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Abstract
We develop new lower bounds for the A-numerical radius of semi-Hilbertian space oper-
ators, and applying these bounds we obtain upper bounds for the A-numerical radius of
the commutators of operators. The bounds obtained here improve on the existing ones.
Further, we provide characterizations for the equality of the existing A-numerical radius
inequalities of semi-Hilbertian space operators.
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1. Introduction
Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H with inner product 〈., .〉 and the corresponding norm ‖ · ‖. Let A ∈ B(H) be a positive
operator, henceforth we reserve the symbol A for positive operator on H. Clearly, A induces
a positive semidefinite sesquilinear form 〈., .〉A : H × H → C, defined by 〈x, y〉A = 〈Ax, y〉
for all x, y ∈ H. This sesquilinear form induces a seminorm ‖ · ‖A : H → R+, defined by
‖x‖A =

√
〈x, x〉A for all x ∈ H. Clearly, ‖ · ‖A is a norm if and only if A is injective. Let

R(A) denote the range of A and R(A) denote the norm closure of R(A). Let BA(H) denote
the set of all operators T ∈ B(H) for which there exists c > 0 such that ‖Tx‖A ≤ c‖x‖A

for all x ∈ R(A), and we define

‖T‖A = sup
x∈R(A)

x 6=0

‖Tx‖A

‖x‖A
= sup

x∈R(A)
‖x‖A=1

‖Tx‖A < +∞.

For T ∈ B(H), if there exists an operator S ∈ B(H) satisfying 〈Tx, y〉A = 〈x, Sy〉A for all
x, y ∈ H, then S is said to be an A-adjoint of T (see [1]) and in this case AS = T ∗A, where
T ∗ denotes the Hilbert-adjoint of T . Let BA(H) denote the collection of all operators in
B(H), which admit A-adjoint. For T ∈ BA(H), the operator equation AX = T ∗A has a
unique solution, denoted by T ] (or T ]A as in [7]), satisfying R(T ]) ⊆ R(A), where R(T ])
denotes the range of T ]. For T ∈ BA(H), the A-numerical range of T , denoted by WA(T ),
is defined as WA(T ) = {〈Tx, x〉A : x ∈ H, ‖x‖A = 1} and the A-numerical radius of T ,
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denoted by wA(T ), is defined as wA(T ) = sup{|〈Tx, x〉A| : x ∈ H, ‖x‖A = 1} (see [20]).
It is well-known that wA(·) and ‖ · ‖A are equivalent seminorms on BA(H) satisfying the
following inequality (see [2, Prop. 2.5])

1
2‖T‖A ≤ wA(T ) ≤ ‖T‖A. (1.1)

The inequalities in (1.1) are sharp (see [13]). In particular, wA(T ) = 1
2‖T‖A if AT 2 = 0

and wA(T ) = ‖T‖A if AT = T ∗A. An improvement of (1.1) is given in [14, 15, 21], which
is

1
4

∥∥∥T ]T + TT ]
∥∥∥

A
≤ w2

A(T ) ≤ 1
2

∥∥∥T ]T + TT ]
∥∥∥

A
. (1.2)

More refinements in this direction are also given in [3–7,10,11,17–19].
In this paper, we obtain new refinements of the first inequalities in (1.1) and (1.2). By

applying these new refinements, we obtain upper bounds for the A-numerical radius of
the commutators of operators. Also, we obtain characterizations for the equality of first
inequalities in (1.1) and (1.2). The results obtained here generalize the existing results in
[8, 9].

2. Background
It is well-known that BA(H) is, in general, not a sub-algebra of B(H). Note that ‖T‖A = 0
if and only if ATA = 0. By Douglas theorem [12], it follows that

BA(H) = {T ∈ B(H) : R(T ∗A) ⊆ R(A)}.

