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COMPARISON OF SOME DYNAMICAL SYSTEMS ON THE

QUOTIENT SPACE OF THE SIERPINSKI TETRAHEDRON
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Department of Mathematics, Eskişehir Technical University, Eskişehir, TÜRKİYE

Abstract. In this paper, it is aimed to construct two different dynamical
systems on the Sierpinski tetrahedron. To this end, we consider the dynamical

systems on a quotient space of {0, 1, 2, 3}N by using the code representations
of the points on the Sierpinski tetrahedron. Finally, we compare the periodic

points to investigate topological conjugacy of these dynamical systems and we

conclude that they are not topologically equivalent.

1. Introduction

In the literature, there are many works to analyze the structures on the frac-
tals [1–17]. Defining different dynamical systems on the fractals is one of these
studies [3, 4, 8, 17]. With the method given in [4], dynamical systems are naturally
constructed on the self-similar sets using their iterated function systems. Moreover,
there are different ways to define the dynamical systems on these sets considering
their structures. With the help of the folding, expanding, translation and rotation
mappings, many dynamical systems can also be obtained on the fractals as given
in [17]. On the other hand, expressing the dynamical systems using the code repre-
sentations of the points can provide many advantages. The utility of this situation
can be seen while showing whether these systems are chaotic or not [3,17]. For this
purpose, we also need to use the intrinsic metrics which are defined by means of
the code representations on the related fractals. For instance, the intrinsic metric
on the Sierpinski tetrahedron (ST ) (see Theorem 1) is required to prove that the
dynamical system, defined on the code set of ST , is chaotic [3], and it is also used
to show some geometrical properties such as number of the geodesics in [9].
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In this paper, we first focus on the quotient space of the Sierpinski tetrahe-
dron {0, 1, 2, 3}N/∼. On this space, we define two dynamical systems {ST ;G} and
{ST ;T} in Proposition 3 and Proposition 5 respectively. Then we compare their
fixed points and deduce that they are not topologically equivalent in Remark 2. On
the other hand, in Proposition 4 and Remark 1, we show that {ST ;G} is topolog-
ically equivalent to {ST ;F} which is given in [3] (see Proposition 1). Hence, we
also conclude that {ST ;G} is chaotic in the sense of Devaney by the help of the
topological conjugacy H.

We now recall some basic notions in the following section:

2. Preliminaries

As a fractal, the Sierpinski tetrahedron with vertices are P0 = (0, 0, 0), P1 =

(1, 0, 0), P2 = (12 ,
√
3
2 , 0) and P3 = (12 ,

√
3
6 ,

√
6
3 ) is the attractor of the iterated

function system (IFS) {R3; f0, f1, f2, f3} where
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Let STi = fi(ST ) for i = 0, 1, 2, 3. It is obvious that STi ∩ STj ̸= ∅ for i ̸= j

where i, j = 0, 1, 2, 3 and
3⋃

i=0

STi = ST. Suppose that σ is a word of length k − 1

on the set {0, 1, 2, 3} such as σ = a1a2a3 . . . ak−1 where ai ∈ {0, 1, 2, 3}. Similarly,
we get STσ = fak−1

◦ fak−2
◦ · · · ◦ fa1 ◦ fa0(ST ). In the Figure 1, one can see that

the sub-tetrahedron ST313 of ST for σ = 313. Since STa1
, STa1a2

, STa1a2a3
, . . . is a

sequence of the nested sets such that

STa1
⊃ STa1a2

⊃ STa1a2a3
⊃ . . . ⊃ STa1a2...an

⊃ . . . ,

∞⋂
k=1

STσ indicates a singleton, A, from the Cantor intersection theorem. The code

representations of A is the sequence a1a2a3 . . . where ai ∈ {0, 1, 2, 3}.
On the other hand, the intersection of the sequences STσ, STσα, STσαβ , STσαββ , . . .

and STσ, STσβ , STσβα, STσβαα, . . . satisfying

STσ ⊃ STσα ⊃ STσαβ ⊃ STσαββ ⊃ . . .
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Figure 1. The Sierpinski tetrahedron and a small piece STσ of ST

and

STσ ⊃ STσβ ⊃ STσβα ⊃ STσβαα ⊃ . . .

