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ABSTRACT: In this paper, it is studied the asymptotic expression of fourth order differential operator
with periodic boundary conditions. For this operator, it is also considered conjugate boundary conditions
at x=0 which shows discontinuity. For this purpose, firstly asymptotic expression of solutions
areobtained. Then by using the the asymptotic formulas of fundamental solutions, asymptotic expression
of eigenvalues and eigenfunctions are presented. It is also dealt with the asymptotic expression of same
operator with antiperiodic boundary conditions and conjugate conditions
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INTRODUCTION

The eigenvalue problem arises during the solution of many problems of mathematical physics.
When Fourier method or another method is applied to boundary value problems, it is important to
examine the spectral properties of problem such as the forms of eigenvalue and eigenfunctions,
orthogonality of eigenfunctions, expansion properties according to eigenfunctions (Tikhonov and
Samarski, 1963). In this study, it is analyzed similar properties for a fourth order differential equation.

Fourth order eigenvalue problem modelling the deformations of elastic beam is studied by many
scholars with different boundary conditions (Agarwal, 1989; Yao, 2004; Bonanno and Bella, 2008;
Gupta, 1988; Mamedov, 1996) and references there in.

Consider the differential operator

L(y),x € (—1,0)
1) =L e 0.1)
generated by fourth order differential expression
L) = 3’1(4) + g1 () y1, L(y2) = 3’2(4) + g2 ()2, 2)
where g, (x) € C*[—1,0)and g,(x) € C*(0,1] complex valued functions. We consider boundary
conditions of the operator (1) are with periodic

(1)

Ur) = Up-1(0) + U1 () = y©O (-1 =y (+1) =0, k=10,123 3)
and conjugate boundary conditions at zero
Ve@) = Vieo_(9) + Upo, (0) = y®(=0) —y®(+0) = 0, k=10,1.23. 4)

It is known that periodic (antiperiodic) boundary conditions (2) are not strongly regular boundary
conditions. (see: Naimark, 1967). In general, spectral properties of second order boundary value
problems with periodic and antiperiodic boundary conditions are investigated in the studies (Naimark,
1967, Dunford and Schwartz, 1970; Marchenko, 1977; Levitan and Sargsyan, 1991; Coskun, 2003;
Nabiev, 2007; Gasymov et al, 1990). Spectral properties in nonsefadjoint case are given by authors
(Makin, 2006; Djakov and Mityagin, 2006; Gesztesy and Tkachenko, 2012; Baskakov and Polyakov,
2017; Baranets’kyi et al, 2018). Basis properties studied in the works (Mamedov, 1996; Kerimov and
Mamedov, 1998; Mamedov and Menken, 2008; Mamedov, 2010; Kurbanov, 2006; Menken, 2010;
Jwamer and Hawsar, 2015).

Linear diferential operator order n with strongly regular boundary conditions and conjugate
conditions is firstly investigated by (Muravei, 1967). For second order boundary value problem with
periodic (antiperiodic) and conjugate conditions are studied in several works (Cabri, 2019, Cabri and
Mamedov, 2020; Cabri and Mamedov, 2020).

The existence and uniqueness of solutions of the fourth order boundary value problems with
periodic boundary conditions is studied by (Gupta, 1988). Asymptotic expressions of eigenvalues and
eigenfunctions of fourth order differential operator obtained by (Menken, 2010). Spectral properties of
differential operators with integrable coefficients and a constant weight function is given by (Mitrokhin,
2010).

Our goal is to examine the spectral properties of the problem [(y) = Ay with periodic boundary
conditions (3) and (4). Morever, we consider [(y) = Ay with antiperiodic boundary conditions

U@ = Up 10D + U 110D = y©O D +y®(+D) =0, k=0123 (5)
and conjugate boundary conditions for k = 0,1,2,3
Ve@) = Vio_(0) + Upo, @) = y®(=0) = y®(+0) = 0. k=10,1,2,3 (6)

Here q,(x) € C*[—1,0)and g,(x) € C*(0,1]complex valued functions.
Without loss of generality, we assume that
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[ awar=0,[ peax=0 @)
-1
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MATERIALS AND METHODS

Asymptotic Expression of Fundamental Solutions
It is known from (Naimark, 1967) that fourth order differential operator (2) have four linearly
independent solutions y,,(x; s), (n = 1,2,3,4) in the both interval (—1,0) and (0,1) by

yn(x' S) = eWis¥ <z um;;rSX)) (8)

m=0

where u,, , (x) satisfy diffferential equation

Ay () + 6w (O + AWE Ump () + Wiule o (X) + Wi ()3, (%) = 0.

where the numbers w,, are the fourth roots of unity.
By using Equation (8) and (Menken,2010) u,, ,, (x) are obtained as follows in both interval. In the
interval (—1,0), uf, ,(x) functions of y, (x, s) become

1
u(l)n(x) =1, u%n(x) = u%n(x) =0, u%n(x) = q,(t)dt,
Wp

0
3 5
Uin(x) = g (@100 = q1(=0)), udn(x) =~ 1e (a100) — q1(=0)),

-1 2
2

W) =2 at-0)+ 22| [ m@de ]
0 . (9)
W) = g (440 - " (=00) + (@) - an(-0) [ ar(0e
0
-1
30,
- ;; f gz ()t |.

