distributions in
Weibull-F model are discussed. Moreover, we derive the expression for R = P (X < Y ) and
develop a procedure for estimating R in Section 3. Furthermore, we obtain the maximum
likelihood estimates (MLE) of the parameters and their asymptotic variance-covariance
matrix in Section 3. Section 4 provides various bootstrap confidence intervals for R. In
Section 5, simulation studies are carried out to evaluate the performance of both asymp-
totic and bootstrap confidence intervals for R. Also, a numerical example based on real-life
data is provided in Section 5. Finally, the conclusions are given in Section 6.

2. Some fundamental basic definitions and primary results
This section devoted to the review of some notes about the stochastic orders. Consider

two univariate random variables of X and Y that their following characteristics are re-
spectively termed as: CDFs F and G, survival functions F̄ (= 1 − F ) and Ḡ(= 1 − G),
PDFs f and g, hazard rate functions hf (= f/F̄ ) and hg(= g/Ḡ) and reversed hazard
rate functions r̃F (= f/F ) and r̃G(= g/G). Denote by G−1 the corresponding quantile
function, defined by G−1(u) = inf{x : G(x) ≥ u}, 0 ≤ u ≤ 1. Note that, the stochastic
orders are introduced for the sake of comparing the magnitudes of two random variables.
More details of stochastic orders can be found in [18].
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Definition 2.1. The vector X is said to be smaller than vector Y in the

(i) usual stochastic order denoted by X ≤st Y if F̄ (t) ≤ Ḡ(t) for all t.

(ii) hazard rate order denoted by X ≤hr Y if Ḡ(t)/F̄ (t) increases in t. If X and Y are
absolutely continuous, then X ≤hr Y is equivalent to hF (t) ≥ hG(t) for all t.

(iii) reversed hazard rate order denoted by X ≤rhr Y if G(t)/F (t) increases in t. If X
and Y are absolutely continuous, then X ≤rhr Y is equivalent to r̃F (t) ≤ r̃G(t) for all t.

(iv) likelihood ratio order denoted by X ≤lr Y if g(t)/f(t) is increasing in t for which the
ratio is well defined.

(v) mean residual life ordering denoted by X ≤MRL Y if
∫∞

x Ḡ(u)du/
∫∞

x F̄ (u)du is in-
creasing in x.

(vi) convex transform order (denoted by X ⩽c Y ) if G−1(F (x)) is convex in x on the
support of F .

(vii) star order (denoted by X ⩽∗ Y ) if G−1(F (x))
x

increases in x > 0.

(viii) supper-additive order (denoted by X ⩽su Y ) if G−1(F (x + y)) ≥ G−1(F (x)) +
G−1(F (y)), ∀ x ≥ 0, y ≥ 0.

(ix) dispersive order (denoted by X ⩽disp Y ) if and only if G−1(F (x)) − x increases in x.

2.1. Model description
Let X and Y be random variables satisfying Weibull-F model (1.1) with parameters

(α1, β1) and (α2, β2), respectively, that is

X ∼ Ḡ1(x; α1, β1) = e
−α1( F (x)

F̄ (x) )β1
, Y ∼ Ḡ2(y; α2, β2) = e

−α2( F (y)
F̄ (y) )β2

, (2.1)

where F (.) is given parametric CDF with known parameter λ. Consider a system with
random strength Y subjected to a random stress X. Furthermore, assume that the random
variables X and Y are independent. The stress-strength reliability of the aforementioned
system is defined by

R = P (X < Y )

=
∫ ∞

0
P (Y > X|X = x)g1(x; α1, β1)dx

=
∫ 1

0
e

−α2
(

− 1
α1

ln(1−u)
)γ

du, (2.2)

where γ = β2
β1

. Note that, under the identical baseline distribution function of stress
and strength random variables, the expression for R does not involve the parameter of
the baseline distribution F (.). If the baseline distribution functions of stress and strength
random variables are non-identical, then the expression for R depends on the parameter of
baseline distributions. For some selected values of parameters, the figures of R as function
of γ, α1, β1, α2, and β2 are depicted in figures 1, 2, 3 and 4, respectively. From these
figures, we observe that the stress-strength reliability is very sensitive with respect to the
parameters of model. Also, we see that the stress-strength reliability is increasing in α1
and is decreasing in α2. Some properties of the stress-strength reliability function in (2.2)
are summarized in the following results.
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Figure 1. Plot of R versus γ in Equation (2.2).

Figure 2. Plot of R versus α1 and α2 in Equation (2.2) in left and right panel,
respectively.

Figure 3. Plot of R versus β1 in Equation (2.2). Left panel for α1 = 0.1 and
α2 = 2 and right panel for α1 = 2 and α2 = 0.1.
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Figure 4. Plot of R versus β2 in Equation (2.2). Left panel for α1 = 0.1 and
α2 = 2 and right panel for α1 = 2 and α2 = 0.1

Result 2.2. The stress-strength reliability function in (2.2) based on Weibull-F model has
the following properties.

i) R is a continuous function of γ over (0, ∞) and for γ = 1, we have R = α1
α1+α2

.
ii) If α1 = α2 = α and α > 1 then R is monotonically increasing in γ.

In the following, for convenience study of stochastic orderings with respect to the pa-
rameters of the stress-strength model, a particular model is investigated. In this model,
the baseline distribution function of the strength random variable is identical to the dis-
tribution function of random stress.

