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Abstract

Our main purpose of this paper is to introduce the modified Mann and Ishikawa iterates for finding a common attractive
point of a finite family of multivalued nonexpansive mappings in the setting of uniformly convex Banach spaces. We
obtain necessary and sufficient conditions to guarantee the strong convergence of the proposed algorithms without
closedness of the domain of such mappings. Moreover, we derive some consequences from our main result to fixed
point result of such mappings. Finally, the numerical results are provided to support our main theorem.
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1. Introduction

Let T be a multivalued mapping on a nonempty subset K of a Banach space E. The set of fixed points of T is
denoted by

F(T ) = {x ∈ K : x ∈ T x}.

There are many applications of fixed point theory for nonlinear mappings such as in control theory, convex optimiza-
tion, differential equations, dynamic systems theory and economics, see [1, 2, 3, 4, 5] for examples and references
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therein. To generalized fixed point theory for single valued mapping, studying the corresponding multivalued map-
pings is constanly developed. See [6, 7, 8, 9, 10, 11, 12, 13] for existence theorems and see [14, 15, 16, 17, 18, 19,
20, 21] for convergence theorems of fixed point results for both of single valued and multivalued mappings. Recently,
many kinds of iterative processes have been used for approximating fixed points of multivalued nonexpansive map-
pings. Among these iterative processes, Sastry and Babu [22] defined Mann and Ishikawa schemes for a multivalued
mapping and prove that these iterates converge to a fixed point of a multivalued nonexpansive mapping whose domain
is compact and convex. In 2011, the concept of attractive points in a real Hilbert space was introduced by Takahashi
and Takeuchi [23]. They established a mean convergence theorem without convexity for finding an attractive point
of a nonlinear mapping which generalized the nonlinear ergodic theorem proved by Kocourek, Takahashi and Yao
[24]. In 2018, Farid [25] introduced an iterative scheme to approximate common attractive points for a finite family of
nonlinear mappings in a real Hilbert space using Cesàro mean approximation method. They obtained a weak conver-
gence theorem for a sequence generated by the proposed iterative scheme. See [26, 27, 28] for more results regarding
existence and convergence theorems of common attractive points for single valued mappings.

In this work, we introduce the modified Mann and Ishikawa iterates for a finite family of multivalued nonexpansive
mappings in a uniformly convex Banach space. Also, we prove some strong convergence theorems for such mappings
under some appropriate conditions. Finally, we give an example with numerical results to support our main theorem.

2. Preliminaries

Let E be a real Banach space. A subset K of E is called proximinal (Chebyshev) if for each x ∈ E, there exists an
(unique) element k ∈ K such that

||x − k|| = inf{||x − y|| : y ∈ K} = d(x,K).

We call k as the best approximation (or nearest point) of x. It is known that weakly compact convex subsets of a
Banach space and closed convex subsets of a reflexive Banach space are proximinal. Moreover, every closed convex
subset of a uniformly convex Banach space is a Chebyshev set. We shall denote the family of nonempty bounded
proximinal subsets of K by P(K). Let CC(K) be the class of all nonempty closed and covex subsets of K. Consistent
with [29], let CB(K) be the class of all nonempty bounded and closed subsets of K. The Hausdorff metric on CB(E)
is defined by

H(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)},

for every A, B ∈ CB(E). A multivalued mapping T : K → P(K) is said to be nonexpansive if

H(T x,Ty) ≤ ||x − y||,

for all x, y ∈ K. If F(T ) , ∅ and
H(T x,T p) ≤ ||x − p||,

for all x ∈ K and p ∈ F(T ), then T is said to be quasi-nonexpansive.
Although dealing with multivalued nonexpansive mappings are more complicated than single valued nonexpansive

mappings, finding fixed points of multivalued nonexpansive mappings have been approximated using various iterative
approaches. In 2005, Sastry and Babu [22] suggested an iterative scheme for multivalued mappings among these
iterative processes as follows:

(A) Let K be a nonempty convex subset of E, T : K → P(K) a multivalued mapping with p ∈ F(T ).

(i) The sequence of Mann iterates is defined by
x1 ∈ K,

xn+1 = (1 − αn)xn + αnyn,

where yn ∈ T xn is such that ||yn − p|| = d(p,T xn), and {αn} is a sequence in (0, 1).

(ii) The sequence of Ishikawa iterates is defined by,
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x1 ∈ K,

yn = (1 − βn)xn + βnvn,

xn+1 = (1 − αn)xn + αnun,

where vn ∈ T xn, un ∈ Tyn are such that ||vn − p|| = d(p,T xn) and ||un − p|| = d(p,Tyn), and {αn}, {βn} are sequences
in [0, 1).