represents the same point on ST and the code representations of these points are
σαβββ . . . and σβααα . . . . Therefore, ST can be defined as the quotient space
{0, 1, 2, 3}N/∼ where

c′ ∼ c′′ ⇔ c′ = c′′ or there are ci, α, β ∈ {0, 1, 2, 3} such that
c′ = c1c2 . . . cnαβββ . . . , c′′ = c1c2 . . . cnβααα . . . for an integer n.
The dynamical system, defined in [3] on this quotient space, is given with the

following proposition:

Proposition 1. Let the code representations of points X and Y of the Sierpinski
tetrahedron be x1x2x3 . . . and y1y2y3 . . . respectively. The function F : ST → ST ,
F (X) = Y such that

yi ≡ xi+1 + x1 (mod4) (1)

where xi, yi ∈ {0, 1, 2, 3} and i = 1, 2, 3, . . . is a dynamical system on the code sets
of the Sierpinski tetrahedon.

We also give two chaotic dynamical systems on the quotient space of the Sierpin-
ski tetrahedron and we investigate these dynamical systems in terms of topological
conjugacy.

Definition 1. Let {X1; f1} and {X2; f2} be two dynamical systems. If there is a
homeomorphism θ : X1 → X2 such that f2 = θ ◦ f1 ◦ θ−1 (or that means ∀x ∈



232 N. ASLAN, M. SALTAN AND B. DEMİR

X1, θ(f1(x)) = f2(θ(x))), these dynamical systems are equivalent or topologically
conjugate. θ is called a topological conjugacy (see [4]).

Proposition 2. If the dynamical systems {X1; f1} and {X2; f2} have the different
number of n−periodic points for at least n ∈ N, then they are not topologically
conjugate (see [10]).

Definition 2. A dynamical system {X; f} is chaotic in the sense of Devaney if it
is sensitivite dependence on the initial condition, topologically transitive and it has
density of periodic points (see [6]).

We need a useful metric in order to investigate the dynamical systems are chaotic
or not. The intrinsic metric on the quotient space of the Sierpinski tetrahedron is
formulated with the following theorem:

Theorem 1. If a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . are two repre-
sentations of the points A and B respectively on the Sierpinski tetrahedron such
that ai = bi for i = 1, 2, . . . , k − 1 and ak ̸= bk, then the formula

d(A,B) = min

{ ∞∑
i=k+1

αi + βi

2i
,
1

2k
+

∞∑
i=k+1

γi + δi
2i

,
1

2k
+

∞∑
i=k+1

ϕi + φi

2i

}
(2)

such that

αi =

{
0, ai = bk
1, ai ̸= bk

, βi =

{
0, bi = ak
1, bi ̸= ak

,

γi =

{
0, ai = ck
1, ai ̸= ck

, δi =

{
0, bi = ck
1, bi ̸= ck

,

ϕi =

{
0, ai = dk
1, ai ̸= dk

, φi =

{
0, bi = dk
1, bi ̸= dk

where ak ̸= ck ̸= bk and ak ̸= dk ̸= bk and ck ̸= dk (ai, bi, ck, dk ∈ {0, 1, 2, 3}, i =
1, 2, 3, . . .) gives the distance d(A,B) between the points A and B.

This metric gives the distance of the shortest path between any points on ST .

3. A Chaotic Dynamical System on the Sierpinski Tetrahedron
{ST ;G}

In this section, we construct a dynamical system which is different from (1) on
ST and we investigate some periodic points of this dynamical system.

Proposition 3. Let the code representations of X,Y ∈ ST be x1x2x3 . . . and
y1y2y3 . . . respectively where i = 1, 2, 3, . . . and xi, yi ∈ {0, 1, 2, 3}. Suppose that the
function G : ST → ST is defined according to four different situations of x1 :
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G(0x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 1
1, xi+1 = 2
2, xi+1 = 3
3, xi+1 = 0

(i ≥ 1)

G(1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
2, xi+1 = 2
3, xi+1 = 3

(i ≥ 1)

G(2x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 3
1, xi+1 = 0
2, xi+1 = 1
3, xi+1 = 2

(i ≥ 1)

G(3x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 2
1, xi+1 = 3
2, xi+1 = 0
3, xi+1 = 1

(i ≥ 1).