0

In the interval (0,1), u3, ,(x) functions of y?(x, s) become
1
Usn(X) = Luyn(x) = udn(x) = 0,u,(x) = = f qz(t)dt,

uin(x) = %(QZ(X) - ‘h("‘o)); Us, n(x) = __(Clz(x) CI2(+0))

1 2

f g (Odt | | )

0

2

3w?2 w
uZ, (x) = ?" (g5 (x) — g4 (+0)) + 3—;

us, k(x) =

()~ a4 (0)) + 2 (q20) — @2(+0)) f go(Ddt

1

3w, )
37 fCIZ (t)dt |.

0
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In the interval (—1,0), u(k) (x) of y1(x, s) obtained by
e =1, uflw =ule =0, E&wr~—J%mm

3 1 3
WD) = 50100 ~ 541 (-0), ufz(m———ql(x)—gql(—m

3 3 w5
u ><x)=—§q1<x)—§q1<—o>, U = 22450 + 22 44 (-0),
3 3 5 3
(2)(35)_ 16 —q;(x )+ 16 “q;(-0), uf;%(x) 16 CI1(2)+ 1036 q:°(=0),
-1
w() = wn ([,
20 = — g @t | |
0
—3wn 50 % %
W) = T gy ) - 2% g (-0) + j a®dt | |

0

o 2
(3) n " % " (D%

D) = 2 a () ~ o g7 (~0) + 5 fql(t)dt ,
0

-1 (11)
@) - 3¢,(~0)) f g (Odt

III

(1) (.X') _ n III

-1

f qi (t)dt |,

0

3w,
32

(6
w0 =~y () + o

T () - 30,(-0)) f q()dt

-1

3w, )

0

-1

) — 3:(~0)) f g (Odt

Y ‘h()"‘

64‘11

-1
3w,

T fq%(t)dt :

0

In the interval (0,1), u(k) (%) of y2(x, s) are found by

u@@:L Wm—¢Ww=a%%uh—%f%mﬁ
WRO = 500 50, w0 = —§q2(+0) - Eqz<+o) 12
3 ) 5003
UD0) = 20 ~20(+0),  uB) = 20 + ot gi(+0),
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3 3 3

5w 5 5w
G0+ (0, w00 = TEqh(0) + 2k qh(+0),

2

(2) (X) —

1

<1>(x)— ( '(x) + "(+0))+‘°—’21 f I (t)dt
32 q; q; 32 p) )

0

1 2

2 2
() = 2 g (40) + 2 fezz(t)dt ,

0
1

@) _
(x) 32 qz

2
2

2
3) _ n 17 _ Wn e &
D00 =S a0~y (-0 + 51| [ a0t |
0

W00 = gt () + o2 4t (+0) + 2 (0200 — 30:+0) [ @p(0rc

64 < % 64 2

1

3wy, )

0

2(x) + =2 gy (+0) + —

(2) - _
7n(X) = 4" 64 64

CIZ(X) 3CI2(+O)JCI2(t)dt

1
3wy,

2

0

(3)(x) — Ill(x) +

-t @' (+0) + " (4(0) =~ 30,(+0)) f a.(0)dt

E
1

3w, )
37 j‘h (t)dt |.

0

RESULTS AND DISCUSSION
Asymptotic Expression of Eigenvalues and EigenFunctions

Theorem 1: Let g, (x) € C*[—1,0] and g,(x) € C*[0,1]. Then, the eigenvalues of the boundary-
value problem Problem (1)-(3) has two infinite sequences A, ;,A;, (k = N,N +1..) and have the
following expressions

3 [ad©de+ fadwde ( 1 )

A = (km)* + T o =),
0 1
3 [, q2(D)dt + [ q3(t)dt 1
— N | 0 L
}\k,Z - (kT[l) + 16 k4' + 0 (k5)

Proof: By using asymptotic expression of fundamental solution (9)-(12), characteristic
determinant is easily obtained as
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Vi.(1D ¥y (1D o v (D) yia(51D) (1) Ly (1)
yPED v RED Ly RED D D Ly D
A Y1) yP1) . 1) 0D YD1 .. yD(=1)
Y1,1(=0)  ¥21(=0) ... y41(=0) y12(+0) y,,(+0) ... Y4 (+0)|
W0 R0 Ly y P R0 Ly E0)
YO0 10 . D0 YD) yBHE) . yEE0)
For simplicity let us denote C and M by
-1 1
C=q(=0) +q,(+0), M= f a@de - [ a0y
+0
Chacteristic determinant can be simplify as follows
A(S) —2is le 3iM 1 [ ( 1 )]
SE659 ((e +e [1+ +0<S—8>]—2 1+0(5)|)*
X (13)

(e et o ()] -2 -z o ()