Note that T ] = A†T ∗A, where A† is the Moore-Penrose inverse of A. We note that
BA(H)

(
⊆ BA(H)

)
is a sub-algebra of B(H). For T ∈ BA(H), we have, AT ] = T ∗A and

N(T ]) = N(T ∗A), where N(T ) denotes the kernel of T . If T ∈ BA(H), then T ] ∈ BA(H)
and (T ])] = P

R(A)TP
R(A), where P

R(A) is the orthogonal projection onto R(A). An
operator T ∈ BA(H) is said to be A-self-adjoint if AT is self-adjoint, i.e., AT = T ∗A. For
further study on the A-adjoint operator, we refer to [1]. Note that, for T, S ∈ BA(H),
(TS)] = S]T ], ‖TS‖A ≤ ‖T‖A‖S‖A and ‖Tx‖A ≤ ‖T‖A‖x‖A for all x ∈ H. Clearly,
for T ∈ BA(H), ‖TT ]‖A = ‖T ]T‖A = ‖T ]‖2

A = ‖T‖2
A. It was shown in [21] that for

T ∈ BA(H),

wA(T ) = sup
θ∈R

∥∥∥∥∥eiθT + (eiθT )]

2

∥∥∥∥∥
A

.

For T ∈ BA(H), we have ‖T‖A = sup{‖Tx‖A : x ∈ H, ‖x‖A = 1} = sup{|〈Tx, y〉A| :
x, y ∈ H, ‖x‖A = ‖y‖A = 1}.

3. Lower bounds for A-numerical radius
We begin with the observation that any T ∈ BA(H) can be expressed as T = <A(T ) +
i=A(T ), where <A(T ) = T +T ]

2 and =A(T ) = T −T ]

2i . It is easy to verify that <A(T ) and
=A(T ) both are A-self-adjoint, i.e., A<A(T ) = (<A(T ))∗A and A=A(T ) = (=A(T ))∗A.
Therefore, wA(<A(T )) = ‖<A(T )‖A and wA(=A(T )) = ‖=A(T )‖A. Now, we are in a
position to prove our first improvement.

Theorem 3.1. If T ∈ BA(H), then

wA(T ) ≥ ‖T‖A

2 + |‖<A(T )‖A − ‖=A(T )‖A|
2 .
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Proof. Let x ∈ H with ‖x‖A = 1. Then from T = <A(T ) + i=A(T ), we have

|〈Tx, x〉A|2 = |〈<A(T )x, x〉A|2 + |〈=A(T )x, x〉A|2.

This implies that
|〈Tx, x〉A| ≥ |〈<A(T )x, x〉A| and |〈Tx, x〉A| ≥ |〈=A(T )x, x〉A|.

Considering supremum over ‖x‖A = 1, we get
wA(T ) ≥ ‖<A(T )‖A and wA(T ) ≥ ‖=A(T )‖A.

Hence,
wA(T ) ≥ max{‖<A(T )‖A, ‖=A(T )‖A}

= ‖<A(T )‖A + ‖=A(T )‖A

2 + |‖<A(T )‖A − ‖=A(T )‖A|
2

≥ ‖<A(T ) + i=A(T)‖A
2 + |‖<A(T )‖A − ‖=A(T )‖A|

2

= ‖T‖A

2 + |‖<A(T )‖A − ‖=A(T )‖A|
2 .

Thus, we complete the proof. �

Remark 3.2. Clearly, the inequality in Theorem 3.1 is sharper than the first inequality
in (1.1), i.e., wA(T ) ≥ ‖T ‖A

2 .

In the next theorem we provide a characterization for the equality of lower bound of
A-numerical radius mentioned in (1.1).

Theorem 3.3. Let T ∈ BA(H).
(i) If wA(T ) = ‖T ‖A

2 , then

‖<A(T )‖A = ‖=A(T )‖A = ‖T‖A

2 .

However, the converse is not necessarily true.
(ii) wA(T ) = ‖T ‖A

2 if and only if ‖<A(eiθT )‖A = ‖=A(eiθT )‖A = ‖T ‖A

2 for all θ ∈ R.

Proof. (i) It follows from Theorem 3.1 that if wA(T ) = ‖T ‖A

2 , then
‖<A(T )‖A = ‖=A(T )‖A.

Also, we get

‖<A(T )‖A ≤ wA(T ) = ‖T‖A

2 = ‖<A(T ) + i=A(T)‖A
2 ≤ ‖<A(T )‖A + ‖=A(T )‖A

2
= ‖<A(T )‖A.

This implies that ‖<A(T )‖A = ‖T ‖A

2 , and so ‖=A(T )‖A = ‖T ‖A

2 .

(ii) The “if” part follows from wA(T ) = supθ∈R ‖<A(eiθT )‖A, and so we only need to
prove the “only if” part. Let wA(T ) = ‖T ‖A

2 . Clearly eiθT ∈ BA(H) for all θ ∈ R. Now,
wA(eiθT ) = wA(T ) and ‖eiθT‖A = ‖T‖A for all θ ∈ R. Therefore, it follows from (i) that
‖<A(eiθT )‖A = ‖=A(eiθT )‖A = ‖T ‖A

2 for all θ ∈ R. �

Our next improvement of the first inequality in (1.2) reads as follows.