2.2. Particular model
Consider a strength system with lifetime Y ∼ W − F (α, β, F ) subjected to a random

stress X with the CDF F . Then stress-strength reliability of the aforementioned system
is given by

R = P (X < Y ) =
∫ 1

0
e−α( u

1−u
)β

du. (2.3)

The stress-strength models in generalized Weibull-G family of distributions have been
investigated by researchers such as [1,2,13]. We now study the stochastic ordering between
Y and X. Using relation (1.2), we have

g(y; α, β)
f(x)

= αβ
F β−1(x)
F̄ β+1(x)

e
−α( F (x)

F̄ (x) )β

(2.4)

This gives

d

dx

[
g(y; α, β)

f(x)

]
= − 1

F (x)F̄ (x)

(
αβ(F (x)

F̄ (x)
)β − 2F (x) − β + 1

)
g(y; α, β) (2.5)

Therefore, β = 1 and α ≥ 2 implies Y ≤lr X.
Based on the already stated, the following results are obtained.

Result 2.3. Suppose model (2.3) holds. Then, if β = 1 and α ≥ 2,
i) Y ≤hr X;
ii) Y ≤rh X;
iii) Y ≤st X;
iv) Y ≤MRL X.
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Next, we investigate the stochastic orderings with respect to the parameters β and α.
Suppose Y1 and Y2 are two random variables satisfying the Weibull-F model (1.1), with
parameters (α1, β1) and (α2, β2), respectively. Then

g1(x; α1, β1)
g2(x; α2, β2)

= α1β1
α2β2

(F (x)
F̄ (x)

)β1−β2e
−α1( F (x)

F̄ (x) )β1 +α2( F (x)
F̄ (x) )β2

(2.6)

and

d

dx

[
g1(x; α1, β1)
g2(x; α2, β2)

]
= α1β1

α2β2
(F (x)
F̄ (x)

)β1−β2−1 f(x)
F̄ (x)

e
−α1( F (x)

F̄ (x) )β1 +α2( F (x)
F̄ (x) )β2

×
(

α2β2(F (x)
F̄ (x)

)β2 − α1β1(F (x)
F̄ (x)

)β1 − β2 + β1

)
(2.7)

Thus β1 = β2 = β and α1 > α2 implies Y1 ≤lr Y2.
By the previously mentioned, the following results are achieved.

Result 2.4. Let Y1 and Y2 be the two random variables with parameters (α1, β1) and
(α2, β2) satisfying the Weibull-F model (1.1). Then, if β1 = β2 = β and α1 > α2,

i) Y1 ≤hr Y2;
ii) Y1 ≤rh Y2;
iii) Y1 ≤st Y2;
iv) Y1 ≤MRL Y2.

The next result shows that some stochastic orders preserved under the aforementioned
models.

Result 2.5. Let X0 and Y0 be two non-negative random variables with CDF F0 and G0,
respectively. Also, assume that X and Y be the two random variables with parameters
(α, β) satisfying the Weibull-F0 model and Weibull-G0 model, respectively. Denote the
CDFs of X and Y by GF0(x) and GG0(y), respectively. Then we have

i) X0 ⩽c Y0 if, and only if, X ⩽c Y .
ii) X0 ⩽∗ Y0 if, and only if, X ⩽∗ Y .
iii) X0 ⩽su Y0 if, and only if, X ⩽su Y .
iv) X0 ⩽disp Y0 if, and only if, X ⩽disp Y .

Proof. By assumptions, we have

GG0
−1(GF0(x)) = G−1

0

( (
− 1

α ln(1 − GF0(x))
) 1

β

1 +
(

− 1
α ln(1 − GF0(x))

) 1
β

)
= G−1

0 (F0(x)). (2.8)

The results follow from (2.8) and parts (vi) to (ix) of Definition 1. 2

In the following, we examine Result 2.4 via a numerical example. Consider random
variables Y1 ∼ W − F (2, 2, 1 − e2y) and Y2 ∼ W − F (1.5, 2, 1 − e2y) with CDFs G1(y)

and G2(y), respectively. Let k1(y) = Ḡ1(y)
Ḡ2(y) , k2(y) = G1(y)

G2(y) , and k3(y) =
∫∞

x
Ḡ1(u)du∫∞

x
Ḡ2(u)du

. The
stochastic comparisons between random variables Y1 and Y1 are demonstrated in Figure
5.
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Figure 5. Plot of functions k1(y), k2(y), and k3(y).

3. ML estimation of the stress-strength reliability in Weibull-F models
Here, we will find the ML estimation of R based on the exponential distribution. We

assume that F is exponential distribution with known mean 1
λ . Therefore, the two density

functions associated with (2.1) are given, respectively, by

X ∼ g1(x; α1, β1) = α1β1λeβ1λx(1 − e−λx)β1−1e
−α1( 1−e−λx

e−λx )β1
, (3.1)

and

Y ∼ g2(y; α2, β2) = α2β2λeβ2λy(1 − e−λy)β2−1e
−α2( 1−e−λy

e−λy )β2
. (3.2)

Let X1, . . . , Xn1 be a random sample of size n1 from X with PDF in (3.1) and Y1, . . . , Yn2

be a random sample of size n2 distributed as Y with PDF in (3.2). Then, the likelihood
function of the observed sample is easily provided by