Let K be a nonempty convex subset of a Banach space E, T : K → P(K) be a multivalued mapping. The set of all
attractive points of T is denoted by A(T ), that is,

A(T ) = {z ∈ E : d(z,T x) ≤ ||z − x||,∀x ∈ K}.

The set of all strongly attractive points of T is denoted by AS (T ), that is,

AS (T ) = {z ∈ E : H(z,T x) ≤ ||z − x||, ∀x ∈ K}.

Hence, AS (T ) ⊆ A(T ).
A Banach space E is called uniformly convex if for each ε ∈ [0, 2], there is δε > 0 and x, u ∈ E such that

||x|| = ||u|| = 1 and ||x − u|| ≥ ε implies
||x + u||

2
< 1 − δε.

In order to prove our main results, we need the following Lemma.

Lemma 2.1. [31] Let E be a uniformly convex Banach space and let Br(0) := {x ∈ E : ||x|| ≤ r} be a closed ball of E.
Then, there exists a continuous strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

||

N∑
i=1

w(i)xi||
2 ≤

N∑
i=1

w(i)||xi||
2 − w( j)w(k)g(||x j − xk||), for all j, k ∈ {1, 2, . . . ,N},

where {xi}
N
i=1 ⊂ Br(0) and {w(i)}Ni=1 ⊂ [0, 1] with

N∑
i=1

w(i) = 1.

3. Main Results

We begin this section by modifying the iteration process given by (A) in a more general setting, i.e.,
(B) Let K be a nonempty convex subset of E and {Ti : K → P(K), i = 1, 2, . . . ,m} be a finite family of a

multivalued mapping.

(i) The sequence of modified Mann iterates is defined by
x1 ∈ K,

xn+1 = αn,0xn +

m∑
i=1

αn,ixn,i,
(1)

where xn,i ∈ Tixn and 0 ≤ αn,i < 1 satisfying
m∑

i=0

αn,i = 1.
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(ii) The sequence of modified Ishikawa iterates is defined by,

x1 ∈ K,

yn = βn,0xn +

m∑
i=1

βn,ivn,i,

xn+1 = αn,0xn +

m∑
i=1

αn,iun,i,

(2)

where vn,i ∈ Tixn, un,i ∈ Tiyn and 0 ≤ αn,i, βn,i < 1 satisfying
m∑

i=0

βn,i =

m∑
i=0

αn,i = 1. We can see that (ii) can be reduce

to (i) by setting βn,0 = 1 and βn,i = 0, ∀i = 1, 2, . . . ,m.
Before proving convergence theorems, we study some properties of attractive points for multivalued mapping as

follows.

Lemma 3.1. Let K be a nonempty closed convex subset of uniformly convex Banach space E and let T : K → CC(K)
be a multivalued mapping. If A(T ) , ∅, then F(T ) , ∅.

Proof. Let z ∈ A(T ). Since K is closed and convex, there is a unique k ∈ K such that

||z − k|| = d(z,K) ≤ d(z,Tk). (3)

Since Tk is closed and convex, there is l ∈ Tk such that

||z − l|| = d(z,Tk). (4)

Since z ∈ A(T ), d(z,T x) ≤ ||z − x||, ∀x ∈ K. It follows that

d(z,Tk) ≤ ||z − k||. (5)

By (3), (4) and (5),
||z − l|| = ||z − k|| = d(z,K).

By the uniqueness of the nearest point to z in K, k = l ∈ Tk, which implies that k ∈ F(T ). □

Remark 3.2. Lemma 3.1 is still valid when K is a nonempty Chebyshev subset of Banach space E and T : K → P(K).

Lemma 3.3. Let K be a nonempty subset of Banach space E and let T : K → CB(K) be a multivalued mapping.
Then, A(T ) is a closed subset of E.

Proof. Let {zn} ⊂ A(T ) be a sequence such that zn → z ∈ E. Let ε > 0 be arbitrary, choose N ∈ N such that

||z − zn|| < ε/2, ∀n ≥ N.

For x ∈ K, we obtain
||x − zn|| ≤ ||x − z|| + ||z − zn|| < ||x − z|| + ε/2, ∀n ≥ N.

From zN ∈ A(T ), we have

d(z,T x) ≤ ||z − zN || + d(zN ,T x) ≤ ||z − zN || + ||zN − x|| < ||z − x|| + ε.