Theorem 3.4. If T ∈ BA(H), then

wA(T ) ≥
√

1
4 ‖T ]T + TT ]‖A + 1

2
∣∣ ‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣.
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Proof. We have wA(T ) ≥ ‖<A(T )‖A and wA(T ) ≥ ‖=A(T )‖A and so

w2
A(T ) ≥ max

{
‖<A(T )‖2

A, ‖=A(T )‖2
A

}
= ‖<A(T )‖2

A + ‖=A(T )‖2
A

2 +
∣∣‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣
2

≥ ‖(<A(T ))2‖A + ‖(=A(T ))2‖A

2 +
∣∣‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣
2

≥ ‖(<A(T ))2 + (=A(T ))2‖A

2 +
∣∣‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣
2

= 1
4

∥∥∥T ]T + TT ]
∥∥∥

A
+ 1

2

∣∣∣ ‖<A(T )‖2
A − ‖=A(T )‖2

A

∣∣∣.
This completes the proof.

�

Remark 3.5. Clearly, the inequality in Theorem 3.4 is sharper than the first inequality
in (1.2), i.e., w2

A(T ) ≥ 1
4

∥∥∥T ]T + TT ]
∥∥∥

A
.

In the next theorem we prove an equivalent condition for wA(T ) =
√

1
4‖T ]T + TT ]‖A.

Theorem 3.6. Let T ∈ BA(H). Then, wA(T ) =
√

1
4‖T ]T + TT ]‖A if and only if

‖<A(eiθT )‖2
A = ‖=(eiθT )‖2

A = 1
4‖T ]T + TT ]‖A for all θ ∈ R.

Proof. The “if” part is immediate from w2
A(T ) = supθ∈R ‖<A(eiθT )‖2

A, so we only prove
the “only if” part. Let w2

A(T ) = 1
4‖T ]T + TT ]‖A. Now,

(
<A(eiθT )

)2
+

(
=A(eiθT )

)2
=

T ]T +T T ]

2 for all θ ∈ R. Therefore, we have
1
4‖T ]T + TT ]‖A = 1

2

∥∥∥∥(
<A(eiθT )

)2
+

(
=A(eiθT )

)2
∥∥∥∥

A

≤ 1
2

(∥∥∥<A(eiθT )
∥∥∥2

A
+

∥∥∥=A(eiθT )
∥∥∥2

A

)
≤ w2

A(T ) = 1
4‖T ]T + TT ]‖A.

Hence,
∥∥∥<A(eiθT )

∥∥∥2

A
+

∥∥∥=A(eiθT )
∥∥∥2

A
= 1

2‖T ]T + TT ]‖A. Now, supθ∈R

∥∥∥<A(eiθT )
∥∥∥2

A
=

1
4‖T ]T+TT ]‖A = supθ∈R

∥∥∥=A(eiθT )
∥∥∥2

A
. Therefore, ‖<A(eiθT )‖2

A = ‖=A(eiθT )‖2
A = 1

4‖T ]T+
TT ]‖A for all θ ∈ R. �

Again, we obtain another characterizations for the equalities wA(T ) = 1
2‖T‖A and

wA(T ) =
√

1
4‖T ]T + TT ]‖A, respectively. First we need to prove the following lemma.

Lemma 3.7. Let T ∈ BA(H). Then, ‖<A(eiθT )‖A = k (i.e., a constant) for all θ ∈ R if
and only if WA(T ) is a circular disk with center at the origin and radius k.

Proof. The “if” part is trivial, we only prove the “only if” part. Let
∥∥∥<A(eiθT )

∥∥∥
A

= k for
all θ ∈ R. Then, sup‖x‖A=1 |〈<A(eiθT )x, x〉A| = k for all θ ∈ R, i.e., sup‖x‖A=1 |Re(eiθ〈Tx, x〉A)| =
k for all θ ∈ R. Thus, for each θ ∈ R, there exists a sequence {xθ

n} ⊆ H with ‖xθ
n‖A = 1

such that |Re(eiθ〈Txθ
n, xθ

n〉A)| → k. This implies that the boundary of WA(T ) must be a
circle with center at the origin and radius k. Since WA(T ) is a convex subset of C (see in
[2, Th. 2.1]), so WA(T ) is a circular disk with center at the origin and radius k.