L(α1, β1, α2, β2) = (α1β1)n1(α2β2)n2λn1+n2e
λ
(

β1

n1∑
i=1

xi+β2

n2∑
j=1

yj

)
n1∏
i=1

(
1 − e−λxi

)β1−1

×
n2∏

j=1

(
1 − e−λyj

)β2−1
e

−α1

n1∑
i=1

(
1−e−λxi

e−λxi

)β1

e
−α2

n2∑
j=1

(
1−e

−λyj

e
−λyj

)β2

. (3.3)

The corresponding loglikelihood function is

ℓ(α1, β1, α2, β2) = n1(ln α1 + ln β1) + n2(ln α2 + ln β2) + (n1 + n2) ln λ

+ λ(β1

n1∑
i=1

xi + β2

n2∑
j=1

yj)

+ (β1 − 1)
n1∑
i=1

ln
(
1 − e−λxi

)
+ (β2 − 1)

n2∑
j=1

ln
(
1 − e−λyj

)
− α1

n1∑
i=1

(1 − e−λxi

e−λxi

)β1 − α2

n2∑
j=1

(1 − e−λyj

e−λyj

)β2 . (3.4)
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Taking the first order partial derivatives with respect to α1, β1, α2 and β2 and setting
them to zero, we get the following system of score equations

∂l(θ)
∂α1

= n1
α1

−
n1∑
i=1

(1−e−λxi

e−λxi

)β1 = 0

∂l(θ)
∂α2

= n2
α2

−
n2∑

j=1

(1−e−λyj

e−λyj

)β2 = 0

∂l(θ)
∂β1

= n1
β1

+ λ
n1∑
i=1

xi +
n1∑
i=1

ln
(
1 − e−λxi

)
− α1

n1∑
i=1

(1−e−λxi

e−λxi

)β1 ln
(1−e−λxi

e−λxi

)
= 0

∂l(θ)
∂β2

= n2
β2

+ λ
n2∑

j=1
yj +

n2∑
j=1

ln
(
1 − e−λyj

)
− α2

n2∑
i=1

(1−e−λyj i

e−λyj

)β2 ln
(1−e−λyj

e−λyj

)
= 0.

(3.5)

The MLEs of α1, β1, α2 and β2 denoted by α̂1, β̂1, α̂2 and β̂2 , are the solutions to the
above system of score equations which maximize the likelihood function (3.3). From (3.5),
we attain

α̂1(β1) = n1
n1∑
i=1

(1−e−λxi

e−λxi

)β1
, (3.6)

and
α̂2(β2) = n2

n2∑
j=1

(1−e−λyj

e−λyj

)β2
. (3.7)

By substituting (3.6) and (3.7) in (3.5) we have

∂l(θ)
∂β1

= n1
β1

+ λ
n1∑
i=1

xi +
n1∑
i=1

ln
(
1 − e−λxi

)
− n1

n1∑
i=1

(
1−e−λxi

e−λxi

)β1

n1∑
i=1

(1−e−λxi

e−λxi

)β1 ln
(1−e−λxi

e−λxi

)
= 0

∂l(θ)
∂β2

= n2
β2

+ λ
n2∑

j=1
yj +

n2∑
j=1

ln
(
1 − e−λyj

)
− n2

n2∑
j=1

(
1−e

−λyj

e
−λyj

)β2

n2∑
i=1

(1−e−λyj i

e−λyj

)β2 ln
(1−e−λyj

e−λyj

)
= 0.

(3.8)

The existence and uniqueness of solutions for (3.8) are shown in Appendix.
By solving the system of non-linear equations in (3.8), α̂1, β̂1, α̂2 and β̂2 will be obtained.

Therefore, the MLE of R can be obtained by

R̂ =
∫ 1

0
e

−α̂2
(

− 1
α̂1

ln(1−u)
) β̂2

β̂1
du. (3.9)

In the next subsection, we will derive some asymptotic results about R̂.

3.1. Some asymptotic results
Let θ = (α1, β1, α2, β2)⊺. The Hessian is the matrix of second derivatives of the likeli-

hood with respect to the parameters and defined by

H(θ) = ∂2l(θ)
∂θ∂θ⊺

=



∂2l(θ)
∂α2

1

∂2l(θ)
∂α1∂β1

∂2l(θ)
∂α1∂α2

∂2l(θ)
∂α1∂β2

∂2l(θ)
∂β1∂α1

∂2l(θ)
∂β2

1

∂2l(θ)
∂β1∂α2

∂2l(θ)
∂β1∂β2

∂2l(θ)
∂α2∂α1

∂2l(θ)
∂α2∂β1

∂2l(θ)
∂α2

2

∂2l(θ)
∂α2∂β2

∂2l(θ)
∂β2∂α1

∂2l(θ)
∂β2∂β1

∂2l(θ)
∂β2∂α2

∂2l(θ)
∂β2

2

 , (3.10)
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where
∂2l(θ)