Since ε is arbitrary, we have d(z,T x) ≤ ||z − x||. Therefore z ∈ A(T ), it follows that A(T ) is closed. □

Lemma 3.4. Let K be a nonempty subset of Banach space E and let T : K → CB(K) be a quasi-nonexpansive
mapping, then A(T ) ∩ K = F(T ) = AS (T ) ∩ K.
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Proof. Let z ∈ A(T ) ∩ K. Since z ∈ A(T ),

d(z,T x) ≤ ||z − x||, ∀x ∈ K.

Since z ∈ K,
d(z,Tz) ≤ ||z − z|| = 0.

It follows that z ∈ F(T ). Since AS (T ) ⊆ A(T ), then AS (T ) ∩ K ⊆ A(T ) ∩ K ⊆ F(T ).
Conversely, let z ∈ F(T ). Since T is quasi-nonexpansive,

H(z,T x) ≤ H(Tz,T x) ≤ ||z − x||, ∀x ∈ K.

Then, z ∈ AS (T ). Since F(T ) ⊆ K, z ∈ AS (T ) ∩ K. That is F(T ) ⊆ AS (T ) ∩ K ⊆ A(T ) ∩ K. Therefore, we can
conclude that A(T ) ∩ K = F(T ) = AS (T ) ∩ K. □

Lemma 3.5. Let K be a nonempty convex subset of a normed space E. For each i = 1, 2, . . . ,m, let Ti : K → P(K) be

a multivalued mapping such that
m⋂

i=1

AS (Ti) , ∅. Let {xn} be the sequence as defined in (2). Then, the sequence {xn} is

bounded and lim
n→∞
||xn − p|| exists for all p ∈

m⋂
i=1

AS (Ti).

Proof. Let p ∈
m⋂

i=1

AS (Ti), then

H(p,Tix) ≤ ||p − x||, ∀x ∈ K.

From (2), we have

||xn+1 − p|| = ||αn,0xn +

m∑
i=1

αn,iun,i − p||

≤ αn,0||xn − p|| +
m∑

i=1

αn,i||un,i − p||

≤ αn,0||xn − p|| +
m∑

i=1

αn,iH(Tiyn, p)

≤ αn,0||xn − p|| +
m∑

i=1

αn,i||yn − p||. (6)

But

||yn − p|| = ||βn,0xn +

m∑
i=1

βn,ivn,i − p||

≤ βn,0||xn − p|| +
m∑

i=1

βn,i||vn,i − p||

≤ βn,0||xn − p|| +
m∑

i=1

βn,iH(Tixn, p)

≤ βn,0||xn − p|| +
m∑

i=1

βn,i||xn − p||

= ||xn − p||. (7)
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Thus, (6) becomes

||xn+1 − p|| ≤ αn,0||xn − p|| +
m∑

i=1

αn,i||xn − p|| =
m∑

i=0

αn,i||xn − p|| = ||xn − p||. (8)

Therefore, the sequence {||xn − p||} is non-increasing and bounded below.

Hence, lim
n→∞
||xn − p|| exists for all p ∈

m⋂
i=1

AS (Ti), which implies that {xn} is bounded. □

Lemma 3.6. Let E be a uniformly convex Banach space and K be a nonempty convex subset of E. For each i =

1, 2, . . . ,m, let Ti : K → P(K) be a multivalued mapping such that
m⋂

i=1

AS (Ti) , ∅. Let {xn} be the sequence as defined

in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all j = 1, 2, . . . ,m. Then, lim
n→∞

d(xn,Tixn) = 0, for all i = 1, 2, . . . ,m.

Proof. Let p ∈
m⋂

i=1

AS (Ti). From Lemma 3.5, we suppose that lim
n→∞
||xn − p|| = c for some c > 0. By Lemma 2.1, there

exists a continuous strictly increasing convex function g1 : [0,∞) → [0,∞) with g1(0) = 0. For all j ∈ {1, 2, . . . ,m},
we have

||xn+1 − p||2 = ||αn,0(xn − p) +
m∑

i=1

αn,i(un,i − p)||2

≤ αn,0||xn − p||2 +
m∑

i=1

αn,i||un,i − p||2 − (αn,0αn, j)g1(||xn − un, j||)

≤ αn,0||xn − p||2 +
m∑

i=1

αn,iH(Tiyn, p)2

≤ αn,0||xn − p||2 +
m∑

i=1

αn,i||yn − p||2. (9)