Multiplying equation (13) by

2i5[1 3iM+0(1)]>< 25[1+ 3M+0<1)] (14)
¢ 3257 € 25t 3257 8/
we get
A(s) ” 3M 1\\? . 3iM 1\7\*
25659 (e [ 3257 T 0 (58)]) % (e 3257 T 058 (19)

Therefore, for sufficiently large | s |, roots of A(s) = 0 satisfy

.0 2 1 2
+3f_1q1 (O)dt + [ g5 (t)dt ‘o ( 1 )

ezis — —_
32 s7 s8

(16)

0 2 1 2
25 q 4 3101 @®dtH qz(t)dt+0<1>

¢ 32 57 8

s8

Using Rouche’s theorem in (16) by writing s = km + &, and s = kmi + &, asymptotic expression
of eigenvalues are obtained by

0 5 1,
if_l qi(t)dt + fo q; (D)dt +0 ( 1)

Aklz(kn)4+16 i %)
3 f(O)de + s(t)dt 1
o = (k) + fq qu ro()

This ends proof.
Theorem 2: Asymptotic expression of eigenfunctions of boundary value problem (1)-(4) are

Vi, (x) = sin(kmx) + 0 (%), x € [-1,0) U (0,1],
(17)
Yk, (x) = cos(kmx) + O (%), x € [-1,0) U (0,1].
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Proof: If U;(y,) and V, (yk(x Sk, 1)) = 0,1,2,3) are calculated up to order 0(s~%), then first
part yi . (x) of y, ; (x) is obtained by

Vi1 () Y2(x) o yra() 0 0 0
Y111 y21(=1) o yu1 (1) yi2(+1) yao(+1) . yuo(4+1)
) YO 3D L YD Y2 32D .. Y26
Yea () = Y1,1(=0)  y21(=0) ... ¥41(=0) ¥12(+0) y2,(+0) ... y4,(4+0)
B0 yBE0 o B0 yBPE0) ¥y @) Ly 0
yf?( 0) yff( 0 ... yﬁ)( 0) yf?(+0) y§?(+0) ;vf;)(+0)

This determinant yields

16(q;:(—1) — q1(—=0)) — (g2(1) — q2(+0) )(1 — sinh isx _ _isx
YA, () = (2 (-1) — ¢, (-0)) (Zs() q2(+0)) (1 — sin s)(e Zie )
= (18)
+0(§).

By normalizing the result (15), we can write eigenfunction corresponding to 4,

1
Vi1 (x) = sin(kmnx) + 0 (E)'x € [-1,0), (19)
Similarly, second part y2, (x) of y; 1 (x) is found by
1
Vi1 (x) = sin(knx) + 0 (E),x € (0,1]. (20)
In same way first part y(lka) (x) of yj ,(x) is obtained by
Yk1(x) J’kz(x) yk4(x) 0 0 0
yRED D L yPED v ED R Ly R
o o YD ¥ P 0D WD . 2
Ve y11(=0)  ¥21(=0) ... ¥41(=0) y1(+0) ypa(+0) ... Yy2(+0)
yP =0 ¥R oy R0 yBE0) yPE0) L yEH0)
y 0 yDE0 .y ¥ yE0) .. Y@

This determinant gives us

1 16(Q1(_1) - ‘h(_o)) - (qZ(l) - CI2(+O))(1 — sinhs) (e'* + e's*
Vk,2 (x) = 58 >
1 21
+0(=), &1
S
Then we can get eigenfunction corresponding to 4,
1
Vi 2(x) = cos(kmx) + 0 (E)' x € [-1,0) (22)
Second part y;Z , (x)of yj , (x)is found by
1
Vi 2(x) = cos(kmx) + 0 (E)' x € (0,1]. (23)
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Thus from equations (19)-(20) and (22)-(23), proof is complete.

Theoem 3: Let g, (x) € C*[—1,0] and g,(x) € C*[0,1]. Then, the eigenvalues of the boundary-
value problem (1), (2) with antiperiodic boundary conditions (5)-(6) has two infinite sequences Ay 1, A -
(k =N,N +1..) and have the following expression

0 1
km* [ ai(©dt + [ g5 (®)dt 1
= (3) o= +0(53)
0 1
kemtin? 2(t)dt + 2(t)dt 1
(il) +96f_1CI1( fo qz( +0(_).
2 k* k>
and asymptotic expression of eigenfunctions of boundary value problem are

k2_

Yk, (x) = sin(knx) + 0 (%), x € [-1,0) U (0,1],

Yk, (x) = cos(kmx) + 0 (%) , x € [—1,0) U (0,1]

Proof: Proofs run as before.
CONCLUSION

In this work, it is considered fourth order problem with perodic boundary conditions which is not
strongly regular which differs from (Muravei, 1967). (Menken, 2010) obtained the asymptotic
expression of eigenvalues and eigenfunctions of fourth order differential operator in continuous case. In
this study, by using fundemental solutions of problem, asymptotic expression of eigenvalues and
eigenfunctions are acquired in discontinuous case.
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