∂α1∂β1
= −

n1∑
i=1

(1 − e−λxi

e−λxi

)β1 ln
(1 − e−λxi

e−λxi

)
,

∂2l(θ)
∂β2

1
= −n1

β2
1

− α1

n1∑
i=1

(1 − e−λxi

e−λxi

)β1[ ln
(1 − e−λxi

e−λxi

)]2
,

∂2l(θ)
∂β1∂α1

= −
n1∑
i=1

(1 − e−λxi

e−λxi

)β1 ln
(1 − e−λxi

e−λxi

)
,

∂2l(θ)
∂α2∂β2

= −
n2∑

j=1

(1 − e−λyj

e−λyj

)β2 ln
(1 − e−λyj

e−λyj

)
,

∂2l(θ)
∂β2

2
= −n2

β2
2

− α2

n2∑
j=1

(1 − e−λyj

e−λyj

)β2[ ln
(1 − e−λyj

e−λyj

)]2
,

∂2l(θ)
∂β2∂α2

= −
n2∑

j=1

(1 − e−λyj

e−λyj

)β2 ln
(1 − e−λyj

e−λyj

)
,

∂2l(θ)
∂α2

1
= − n1

α2
1
, ∂2l(θ)

∂α2
2

= − n2
α2

2
and ∂2l(θ)

∂α1∂α2
= ∂2l

∂α2∂α1
= ∂2l

∂α1∂β2
= ∂2l

∂β2∂α1
= ∂2l(θ)

∂α2∂β1
=

∂2l(θ)
∂β1∂α2

= ∂2l(θ)
∂β1∂β2

= ∂2l(θ)
∂β2∂β1

= 0. It can be demonstrated that the likelihood function
satisfies the regularity conditions prepared in Bickel and Doksum (2001, pages 384-385).
The observed Fisher information matrix can be presented as

In(θ̂) = −H(θ̂) = −∂2l(θ)
∂θ∂θ⊺

∣∣∣
θ=θ̂

. (3.11)

Let n = n1 + n2. We define the Fisher information matrix of θ based on the Weibull-F
Model as follows

I(θ) = lim
n1→∞
n2→∞

E
(

− 1
n

∂2l(θ)
∂θ∂θ⊺

)
=


I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44

 , (3.12)

where
I11 = ρ1

α2
1
, I12 = ρ1Ψ(α1, β1, 1), I13 = I14 = 0,

I12 = β1ρ1Ψ(α1, β1, 1), I22 = ρ1
β2

1
+ α1ρ1Ψ(α1, β1, 1) + α1β1ρ1Ψ(α1, β1, 2), I23 = I24 = 0,

I31 = I32 = 0, I33 = ρ2
α2

2
, I34 = ρ2Ψ(α2, β2, 1),

I41 = I42 = 0, I43 = β2ρ2Ψ(α2, β2, 1), I44 = ρ2
β2

2
+ α2ρ2Ψ(α2, β2, 1) + α2β2ρ2Ψ(α2, β2, 2),

and

Ψ(α, β, ν) = − 1
αβ

∫ 1

0
ln(1 − u)

(
ln
(

− 1
α1

ln(1 − u)
))ν

du.

Applying the above mentioned notations, we obtain the following asymptotic normality of
the maximum likelihood estimates θ̂ = (α̂1, β̂1, α̂2, β̂2)⊺, of θ = (α1, β1, α2, β2).
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Theorem 3.1. If model (1.1) holds, the MLE (α̂1, β̂1, α̂2, β̂2)⊺ of (α1, β1, α2, β2)⊺ weakly
converges to the following multivariate normal distribution:

√
n


α̂1 − α1
β̂1 − β1
α̂2 − α2
β̂2 − β2

 D−→ N
(
0, I−1(θ)

)
, (3.13)

where I−1(θ) is the inverse of the Fisher information matrix I(θ).

Since I(θ) includes integrals, one has to apply numerical procedure to evaluate these in-
tegrals in order to use this asymptotic normality. Practically, it is convenient to substitute
the Fisher information matrix I(θ) by

− 1
n

H(θ̂) = − 1
n

∂2l(θ)
∂θ∂θ⊺

∣∣∣
θ=θ̂

. (3.14)

In fact, H(θ̂) is a consistent estimator of I(θ) since

lim
n1→∞
n2→∞

− 1
n1 + n2

∂2l(θ)
∂θ∂θ⊺

= lim
n1→∞
n2→∞

− 1
n1 + n2

In(θ) = I(θ). (3.15)

To construct the asymptotic normality of R represented in (2.2), we define

V (α1, β1, α2, β2) =
( ∂R

∂α1
,

∂R

∂β1
,

∂R

∂α2
,

∂R

∂β2

)
, (3.16)

where
∂R

∂α1
= α2β2

α1β1
Ψ1(α1, β1, α2, β2),

∂R

∂α2
= −Ψ1(α1, β1, α2, β2),

∂R

∂β1
= −β2

β2
1

Ψ2(α1, β1, α2, β2),

∂R

∂β2
= 1

β1
Ψ2(α1, β1, α2, β2),

Ψ1(α1, β1, α2, β2) =
∫ 1

0

(
− 1

α1
ln(1 − u)

)γ
e

−α2
(

− 1
α1

ln(1−u)
)γ

du,

and

Ψ2(α1, β1, α2, β2) = −α2

∫ 1

0

(
− 1

α1
ln(1 − u)

)γ ln
(

− 1
α1

ln(1 − u)
)
e

−α2
(

− 1
α1

ln(1−u)
)γ

du.

Applying the Delta method on the MLE of R, we obtain

√
nR̂ =

√
nR + V (α1, β1, α2, β2)

√
n


α̂1 − α1
β̂1 − β1
α̂2 − α2
β̂2 − β2

+ op(1). (3.17)

Using the results of the Theorem 3.1, we obtain the next theorem.