Using Lemma 2.1 again, there exists a continuous strictly increasing convex function g2 : [0,∞) → [0,∞) with
g2(0) = 0. For all j ∈ {1, 2, . . . ,m}, we obtain

||yn − p||2 = ||βn,0(xn − p) +
m∑

i=1

βn,i(vn,i − p)||2

≤ βn,0||xn − p||2 +
m∑

i=1

βn,i||vn,i − p||2 − (βn,0βn, j)g2(||(xn − p) − (vn, j − p)||)

≤ βn,0||xn − p||2 +
m∑

i=1

βn,iH(Tixn, p)2 − (βn,0βn, j)g2(||xn − vn, j||)

≤ βn,0||xn − p||2 +
m∑

i=1

βn,i||xn − p||2 − (βn,0βn, j)g2(||xn − vn, j||)

≤ ||xn − p||2 − (βn,0βn, j)g2(||xn − vn, j||). (10)

By (9) and (10), we have

||xn+1 − p||2 ≤ αn,0||xn − p||2 +
m∑

i=1

αn,i||xn − p||2 −
m∑

i=1

αn,i(βn,0βn, j)g2(||xn − vn, j||).
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Hence,
m∑

i=1

αn,i(βn,0βn, j)g2(||xn − vn, j||) ≤ ||xn − p||2 − ||xn+1 − p||2.

Taking limit n→ ∞ on both sides, we get

lim
n→∞

g2(||xn − vn, j||) = 0.

By property of the function g2, we get

lim
n→∞
||xn − vn, j|| = 0, ∀ j = 1, 2, . . . ,m.

This implies that,
lim
n→∞

d(xn,T jxn) ≤ lim
n→∞
||xn − vn, j|| = 0, ∀ j = 1, 2, . . . ,m.

Therefore, we have lim
n→∞

d(xn,T jxn) = 0 for all j = 1, 2, . . . ,m. □

Now, we present a strong convergence theorem using algorithm (2).

Theorem 3.7. Let E be a real uniformly convex Banach space and K a nonempty convex subset of E. For each

i = 1, 2, . . . ,m, let Ti : K → P(K) be a multivalued nonexpansive mapping such that
m⋂

i=1

AS (Ti) , ∅. Let {xn} be the

sequence as defined in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all j = 1, 2, . . . ,m. Then, {xn} converges strongly

to a point of
m⋂

i=1

AS (Ti) if and only if lim inf
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0.

Proof. Suppose that xn → p ∈
m⋂

i=1

AS (Ti). Then, for each ε > 0, there exists m0 ∈ N such that

||xn − p|| < ε for all n ≥ m0.

Therefore, we obtain that

d(xn,

m⋂
i=1

AS (Ti)) = inf{||xn − q|| : q ∈
m⋂

i=1

AS (Ti)} ≤ ||xn − p|| ≤ ε, ∀n ≥ m0.

If follows that lim
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0, and hence

lim inf
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0.

Conversely, assume that lim inf
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0 and p ∈
⋂m

i=1 AS (Ti).

This means that {d(xn,

m⋂
i=1

AS (Ti))} contains a subsequence {d(xnk ,

m⋂
i=1

AS (Ti))} such that

lim
k→∞

d(xnk ,

m⋂
i=1

AS (Ti)) = 0. (11)
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By Lemma 3.5, we assume that lim
n→∞
||xn − p|| = Lp for some Lp ≥ 0.

Then for each ε > 0, there exists m1 ∈ N such that

Lp − ε ≤ ||xn − p|| ≤ Lp + ε, ∀n ≥ m1.

Taking infimum all over p ∈
m⋂

i=1

AS (Ti) on both sides, we get

L − ε ≤ d(xn,

m⋂
i=1

AS (Ti)) ≤ L + ε, ∀n ≥ m1,

where L = inf{Lp : p ∈
m⋂

i=1

AS (Ti)}. This implies that

lim
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = L. (12)

By using (11) and (12), we can conclude that

lim
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0.

Next, we want to show {xn} is a Cauchy sequence in a Banach space E. Since (8), ||xn+1 − p|| ≤ ||xn − p|| for all

p ∈
m⋂

i=1

AS (Ti). In particular, for k > n we have

||xk − p|| ≤ ||xn − p|| for all p ∈
m⋂

i=1

AS (Ti).

Consider

||xn − xk|| ≤ ||xn − p|| + ||p − xk|| ≤ 2||xn − p||, ∀p ∈
m⋂

i=1

AS (Ti).

Taking infimum all over p ∈
m⋂

i=1

AS (Ti) on both sides, we obtain

||xn − xk|| ≤ 2 inf{||xn − p|| : p ∈
m⋂

i=1

AS (Ti)} = 2d(xn,

m⋂
i=1

AS (Ti)).