�
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Theorem 3.8. Let T ∈ BA(H). Then, the following results hold.
(i) wA(T ) = 1

2‖T‖A if and only if WA(T ) is a circular disk with center at the origin and
radius 1

2‖T‖A.
(ii) wA(T ) =

√
1
4‖T ]T + TT ]‖A if and only if WA(T ) is a circular disk with center at the

origin and radius
√

1
4‖T ]T + TT ]‖A.

Proof. The proof of (i) and (ii) follow from Theorem 3.3 (ii) and Theorem 3.6, respectively,
by using Lemma 3.7. �

Another improvement of the first inequality in (1.1) reads as follows:

Theorem 3.9. If T ∈ BA(H), then

wA(T ) ≥ ‖T‖A

2 + | ‖<A(T ) + =A(T )‖A − ‖<A(T ) − =A(T )‖A |
2
√

2
.

Proof. Let x ∈ H with ‖x‖A = 1. Then, we have

| 〈Tx, x〉A | =
√

|〈<A(T )x, x〉A|2 + |〈=A(T )x, x〉A|2

≥ 1√
2

(| 〈<A(T )x, x〉A | + | 〈=A(T )x, x〉 |)

≥ 1√
2

| 〈(<A(T ) ± =A(T ))x, x〉A | .

Taking supremum over ‖x‖A = 1, we get

wA(T ) ≥ 1√
2

‖<A(T ) ± =A(T )‖A.

Therefore, we have

wA(T ) ≥ 1√
2

max{‖<A(T ) + =A(T )‖A, ‖<A(T ) − =A(T )‖A}

= 1√
2

{‖<A(T ) + =A(T )‖A + ‖<A(T ) − =A(T )‖A

2

+ | ‖<A(T ) + =A(T )‖A − ‖<A(T ) − =A(T )‖A |
2

}
≥ 1√

2

{‖(<A(T ) + =A(T )) − i(<A(T) − =A(T))‖A
2

+ | ‖<A(T ) + =A(T )‖A − ‖<A(T ) − =A(T )‖A |
2

}
= 1√

2

{‖(1 − i)T‖A
2 + | ‖<A(T ) + =A(T )‖A − ‖<A(T ) − =A(T )‖A |

2

}
= ‖T‖A

2 + | ‖<A(T ) + =A(T )‖A − ‖<A(T ) − =A(T )‖A |
2
√

2
,

as desired. �

Remark 3.10. (i) Clearly, the inequality in Theorem 3.9 is sharper than the first inequal-
ity in (1.1), i.e., wA(T ) ≥ ‖T ‖A

2 .
(ii) The inequalities obtained in Theorem 3.1 and Theorem 3.9 are not comparable, in gen-

eral. As for example, we consider A =
(

1 0
0 1

)
and T =

(
1 0
0 0

)
. Then, Theorem 3.1 gives

wA(T ) ≥ 1, whereas Theorem 3.9 gives wA(T ) ≥ 1
2 . Again, if we consider A =

(
1 0
0 1

)
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and T =
(

1 + i 0
0 0

)
, then Theorem 3.1 gives wA(T ) ≥ 1√

2 , whereas Theorem 3.9 gives

wA(T ) ≥ 2√
2 .

Another refinement of the first inequality in (1.2) reads as follows:
Theorem 3.11. If T ∈ BA(H), then

wA(T ) ≥

√
‖T ]T + TT ]‖A

4 + | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
4 .

Proof. Following the proof of Theorem 3.9, we have

w2
A(T ) ≥ 1

2 max{‖<A(T ) + =A(T )‖2
A, ‖<A(T ) − =A(T )‖2

A}

= 1
2

{‖<A(T ) + =A(T )‖2
A + ‖<A(T ) − =A(T )‖2

A

2

+ | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
2

}
≥ 1

2
{‖(<A(T ) + =A(T ))2 + (<A(T ) − =A(T ))2‖A

2

+ | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
2

}
= ‖T ]T + TT ]‖A

4 + | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
4 .

This completes the proof. �

Remark 3.12. (i) Clearly, the inequality in Theorem 3.11 is sharper than the first in-
equality in (1.2), i.e., w2

A(T ) ≥ 1
4

∥∥∥T ]T + TT ]
∥∥∥

A
.