Theorem 3.2. Suppose that model (1.1) holds, we have

√
n
(
R̂ − R

)
D−→ N

(
0, V (α1, β1, α2, β2)I−1V ⊺(α1, β1, α2, β2)

)
, (3.18)

where V ⊺(α1, β1, α2, β2) is the transpose of V (α1, β1, α2, β2) and I−1 is the inverse of in-
formation matrix presented in (3.12).
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To build confidence intervals for R, we apply the following consistent estimated variance

V̂ ar(R̂) = 1
n

V (α̂1, β̂1, α̂2, β̂2)I−1V ⊺(α̂1, β̂1, α̂2, β̂2). (3.19)

Applying the consistent estimated variance provided in (3.19) besides the asymptotic
normal distributions in Theorem 3.2, we able to construct inferences on R by building
confidence intervals.

4. Bootstrap confidence intervals
The behaviour of conclusions on R based on the asymptotic theory expanded in Section

3 is enormously dependent on the approximation of the sampling distribution of the MLE
for the parameters of interest to a normal distribution. Occasionally, such a normal
approximation requires a very large sample size which might be unpractised in real world
problems. In this section, we investigate two bootstrap confidence intervals, i.e., bootstrap-
t and bootstrap percentile confidence intervals, which only need a feasible sample size to
obtain a suitable estimate of the CDF of the original populations. The bootstrap method
presented by [10], is a re-sampling procedure with enormous success in solving many
complex statistical issues. In this paper, the parametric and non-parametric bootstrap
methods have been applied to generate random samples and based on which to build
confidence intervals for the parameters of interest. Let X1, . . . , Xn1 ∼ G1(x; α1, β1) and
Y1, . . . , Yn2 ∼ G2(y; α2, β2) be the two identically independently distributed (i.i.d.) random
samples. Applying the method in Section 3, we able to gain the MLE of α1, β1, α2
and β2 indicated by α̂1, β̂1, α̂2 and β̂2, respectively. The i.i.d. samples X∗

1 , . . . , X∗
n1 ∼

G1(x; α̂1, β̂1) and Y ∗
1 , . . . , Y ∗

n2 ∼ G2(y; α̂2, β̂2) are named parametric bootstrap samples.
Let Ĝ1,n1 and Ĝ2,n2 be the empirical CDFs determined by X1, . . . , Xn1 and Y1, . . . , Yn2 ,
respectively. The simple random samples with replacement X∗

1 , . . . , X∗
n1 ∼ Ĝ1,n1 and

Y ∗
1 , . . . , Y ∗

n2 ∼ Ĝ2,n2 are named non-parametric bootstrap samples.

4.1. Steps for constructing bootstrap estimates of parameters
The next algorithm is applied to compute the parametric and non-parametric bootstrap

estimates α̂∗
1,b, β̂∗

1,b, α̂∗
2,b, β̂∗

2,b and R̂∗
b for b = 1, . . . , B. Several bootstrap confidence

intervals will be obtained based on these bootstrap estimates of parameters.

Algorithm 1. Algorithm outline to compute bootstrap estimates of parameters
(1) Choose bootstrap samples with sizes n1 and n2 from the equivalent boot-

strap populations, i.e., X∗
1 , . . . , X∗

n1 ∼ G1(x; α̂1, β̂1) or Ĝ1,n1 and Y ∗
1 , . . . , Y ∗

n2 ∼
G2(y; α̂2, β̂2) or Ĝ2,n2 , respectively.

(2) Apply the method explained in Section 3 to estimate bootstrap MLEs α̂∗
1, β̂∗

1 , α̂∗
2

and β̂∗
2 depend on X∗

1 , . . . , X∗
n1 and Y ∗

1 , . . . , Y ∗
n2 and compute the MLEs according

to the following pattern

R̂∗ =
∫ 1

0
e

−α̂∗
2

(
− 1

α̂∗
1

ln(1−u)
) β̂∗

2
β̂∗

1
du. (4.1)

(3) Repeat steps 1 and 2, B times and save the MLEs of parameters into their equiv-
alent sets of bootstrap estimates: α̂∗

1,b, β̂∗
1,b, α̂∗

2,b, β̂∗
2,b and R̂∗

b for b = 1, . . . , B.
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4.2. Kinds of bootstrap confidence intervals
In the following, two different kinds of bootstrap confidence intervals for the parameters

of interest are proposed. For the sake of simplicity of display, we reduce our writing only to
R. The steps of building confidence intervals of the other of the four parameters of interest
α1, β1, α2, and β2 are similar to R. Suppose that R̂∗

b for b = 1, . . . , B be the bootstrap
estimates of R. Moreover, assume that R̂ be the MLE obtained from the original dataset,
and the confidence level is considered to be 100(1 − α)%.

Bootstrap-t confidence interval
The bootstrap-t confidence interval imitates the method of building standard-t confi-

dence intervals. Two parts of the confidence interval, i.e. t-like critical value, and the
standard error of R̂, are computed from the bootstrap estimates R̂∗

b for b = 1, . . . , B. The
bootstrap standard error is determined by

SE∗(R̂) =

√√√√ 1
B

B∑
b=1

(R̂∗
b − R̂∗

b)2,

where

R̂∗
b = 1

B

B∑
b=1

R̂∗
b .

To obtain the t-like critical value, stated by t̂∗
α, we first standardize R̂∗

b for b = 1, . . . , B
by applying

z∗
b (R) = R̂∗

b − R̂

SE∗(R̂)
.