Since lim
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0, we can conclude that {xn} is a Cauchy sequence in a Banach space E. As a result,

there exists z ∈ E such that lim
n→∞
||xn − z|| = 0. By Lemma 3.6, we have lim

n→∞
d(xn,Tixn) = 0, ∀i = 1, 2, . . . ,m.

For each i, consider

d(z,Tixn) ≤ ||z − xn|| + d(xn,Tixn).

Therefore, lim
n→∞

d(z,Tixn) = 0.

Next, we will show that z ∈
m⋂

i=1

AS (Ti). Consider

H(z,Tix) ≤ H(z,Tixn) + H(Tixn,Tix),

≤ H(z,Tixn) + ||xn − x||, ∀x ∈ K.
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By taking limit n→ ∞ on both sides, we infer that

H(z,Tix) ≤ ||z − x||, ∀x ∈ K, ∀i = 1, 2, . . . ,m.

Therefore, z ∈
m⋂

i=1

AS (Ti). □

We also obtain the following fixed point result as a consequence of Theorem 3.7.

Corollary 3.8. Let E be a real uniformly convex Banach space and K a nonempty convex subset of E. For each

i = 1, 2, . . . ,m, let Ti : K → P(K) be a multivalued nonexpansive mapping such that
m⋂

i=1

F(Ti) , ∅. Let {xn} be the

sequence as defined in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all j = 1, 2, . . . ,m.

(1) Suppose that lim inf
n→∞

d(xn,

m⋂
i=1

F(Ti)) = 0 or lim sup
n→∞

d(xn,

m⋂
i=1

F(Ti)) = 0. Then, {xn} converges strongly to

z ∈
m⋂

i=1

AS (Ti). Additionally, if K is closed, then {xn} converges strongly to z ∈
m⋂

i=1

F(Ti).

(2) Suppose that {xn} converges strongly to z ∈
m⋂

i=1

AS (Ti), then lim inf
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0. Additionally, if K is

closed, then lim inf
n→∞

d(xn,

m⋂
i=1

F(Ti)) = 0.

Proof. Since
m⋂

i=1

F(Ti) , ∅, we have Ti is quasi-nonexpansive mappings for all i ∈ {1, 2, . . . ,m}. By Lemma 3.4, we

have
m⋂

i=1

AS (Ti) ∩ K =
m⋂

i=1

F(Ti),

which implies that,
m⋂

i=1

AS (Ti) , ∅.

(1) Assume that

lim inf
n→∞

d(xn,

m⋂
i=1

F(Ti)) = 0.

Since
m⋂

i=1

F(Ti) ⊂
m⋂

i=1

AS (Ti), we have

d(xn,

m⋂
i=1

AS (Ti)) ≤ d(xn,

m⋂
i=1

F(Ti)), ∀n ∈ N.

Then,

lim inf
n→∞

d(xn,

m⋂
i=1

AS (Ti)) ≤ lim inf
n→∞

d(xn,

m⋂
i=1

F(Ti)) = 0.

From Theorem 3.7, we have xn → z ∈
m⋂

i=1

AS (Ti).Moreover, if K is closed, then z ∈ K.As a result, xn → z ∈
m⋂

i=1

F(Ti).
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(2) Assume that xn → z ∈
m⋂

i=1

AS (Ti). From Theorem 3.7, we have

lim inf
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0.

Moreover, if K is closed, then z ∈ K. Since
m⋂

i=1

AS (Ti) ∩ K =
m⋂

i=1

F(Ti), we obtain xn → z ∈
m⋂

i=1

F(Ti). As a result,

lim inf
n→∞

d(xn,

m⋂
i=1

F(Ti)) = 0. □

We now present a convergence theorem for a finite family of multivalued nonexpansive mappings satisfying
condition (A) defined as:

Definition 3.9. For each i ∈ {1, 2, . . . ,m}, mapping Ti : K → P(K) is said to satisfy condition (A) if there exists a
non-decreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (r) > 0 for all r > 0 such that

f (d(x,
m⋂

i=1

AS (Ti))) ≤ d(x,Tix),

for all x ∈ K.

Theorem 3.10. Let E be a real uniformly convex Banach space and K a nonempty convex subset of E. For each

i = 1, 2, . . . ,m, let Ti : K → P(K) be a multivalued nonexpansive mapping such that
m⋂

i=1

AS (Ti) , ∅. Let {xn} be

the sequence as defined in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all j = 1, 2, . . . ,m. Suppose that one of Ti

satisfies condition (A). Then, {xn} converges strongly to a point of
m⋂

i=1

AS (Ti).