In this case, {ST ;G} states a dynamical system.

Proof. We know from the hypothesis, there are four different rules in regard to
the cases of x1. If X has a unique code representation, then it is obvious that
G(X) also has a unique code representation. For α, β ∈ {0, 1, 2, 3} and α ̸= β, let
x1x2x3 . . . xnαβββ . . . and x1x2x3 . . . xnβααα . . . be two different code representa-
tions of X then we have

G(x1x2x3 . . . xnαβββ . . .) = y1y2y3 . . . ynyn+1yn+2 . . .

G(x1x2x3 . . . xnβααα . . .) = z1z2z3 . . . znzn+1zn+2 . . .

where yi, zi ∈ {0, 1, 2, 3}. Therefore, we must show that y1y2y3 . . . ynyn+1yn+2 . . .
and z1z2z3 . . . znzn+1zn+2 . . . are different code representations of G(X).
If x1 = 0, then we get

yi ≡ zi ≡ xi+1 + 3 (mod4)

for i = 1, 2, 3, . . . , n− 1 because of the definition of G. As well, for i = 1, 2, 3, . . .

yn ≡ α+ 3 (mod4),

yn+i ≡ β + 3 (mod4),

zn ≡ β + 3 (mod4),

zn+i ≡ α+ 3 (mod4)

are obtained. Let us define si ≡ xi+1 + 3 (mod4) and α + 3 ≡ γ (mod4), β + 3 ≡
δ (mod4) for i = 1, 2, 3, . . . , n− 1. Thus, we get γ ̸= δ

y1y2y3 . . . ynyn+1yn+2 . . . = s1s2s3 . . . sn−1γδδδ . . .
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and

z1z2z3 . . . znzn+1zn+2 . . . = s1s2s3 . . . sn−1δγγγ . . . .

For the case x1 = 1, we obtain yi = zi = xi+1 for i = 1, 2, 3, . . . , n − 1. What’s
more, for i = 1, 2, 3, . . .

yn = α,
yn+i = β,
zn = β,
zn+i = α

are computed. So, we obtain the following results

y1y2y3 . . . ynyn+1yn+2 . . . = x2x3x4 . . . xn−1αβββ . . .

and

z1z2z3 . . . znzn+1zn+2 . . . = x2x3x4 . . . xn−1βααα . . . .

If x1 = 2, then

yi ≡ zi ≡ xi+1 + 1 (mod4)

where i = 1, 2, 3, . . . , n− 1. Moreover, for i = 1, 2, 3, . . ., we have

yn ≡ α+ 1 (mod4),

yn+i ≡ β + 1 (mod4),

zn ≡ β + 1 (mod4),

zn+i ≡ α+ 1 (mod4).

Hence, we observe that

y1y2y3 . . . ynyn+1yn+2 . . . = s1s2s3 . . . sn−1γδδδ . . .

and

z1z2z3 . . . znzn+1zn+2 . . . = s1s2s3 . . . sn−1δγγγ . . .

for i = 1, 2, 3, . . . , n − 1 where si ≡ xi+1 + 1 (mod4) and α + 1 ≡ γ (mod4),
β + 1 ≡ δ (mod4).

If x1 = 3, then for i = 1, 2, 3, . . . , n− 1, we get

yi ≡ zi ≡ xi+1 + 2 (mod4).

In addition, for i = 1, 2, 3, . . .,

yn ≡ α+ 2 (mod4),

yn+i ≡ β + 2 (mod4),

zn ≡ β + 2 (mod4),

zn+i ≡ α+ 2 (mod4)

are satisfied. Here, for i = 1, 2, 3, . . . , n − 1, si ≡ xi+1 + 2 (mod4) and α + 2 ≡
γ (mod4) and β + 2 ≡ δ (mod4). Since, γ ̸= δ

y1y2y3 . . . ynyn+1yn+2 . . . = s1s2s3 . . . sn−1γδδδ . . .
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and

z1z2z3 . . . znzn+1zn+2 . . . = s1s2s3 . . . sn−1δγγγ . . .

are the different code representations of the point G(X). This shows that G is
well-defined on the quotient space of ST. Thus, the proof is completed. □

Proposition 4. Suppose that the code representations of the points X, X ′ ∈ ST
are x1x2x3 . . . and x′

1x
′
2x

′
3 . . . respectively where xi, x′

i ∈ {0, 1, 2, 3} for all i ∈ N.
There is a function H : ST → ST such that

H(X) = X ′, x′
i =


0, xi = 3
1, xi = 0
2, xi = 1
3, xi = 2

(3)

which satisfies H(F (X)) = G(H(X)) is a homoemorphism, where F is defined in
Proposition 1.