The t-like critical value t̂∗
α based on the bootstrap estimate is determined as

#
{
z∗

b (R) ≤ t̂∗
α

}
B

= α.

Therefore, the bootstrap-t confidence interval can be described as
(
R̂ − t̂∗

1− α
2
SE∗(R̂), R̂ +

t̂∗
α
2
SE∗(R̂)

)
, where t̂∗

1− α
2

and t̂∗
α
2

are the the (α
2 )-th and (1 − α

2 )-th percentile values of
z∗

b (R), respectively.

Bootstrap percentile confidence interval.
We need to construct a confidence interval based on the bootstrap distribution. Suppose

that Ĥ∗
B(t) = Pr(R̂∗

B ≤ t) where Ĥ∗
B is bootstrap CDF of R̂∗

B. If the bootstrap distribution
achieved by Mont Carlo simulation then we have Ĥ∗

B(t) = #(R̂∗
b ≤t)

B . Efron and Tibshirani
(1993) established a 100(1 − α)% approximate bootstrap percentile confidence interval for
R as (R̂∗( α

2 ), R̂∗(1− α
2 )), where R̂∗( α

2 ) be the α
2 -th percentile of the distribution of R̂∗

B.

5. A simulation study
In this section, we accomplish the simulation studies on the performance of some con-

siderable estimators of R, established in preceding sections, based on small samples. Cal-
culation in this paper are performed using the open source statistical computer package R
(v.3.5.1) on Windows platform. We apply the following Inverse Transform Algorithm to
generate random samples according to model (1.1). It be known that for any continuous
CDF G(.) the random variable stated by X = G−1(U) has distribution G, where U is a
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uniform random variable defined on (0, 1). Note that, under (1.1) and F (x) = 1 − e−λx,
we have

G(x; α, β) = 1 − e
−α( 1−e−λx

e−λx )β

. (5.1)

Thus, the random number X represented by

X = G−1(U) = 1
λ

(
1 + (− 1

α
ln(1 − U))

1
β

)
. (5.2)

Let X ∼ g1(x; α1, β1) and Y ∼ g2(y; α2, β2), as determined in (3.1) and (3.2). We first
simulate 1000 random samples from g1(x; α1, β1) and g2(y; α2, β2), respectively. For a pair
of two samples from g1 and g2, we can accomplish the approaches prepared in Sections 3
and 4 to gain the MLE of R along with the asymptotic confidence intervals of R. Also,
some plots displaying the sampling distributions of the suggested MLE of R along with
serial plots of MSEs versus the number of simulations to study the stability of the simu-
lation outcomes are provided. Due to the parameter λ does not become visible in R, we
select a constant λ = 2 all over this simulation study. The sample size is one of the main
factors affecting the performance of the estimators. Like always, we also want to analyze
the influence of sample size on different suggested estimators of R. In 7, we have graphed
the values of MSE(R̂) versus R, for some different values of n1 and n2. Figure 7 shows
that the estimator ML has more error when R tends to 0.5. Furthermore, for n1 = n2
it is symmetric around the point R = 0.5 and departures from symmetry when n1 < n2
or n1 > n2. The MSE of estimator is increasing first, then decreasing and reaches its
maximum at point R ≃ n1

n1+n2
.

Figure 6. Plots of MSE of R̂ versus R.

Assume that n1 and n2 be the sample sizes that generated from g1 and g2, respec-
tively. We want to assess the performance of the suggested estimators of α1, β1, α2
and β2 with true values β1 < β2, β1 ≥ β2, α1 < α2 and α1 ≥ α2. To be more pre-
cise, we perform the simulation according to each of the following cases with correspond-
ing choices of (α1, α2, β1, β2, n1, n2) = (1, 4, 2, 5, 10, 10), (1, 4, 2, 5, 10, 30), (1, 4, 2, 5, 30, 10),
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(4, 1, 5, 2, 10, 10), (4, 1, 5, 2, 10, 30), (4, 1, 5, 2, 30, 10), (2, 2, 2, 2, 10, 10), (2, 2, 2, 2, 10, 30), (2,

2, 2, 2, 30, 10). From Figures 7 and 8, we can see that the simulated MSEs of R̂ under differ-
ent choices of (α1, α2, β1, β2, n1, n2) become stable when the number of simulations reaches
about 395. As could be expected, the MSEs showed themselves to be smaller for a bigger
sample size.

Figure 7. Plots of MSE of R̂ versus the number of simulations.

Figure 8. Plots of MSE of R̂ versus the number of simulations.

In Figures 9 and 10, we show the sampling distributions of MLE for R̂ based on simula-
tion using different values of population parameters and sample sizes. It can be observed
that for (α1, α2, β1, β2, n1, n2) = (1, 4, 2, 5, 10, 10), (1, 4, 2, 5, 10, 30), (1, 4, 2, 5, 30, 10), (4, 1,

5, 2, 10, 10), (4, 1, 5, 2, 10, 30), (4, 1, 5, 2, 30, 10) the sampling distribution of R̂ are skewed.
Also, for (α1, α2, β1, β2, n1, n2) = (2, 2, 2, 2, 10, 10), (2, 2, 2, 2, 10, 30), (2, 2, 2, 2, 30, 10) the
sampling distributions of R̂ are approximately symmetric.
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Figure 9. Sampling distribution of R̂.

Figure 10. Sampling distribution of R̂.