Proof. By Lemma 3.6, we have lim
n→∞

d(xn,Tixn) = 0, ∀i = 1, 2, . . . ,m. Suppose that Ti0 satisfies condition (A) for
some i0 ∈ {1, 2, . . . ,m}, we obtain that there exists a non-decreasing function f : [0,∞) → [0,∞) with f (0) = 0 and
f (r) > 0 for all r > 0 such that

f (d(xn,

m⋂
i=1

AS (Ti))) ≤ d(xn,Ti0 xn), ∀n ∈ N.

It follows that

0 ≤ lim
n→∞

f (d(xn,

m⋂
i=1

AS (Ti))) ≤ lim
n→∞

d(xn,Ti0 xn) = 0.

Thus,

lim
n→∞

f (d(xn,

m⋂
i=1

AS (Ti))) = 0.

Due to the non-decreasing function of f and f (0) = 0, we get

lim
n→∞

d(xn,

m⋂
i=1

AS (Ti)) = 0.

By Theorem 3.7, we conclude that {xn} converges strongly to a point of
m⋂

i=1

AS (Ti). □
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Corollary 3.11. Let E be a real uniformly convex Banach space and K a nonempty convex subset of E. For each

i = 1, 2, . . . ,m, let Ti : K → P(K) be a multivalued nonexpansive mapping such that
m⋂

i=1

F(Ti) , ∅. Let {xn} be

the sequence as defined in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all j = 1, 2, . . . ,m. Suppose that one of Ti

satisfies condition (A), then {xn} converges strongly to a point of
m⋂

i=1

AS (Ti). Additionally, If K is closed, then {xn}

converges strongly to z ∈
m⋂

i=1

F(Ti).

Proof. Since
m⋂

i=1

F(Ti) , ∅, we have Ti is quasi-nonexpansive mappings for all i ∈ {1, 2, . . . ,m}. By Lemma 3.4, we

have
m⋂

i=1

AS (Ti) ∩ K =
m⋂

i=1

F(Ti). It follows that
m⋂

i=1

AS (Ti) , ∅. By Theorem 3.10, we have xn → z ∈
m⋂

i=1

AS (Ti). If K

is closed, then z ∈
m⋂

i=1

F(Ti). □

Next, we will present a convergence theorem for a finite family of multivalued nonexpansive mappings satisfying
hemicompact defined as:

Definition 3.12. For each i ∈ {1, 2, . . . ,m}, mapping Ti : K → P(K) is called hemicompact if for any sequence {xn}

in K such that d(xn,Tixn)→ 0 as n→ ∞, then there exists a subsequence {xnk } of {xn} such that xnk → p ∈ K.

Moreover, using the hemicompactness of the mappings, we obtain the following.

Theorem 3.13. Let E be a real uniformly convex Banach space and K a nonempty convex subset of E. For each

i = 1, 2, . . . ,m, let Ti : K → P(K) be a multivalued nonexpansive mapping with
m⋂

i=1

AS (Ti) , ∅. Suppose that

one of Ti is hemicompact. Let {xn} be the sequence as defined in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all

j = 1, 2, . . . ,m. Then, {xn} converges strongly to a point of
m⋂

i=1

AS (Ti).

Proof. By Lemma 3.6, we have the sequence {xn} is bounded and

lim
n→∞

d(xn,Tixn) = 0, ∀i = 1, 2, . . . ,m.

Suppose Ti0 is hemicompact, for some i0 ∈ {1, 2, . . . ,m}, then there is a subsequence {xnk } ⊂ {xn} and z ∈ K such that
lim
n→∞
||xnk − z|| = 0. Consider,

d(Tixnk , z) ≤ d(Tixnk , xnk ) + ||xnk − z||.

Therefore, lim
k→∞

d(Tixnk , z) = 0, ∀i = 1, 2, . . . ,m.

Next, we will show that z ∈
m⋂

i=1

AS (Ti). For each i = 1, 2, . . . ,m, consider

H(z,Tix) ≤ H(z,Tixnk ) + H(Tixnk ,Tix), ∀x ∈ K

≤ H(z,Tixnk ) + ||xnk − x||, ∀x ∈ K.
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By taking limit k → ∞ on both sides, we obtain

H(z,Tix) ≤ ||z − x||, ∀x ∈ K.