Proof. It is obvious that H is surjective function and d(H(X), H(Y )) = d(X,Y )
for all X,Y ∈ ST . So, we conclude that H is a homeomorphism. One can obtain
that H(F (X)) = G(H(X)) for all X ∈ ST with easy computations. □

Remark 1. Since the function H : ST → ST defined in (3) is a homeomorphism
for ∀X ∈ ST , the dynamical systems {ST ;F} and {ST ;G} are topologically con-
jugate. Therefore, {ST ;G} is also chaotic since {ST ;F} is chaotic and {ST, d} is
compact.

According to Remark 1, the dynamical systems {ST ;F} and {ST ;G} are topo-
logically conjugate. In consequence, the number of periodic points of these systems
are equal.

While the periodic points of F are known, the periodic points of G can be found
with the help of the homeomorphism H in (3). We have the fixed points and
2−periodic points of F from [3]. Because of the fixed points of F , which are

•0 = 000 . . . , •1032 = 10321032 . . . , •20 = 202020 . . . , •3012 = 30123012 . . .

the fixed points of G are obtained as follows

•H(0) = 1, •H(1032) = 2103, •H(20) = 31, •H(3012) = 0123.

Similarly, the 2− periodic points of G are

•H(13023120) = 20130231, •H(0220) = 1331, •H(01302312) = 12013023

•H(03102132) = 10213203, •H(12) = 23, •H(11223300) = 22330011

•H(2200) = 3311, •H(21100332) = 32211003, •H(23300112) = 30011223

•H(31021320) = 02132031, •H(32) = 03, •H(33221100) = 00332211.
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4. A Dynamical System on the Sierpinski Tetrahedron {ST ;T}

We now define a new dynamical system which is not topologically conjugate with
{ST ;G} and automatically with {ST ;F}.

Proposition 5. The code representations of X,Y ∈ ST are x1x2x3 . . . and y1y2y3 . . .
respectively. The function T : ST → ST are defined for i = 1, 2, 3, . . . and
xi, yi ∈ {0, 1, 2, 3} as follows

T (0x2x3 . . .) = x2x3x4 . . .

T (1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 3
1, xi+1 = 0
2, xi+1 = 2
3, xi+1 = 1

(i ≥ 1).

If x1 = 2, there are four situations:
Case 1:

T (222 . . . 20xk+1xk+2xk+3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 2
1, xi+1 = 3
2, xi+1 = 0
3, xi+1 = 1

(i ≥ 1)

Case 2:

T (222 . . . 21xk+1xk+2xk+3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 2
1, xi+1 = 3
2, xi+1 = 1
3, xi+1 = 0

(i ≥ 1)

Case 3:

T (22 . . . 23xs . . . 0xk+1xk+2xk+3 . . .) = y1y2y3 . . . ,

where xs ∈ {2, 3} for s < k

yi =


0, xi+1 = 2
1, xi+1 = 0
2, xi+1 = 3
3, xi+1 = 1

(i ≥ 1)

Case 4:

T (22 . . . 23xs . . . 1xk+1xk+2xk+3 . . .) = y1y2y3 . . . ,

where xs ∈ {2, 3} for s < k

yi =


0, xi+1 = 2
1, xi+1 = 1
2, xi+1 = 3
3, xi+1 = 0

(i ≥ 1).
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(Note that, due to above rules T (2) = 0, T (23) = 2 and T (232) = 20 are obtained.)
If x1 = 3, then

T (3x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 1
1, xi+1 = 3
2, xi+1 = 2
3, xi+1 = 0

(i ≥ 1).

Then, {ST ;T} is a dynamical system.