To obtain and make a comparison between the different bootstrap confidence inter-
vals, we select 1000 parametric and non-parametric bootstrap samples using the method
prepared in Section 4 from each of the simulations and find both parametric and non-
parametric bootstrap-t, bootstrap-q confidence intervals. In Table 1, for all combina-
tions of n1 = 10, 30, n2 = 10, 30 and R = 0.153, 0.385, 0.500, 0.615, 0.847, we report the
average length (AL) and the coverage proportions (CP) of asymptotic, parametric and
non-parametric bootstrap confidence intervals which include the true value of the corre-
sponding parameter. In this table, CP.A. and AL.A. stand for CP and AL of asymptotic
confidence intervals, respectively, P.CP.P and P.AL.P represent the CP and AL of para-
metric bootstrap percentile confidence intervals, respectively, P.CP.B.t and P.AL.B.t imply
the CP and AL of parametric bootstrap-t confidence intervals, respectively, N-P.CP.P and
N-P.AL.P represent the CP and AL of non-parametric bootstrap percentile confidence in-
tervals, respectively, N-P.CP.B.t and N-P.AL.B.t stand for CP and AL of non-parametric
bootstrap-t confidence intervals, respectively.
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Table 1. The values of CP and AL of the aforementioned asymptotic,
parametric and non-parametric confidence intervals for R.

R n1 n2 CP.A. AL.A. P.CP.P P.AL.P P.CP.B.t P.AL.B.t N-P.CP.P N-P.AL.P N-P.CP.B.t N-P.AL.B.t

0.153 10 10 0.998 0.294 0.997 0.299 0.942 0.209 0.997 0.284 0.938 0.277

0.153 30 10 0.831 0.344 1.000 0.386 0.875 0.267 0.990 0.376 0.873 0.220

0.153 10 30 0.991 0.299 0.986 0.288 0.960 0.271 0.999 0.285 0.967 0.184

0.153 30 30 0.956 0.241 1.000 0.176 0.955 0.154 0.995 0.172 0.950 0.156

0.385 10 10 0.996 0.331 1.000 0.323 0.962 0.290 0.997 0.323 0.967 0.243

0.385 30 10 0.899 0.292 0.988 0.293 0.912 0.243 0.980 0.308 0.910 0.241

0.385 10 30 0.955 0.357 0.995 0.373 0.962 0.264 0.992 0.378 0.967 0.222

0.385 30 30 0.970 0.272 0.988 0.264 0.912 0.241 0.990 0.265 0.933 0.206

0.500 10 10 0.899 0.368 1.000 0.429 0.888 0.451 0.990 0.401 0.990 0.483

0.500 30 10 0.998 0.363 1.000 0.464 0.938 0.496 0.997 0.462 0.967 0.499

0.500 10 30 0.899 0.362 0.988 0.375 0.900 0.415 0.990 0.389 0.899 0.470

0.500 30 30 0.999 0.393 1.000 0.399 0.938 0.412 0.994 0.376 0.933 0.451

0.615 10 10 0.995 0.369 0.988 0.243 0.960 0.378 0.983 0.270 0.967 0.381

0.615 30 10 0.994 0.324 1.000 0.276 0.952 0.392 0.990 0.342 0.967 0.386

0.615 10 30 0.995 0.331 1.000 0.244 0.950 0.343 0.994 0.348 0.967 0.348

0.615 30 30 0.998 0.346 0.988 0.219 0.965 0.370 0.980 0.259 0.967 0.379

0.847 10 10 0.998 0.286 0.100 0.252 0.938 0.269 0.999 0.241 0.933 0.257

0.847 30 10 0.991 0.277 0.978 0.223 0.968 0.225 0.980 0.221 0.967 0.267

0.847 10 30 0.899 0.239 1.000 0.232 0.962 0.246 0.999 0.259 0.958 0.272

0.847 30 30 0.994 0.219 0.995 0.179 0.955 0.166 0.990 0.178 0.957 0.250

From Table 1, by an empirical evidence, it is observed that the AL approximately
reduces by raising the sample size and the maximum of the AL takes place at the middle
point R = 0.5. Also, it appears that the CP of bootstrap percentile confidence intervals
is greater than everyone else. But in the viewpoint of AL for R < 0.5 and R > 0.5,
the bootstrap-t confidence intervals and the bootstrap percentile confidence intervals are
appropriate, respectively. It seems that, in this simulation study, there is no meaningful
difference between parametric and non-parametric confidence intervals from the point of
view length and coverage proportion of the intervals.

5.1. An illustrative example
In this section, we suggest a numerical example based on a real-life dataset to illustrate

the performance of the considered procedure. The datasets that have been used in this
article represent the waiting times (in minutes) before customer service in two different
banks. The datasets can be found in Table 11 and Table 12 of [4]. These data sets by way
of Lindley distribution assessed by [4]. We are attracted to estimating the stress-strength
parameter R = P (X < Y ) where X and Y denote the customer service time in bank I
and II, respectively. First, we test to see whether the Weibull-Exponential distribution is
appropriate to fit these data sets or not.



On the study of the stress-strength reliability 285

For modeling the data via the Weibull-Exponential family, we use the mpsweibullextg(...)
command in the MPS R Package [22]. One of the outputs of this command is the p-value
of Chi-square goodness-of-fit tests based on the maximum product spacing approach with
Moran’s log spacing statistic. It should be mentioned that this test is not a classical Chi-
square test. For more details about this test, one can see [9]. Also, the first output of
this command is the estimated parameters vector which is obtained with the maximum
product spacing approach. The performance of the maximum product spacing approach
is demonstrated in [22] for three sets of real data. For more details, see Page 17 of [22].