Therefore, z ∈
m⋂

i=1

AS (Ti). Since Lemma 3.5, we get lim
n→∞
||xn − z|| = 0, we conclude that {xn} converges strongly to a

point of
m⋂

i=1

AS (Ti). □

Corollary 3.14. Let E be a real uniformly convex Banach space and K a nonempty convex subset of E. For each

i = 1, 2, . . . ,m, let Ti : K → P(K) be a multivalued nonexpansive mapping with
m⋂

i=1

F(Ti) , ∅. Suppose that

one of Ti is hemicompact. Let {xn} be the sequence as defined in (2) such that lim inf
n→∞

m∑
i=1

αn,i(βn,0βn, j) > 0, for all

j = 1, 2, . . . ,m. Then, {xn} converges strongly to a point of
m⋂

i=1

AS (Ti). Additionally, If K is closed, then {xn} converges

strongly to z ∈
m⋂

i=1

F(Ti).

Proof. Since
m⋂

i=1

F(Ti) , ∅, we have Ti is quasi-nonexpansive mappings for all i ∈ {1, 2, . . . ,m}. By Lemma 3.4, we

have
m⋂

i=1

AS (Ti) ∩ K =
m⋂

i=1

F(Ti). It follows that
m⋂

i=1

AS (Ti) , ∅. By Theorem 3.13, we obtain xn → z ∈
m⋂

i=1

AS (Ti). If

K is closed, then z ∈
m⋂

i=1

F(Ti). □

Remark 3.15. Lemma 3.5, 3.6, Theorem 3.7, 3.10, 3.13 and Corollary 3.8, 3.11, 3.14 are valid when the sequence
{xn} is defined in (1) with lim inf

n→∞
αn,0αn, j > 0 for all j ∈ {1, 2, . . . ,m}.

To complete this paper, we present a numerical example to support theorem 3.7 as follows.

Example 3.16. Let E = R be endowed with the Euclidean norm || · || = | · |. Assume that K = (0,+∞) be nonempty con-
vex subset of R. Note that K is not closed. Define the mapping Ti : K → P(K) by Tix = [0, x

4i ], ∀x ∈ K, ∀i = 1, 2, 3, 4.

Then for each i ∈ {1, 2, 3, 4}, Ti are nonexpansive mappings such that 0 ∈
4⋂

i=1

AS (Ti). We choose the parameters

vn,i = sup
a∈Ti xn

{
a
2
}, un,i = sup

b∈Tiyn

{
b
3
}, initial point x1 =

1
2 . The control sequences are chosen by

βn,i =


n

3n , i = 0
n+1
6n , i = 1, 3

n−1
6n , i = 2, 4

and αn,i =
n + i

5n + 10
for all i = 1, ..., 4.

Then, we can see that
4∑

i=0

βn,i = 1 =
4∑

i=0

αn,i and lim inf
n→∞

4∑
i=1

αn,i(βn,0βn, j) > 0. Table 1 shows the values of |xn − 0|,

|xn − T1xn|,|xn − T2xn|, |xn − T3xn| and |xn − T4xn| of iteration n = 1, 2, 3, ..., 10.

It is evident from Table 1 that xn → 0 ∈
4⋂

i=1

AS (Ti), the errors |xn − 0| → 0,

|xn − Tixn| → 0, ∀i = 1, 2, . . . , 4. Moreover, Figure 1 shows the convergence behavior of the modified Ishikawa
iteration (2).
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Table 1: Numerical results of iteration process (2)
Iteration No. |xn − 0| |xn − T1xn| |xn − T2xn| |xn − T3xn| |xn − T4xn|

1 5.00 × 10−1 3.75 × 10−1 4.38 × 10−1 4.58 × 10−1 4.69 × 10−1

2 3.99 × 10−2 2.99 × 10−2 3.49 × 10−2 3.66 × 10−2 3.74 × 10−2

3 4.51 × 10−3 3.38 × 10−3 3.95 × 10−3 4.13 × 10−3 4.23 × 10−3

4 6.00 × 10−4 4.50 × 10−4 5.25 × 10−4 5.50 × 10−4 5.62 × 10−4

5 8.78 × 10−5 6.58 × 10−5 7.68 × 10−5 8.05 × 10−5 8.23 × 10−5

6 1.37 × 10−5 1.03 × 10−5 1.20 × 10−5 1.25 × 10−5 1.28 × 10−5

7 2.23 × 10−6 1.67 × 10−6 1.95 × 10−6 2.05 × 10−6 2.09 × 10−6

8 3.76 × 10−7 2.82 × 10−7 3.29 × 10−7 3.45 × 10−7 3.35 × 10−7

9 6.51 × 10−8 4.88 × 10−8 5.69 × 10−8 5.97 × 10−8 6.10 × 10−8

10 1.15 × 10−8 8.60 × 10−9 1.01 × 10−8 1.05 × 10−8 1.08 × 10−8

Figure 1: Convergence behavior of the iteration process (2) to an attractive point

Next, under control conditions from Theorem 3.7, we compare the rate of convergence for the sequence {xn}

generated by (1) and (2) which is shown in Table 2.
From Table 2, we can see that the modified Ishikawa iteration (2) performs with a better rate of convergence than

the modified Mann iteration (1).