(ii) Considering the same examples as in Remark 3.10 (ii), we conclude that the inequalities
obtained in Theorem 3.4 and Theorem 3.11 are not comparable, in general.

4. Applications
In this section we obtain new inequalities for the A-numerical radius of the generalized
commutators of operators by applying Theorems 3.4 and 3.11. First we prove the following
lemma.
Lemma 4.1. If T, X, Y ∈ BA(H), then

wA(TX ± Y T ) ≤ max {‖X‖A, ‖Y ‖A}
√

2‖T ]T + TT ]‖A.

Proof. Let x ∈ H with ‖x‖A = 1 and max{‖X‖A, ‖Y ‖A} ≤ 1. Then by Cauchy-Schwarz
inequality, we get

|〈(TX ± Y T )x, x〉A| ≤ |〈Xx, T ]x〉A| + |〈Tx, Y ]x〉A|
≤ ‖T ]x‖A + ‖Tx‖A (since ‖Y ‖A = ‖Y ]‖A ≤ 1)

≤
√

2
(
‖T ]x‖2

A + ‖Tx‖2
A

) 1
2

=
√

2〈(T ]T + TT ])x, x〉
1
2
A

≤
√

2‖T ]T + TT ]‖
1
2
A.

Therefore, taking supremum over ‖x‖A = 1, we get

wA(TX ± Y T ) ≤
√

2‖T ]T + TT ]‖A.
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If X, Y ∈ BA(H) are arbitrary with max{‖X‖A, ‖Y ‖A} 6= 0, then it follows from the above
inequality that

wA(TX ± Y T ) ≤ max {‖X‖A, ‖Y ‖A}
√

2‖T ]T + TT ]‖A.

Also, if max{‖X‖A, ‖Y ‖A} = 0, then the above inequality holds trivially. This completes
the proof. �

Theorem 4.2. If T, X, Y ∈ BA(H), then

(i) wA(TX ± Y T ) ≤ 2
√

2 max {‖X‖A, ‖Y ‖A}

√
w2

A(T ) −
∣∣ ‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣
2 .

and
(ii) wA(TX ± Y T )

≤ 2
√

2 max {‖X‖A, ‖Y ‖A}

√
w2

A(T ) − | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
4 .

Proof. By applying the inequalities in Theorem 3.4 and Theorem 3.11 in Lemma 4.1, we
have (i) and (ii), respectively. �

It should be mentioned here that the inequalities (i) and (ii) in Theorem 4.2 are not
comparable, in general. Considering X = Y = S in Theorem 4.2, we get the following
corollary.

Corollary 4.3. If T, S ∈ BA(H), then

(i) wA(TS ± ST ) ≤ 2
√

2‖S‖A

√
w2

A(T ) −
∣∣ ‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣
2 .

and
(ii) wA(TS ± ST )

≤ 2
√

2‖S‖A

√
w2

A(T ) − | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
4 .

Now, interchanging T and S in Corollary 4.3 (i), we get

wA(TS ± ST ) ≤ 2
√

2 min{α1, α2}, (4.1)
where

α1 = ‖S‖A

√
w2

A(T ) −
∣∣ ‖<A(T )‖2

A − ‖=A(T )‖2
A

∣∣
2 ,

α2 = ‖T‖A

√
w2

A(S) −
∣∣ ‖<A(S)‖2

A − ‖=A(S)‖2
A

∣∣
2 .

Note that the inequality (4.1) is also obtained in [16, Theorem 2.10]. Again, interchang-
ing T and S in Corollary 4.3 (ii), we get

wA(TS ± ST ) ≤ 2
√

2 min{β1, β2}, (4.2)
where

β1 = ‖S‖A

√
w2

A(T ) − | ‖<A(T ) + =A(T )‖2
A − ‖<A(T ) − =A(T )‖2

A |
4 ,

β2 = ‖T‖A

√
w2

A(S) − | ‖<A(S) + =A(S)‖2
A − ‖<A(S) − =A(S)‖2

A |
4 .
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Remark 4.4. In [21, Th. 4.2], Zamani proved that if T, S ∈ BA(H), then

wA(TS ± ST ) ≤ 2
√

2 min{‖T‖AwA(S), ‖S‖AwA(T )}.

Clearly, both the inequalities in (4.1) and (4.2) are stronger than the inequality in [21,
Theorem 4.2].
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