It would appear that W(1.1978,0.0738, 1−e−0.0103x) and W(1.1392,0.0624,1−e−0.0117y)
are totally good to fit data set I and data set II, respectively. For computing the p-value,
we applied the command mpsweibullextg(...) in MPS R Package [23]. In this package, the
significance level for the aforementioned goodness-of-fit test is reported. The corresponding
p-values of aforementioned goodness-of-fit tests for bank I and II are 0.8040 and 0.8787,
respectively.

Table 2. The values AL of asymptotic and various parametric and
non-parametric bootstrap confidence intervals of R based on real dataset.

α AL.A. P .AL.Perc P .AL.Boot.t Non- P .AL.Perc Non-P .AL.Boot.t

0.05 0.1691(0.5941,0.7632) 0.1380(0.5841,0.7221) 0.1871(0.5541,0.7412) 0.2229(0.5256,0.7485) 0.2900(0.5021,0.7921)

0.1 0.1506(0.5990,0.7496) 0.1262(0.5920,0.7182) 0.1808(0.5690,0.7498) 0.1902(0.5421,0.7323) 0.2575(0.5256,0.7831)

From Table 2, it appears that, there is a significant difference between bootstrap per-
centile, bootstrap-t, and asymptotic confidence intervals in terms of AL. The Al of the
bootstrap percentile confidence interval is less than others. Therefore, the use of the boot-
strap percentile confidence interval for R is recommended. Also, all confidence intervals
for R don’t contain the value 0.5 implying that there is a significant difference in the
waiting times (in minutes) before customer service in the aforementioned two banks.

6. Summary and conclusion
In this paper, the stress-strength reliability R associated with the two populations of

Weibull-F Models is investigated. First of all by using the properties of the populations
parameters and functional form of Weibull-F Models the stochastic orders between random
variables X and Y are assessed and the exact expression for R = P (Y > X) is obtained.
The asymptotic distribution of the MLE of R is determined based on exponential baseline
distribution functions. Furthermore, the parametric and non-parametric bootstrap-t and
bootstrap quantile confidence intervals for R are proposed. Their performances on some
sample sizes with respect to AL and CP are analyzed by using a simulation study. In
the view point of CP, the bootstrap percentile confidence is suitable among the other
confidence intervals in the simulation study. A numerical example based on real-life data
was taken to demonstrate the performance of the recommended approaches. In the real-
life data, we suggest the use of bootstrap percentile confidence interval for R which is also
confirmed the results of the simulation study. In the case that the baseline distribution
functions of the stress and strength random variables are different, the calculations related
to the computations of the estimators become longer and more complicated. On the other
hand, the likelihood function has more parameters, which makes solving this system of
equations more difficult than the case considered in the article. But in the case of different
baseline distribution functions, the solution of the problem is the same as the one described
in this article, with the difference that it has longer and more complicated calculations.
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Appendix
In this Appendix, the existence and uniqueness of the maximum likelihood estimator

of parameters have been considered.

From Equation 3.8, we have

1
β1

= −λ
n1∑
i=1

xi −
n1∑
i=1

ln
(
1 − e−λxi

)
+

n1
n1∑
i=1

Ai
β1 ln Ai

n1∑
i=1

Ai
β1

, (6.1)

where,
Ai = 1−e−λxi

e−λxi
.

We denote the right hand side of (6.1) by H1(β1;xxx) and show that H1(β1;xxx) is mono-
tone increasing function of β1 with a finite and positive limit as β1 → ∞. Since 1

β1
is

strictly decreasing with right limit +∞ at 0, it would then follow that the plots of 1
β1

and
H1(β1;xxx) would intersect exactly once, at the MLE of β.

Therefore, we have

∂H1 (β1; xxx)
∂β1

=

[
n1

n1∑
i=1

Ai
β1(ln (Ai))2

](
n1∑
i=1

Ai
β1

)
−
(

n1∑
i=1

Ai
β1 ln Ai

)2

(
n1∑
i=1

Ai
β1

)2 .

Setting ai = A
β1
2

i and bi = A
β1
2

i ln Ai for i = 1 · · · n, becomes

∂H1 (β1; xxx)
∂β1

=

[
n1∑
i=1

a2
i

](
n1∑
i=1

b2
i

)
−
(

n1∑
i=1

aibi

)2

(
n1∑
i=1

a2
i

)2 .

Therefore, by Cauchy-Schwarz inequality, we have ∂H1(β1;xxx)
∂β1

≥ 0. It should be noted that
there exists a finite upper limit for H1(β1, x), namely,

lim
β1→+∞

H1 (β1; xxx) = −λ
n1∑
i=1

xi −
n1∑
i=1

ln
(
1 − e−λxi

)
+ n1 ln

(
1 − e−λx(n)

e−λx(n)

)
.
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Based on what was said above, the existence of the MLE of the parameters α1, β1 are
shown.

Similarly, we have the same approach for the existence of the MLE of the parameters α2,
β2. For the uniqueness of the MLE of the parameters, due to the similarity of likelihood
Equation (3.8) with likelihood Equation (2.1) of [6], we have the same approach which is
not given here due to similarity.