4. Conclusion

In this paper, we have introduced iterative methods to approximate a solution of attractive fixed point problems
for a finite family of nonlinear mappings in a uniformly convex Banach space without closedness on the domain. We
have given some basic properties of attractive points and have compared them with fixed points. Further, we have
shown examples and numerical results to illustrate our iteration and results.
Acknowledgment. The authors would like to thank referee(s) to complete this paper with valuable suggestions. This
research was supported by Fundamental Fund 2022, Chiang Mai University.
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Table 2: The values of {xn} for different iteration processes
Iteration No. xn of Iteration (1) xn of Iteration (2)
1 5.0000 × 10−1 5.0000 × 10−1

2 5.8681 × 10−2 3.9905 × 10−2

3 8.8632 × 10−3 4.5103 × 10−3

4 1.5178 × 10−3 5.9992 × 10−4

5 2.8038 × 10−4 8.7794 × 10−5

6 5.4490 × 10−5 1.3685 × 10−5

7 1.0983 × 10−5 2.2309 × 10−6

8 2.2754 × 10−6 3.7610 × 10−7

9 4.8160 × 10−7 6.5100 × 10−8

10 1.0370 × 10−7 1.1500 × 10−8

References

[1] W. Inthakon, Strong convergence theorems for generalized nonexpansive mappings with the system of equilibrium problems in Banach
spaces, Journal of Nonlinear and Convex Analysis, 2014, 15(4), 753–763.

[2] E. Karapınar, A. Fulga, M. Rashid, L. Shahid, H. Aydi, Large contractions on quasi-metric spaces with an application to nonlinear
fractional differential equations, Mathematics 2019, 7, 444;https://doi:10.3390/math7050444.

[3] W. Inthakon, S. Suantai, P. Sarnmeta, D. Chumpungam, A new machine learning algorithm based on optimization method for regression
and classification problems, Mathematics, 2020, 8(6), 1007; https://doi.org/10.3390/math8061007.

[4] S.A.R. Hosseiniun, M. Nabiei, Some applications of fixed point theorem in economics and nonlinear functional analysis, International
Mathematical Forum, 2010, 5(49), 2407–2414.

[5] R.S. Adiguzel, ; U. Aksoy, E. Karapınar, I.M. Erhan, On the solution of a boundary value problem associated with a fractional differential
equation, Mathematical Methods in the Applied Sciences, 2020, https://doi.org/10.1002/mma.6652.

[6] N. Nanan, S. Dhompongsa, A common fixed point theorem for a commuting family of nonexpansive mappings one of which is multival-
ued, Fixed Point Theory and Applications, 2011, 54, 1–10.

[7] S. Dhompongsa, N. Nanan, Fixed point theorems by ways of ultra-asymptotic centers, Abstract and Applied Analysis, 2011,
https://doi.org/10.1155/2011/826851.

[8] C. Jinakul, A. Wiwatwanich, A. Kaewkhao, Common fixed point theorem for multi-valued mappings on b-metric spaces, International
Journal of Pure and Applied Mathematics, 2017, 113(1), 167–179.

[9] N. Phudolsitthiphat, P. Charoensawan, Common fixed point results for three maps one of which is multivalued in G-metric spaces, Thai
Journal of Mathematics, 2018, 16(2), 455–465.

[10] W. Takahashi, N.C. Wong, J.C. Yao, Attractive point and mean convergence theorems for new generalized nonspreading mappings in
banach spaces, Infinite Products of Operators and their Applications, 2015, 636, 225–248.

[11] S. Dhompongsa, A. Kaewkhao, A note on properties that imply the fixed point property, Abstract and Applied Analysis, 2006,
https://doi.org/10.1155/AAA/2006/34959.

[12] S. Dhompongsa, A. Kaewcharoen, A. Kaewkhao, Fixed point property of direct sums, Nonlinear Analysis, 2005, 63, 2177–2188.
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