Proof. To state that {ST ;T} is a dynamical system, the images of the points ex-
pressed by two different code representations must indicate the same point. For
example, 01 and 10 or 230 and 203 indicates the same point on ST. Thus, we investi-
gate the images of following points 01, 02, 03, 10, 12, 13, 20, 21, 23, 30, 31, 32, 001, 010,
002, 020, 003, 030, 012, 021, 013, 031, 023, 032 110, 101, 102, 120, 103, 130, 121, 112, 113,
131, 123, 132, 201, 210, 202, 220, 203, 230, 212, 221, 213, 231, 232, 223 and 301, 310, 302,
320, 303, 330, 312, 321, 313, 331, 323, 332. So, we get the following results,

T (01) = 1,
T (10) = 1,

T (02) = 2,
T (20) = 2,

T (03) = 3,
T (30) = 3,

T (12) = 2,
T (21) = 2,

T (13) = 0,
T (31) = 0,

T (23) = 2,
T (32) = 2,

T (001) = 01,
T (010) = 10,

T (002) = 02,
T (020) = 20,

T (003) = 03,
T (030) = 30,

T (012) = 12,
T (021) = 21,

T (013) = 13,
T (031) = 31,

T (023) = 23,
T (032) = 32,

T (101) = 13,
T (110) = 31,

T (102) = 12,
T (120) = 21,

T (103) = 10,
T (130) = 01,

T (112) = 32,
T (121) = 23,

T (113) = 30,
T (131) = 03,

T (123) = 20,
T (132) = 02,

T (201) = 23,
T (210) = 23,

T (202) = 20,
T (220) = 02,

T (203) = 21,
T (230) = 21,

T (212) = 20,
T (221) = 02,

T (213) = 21,
T (231) = 21,

T (223) = 02,
T (232) = 20,

T (301) = 30,
T (310) = 03,

T (302) = 32,
T (320) = 23,

T (303) = 31,
T (330) = 13,

T (312) = 02,
T (321) = 20,

T (313) = 01,
T (331) = 10,

T (323) = 21
T (332) = 12

.

As seen from above, the image of the different code representations of the same
points state the same addresses.
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In general, if σ = x1x2x3 . . . xn then σ01 and σ10, σ12 and σ21, σ02 and σ20,
σ03 and σ30, σ13 and σ31, σ32 and σ23, σ001 and σ010, σ002 and σ020, σ003 and
σ030, σ012 and σ021, σ013 and σ031, σ023 and σ032, σ110 and σ101, σ102 and
σ120, σ103 and σ130, σ121 and σ112, σ113 and σ131, σ123 and σ132, σ201 and
σ210, σ202 and σ220, σ203 and σ230, σ212 and σ221, σ213 and σ231, σ223 and
σ232, σ301 and σ310, σ302 and σ320, σ303 and σ330, σ312 and σ321, σ313 and
σ331, σ323 and σ332 are different representations of same points and the image of
these sequences represents the same addresses independently of σ. This shows that
T is well-defined on ST. □

We can compute the n− periodic points of T by using the equation

Tn(x1x2x3 . . .) = x1x2x3 . . . .

Since T (0) = 0, T (103) = 103, T (301) = 301, T (20) = 20 and T (2130) = 2130,

•0 = 00 . . . , •103 = 103103 . . . , •301 = 301301 . . . ,

•20 = 2020 . . . , •2130 = 21302130 . . .

are the fixed points of T .
Moreover,

•013 = 013013 . . . , •031 = 031031 . . . , •0220 = 02200220 . . .

•02211330 = 0221133002211330 . . . , •1 = 111 . . . , •130 = 130130 . . .

•2010 = 20102010 . . . , •201030 = 201030201030 . . .

•2200 = 22002200 . . . , •22113300 = 2211330022113300 . . . , •2320 = 23202320 . . .

•232120 = 232120232120 . . . , •2120 = 21202120 . . . , •2030 = 20302030 . . .

•210 = 210210 . . . , •230 = 230230 . . . , •21031230 = 2103123021031230 . . .

•23120130 = 2312013023120130 . . . , •310 = 310310 . . .

are 2− periodic points of T.

Remark 2. Since {ST ;G} and {ST ;T} have the different number of fixed points,
they are not topologically conjugate (see Proposition 2).

5. Conclusion

This paper gives a way to define different dynamical systems on the Sierpinski
tetrahedron. This method can be also used for the other fractals which have the
intrinsic metrics defined by using the code representations of the points.
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