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Abstract: In this study, the beta function that is encountered in computational mathematics and 

physics is analyzed. The correct evaluation of this function also affects the accuracy of other 

mathematical functions in quantum mechanical calculations. Especially in recent years, there is 

an interest in studies related to the beta function for zero and negative p and q integers. This study, 

considering the neutrix limits of the beta function, presents new relations for the numerical 

computation of the beta function, especially for negative integers p and q. In addition, taking into 

account the definition of the beta function for positive p and q integer values, an algorithm is 

created to calculate the function for all integer values. Finally, numerical results obtained with the 

help of our new recurrence relations and algorithm are presented. 
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Beta Fonksiyonu için Sayısal Değerlendirme Yöntemleri 
 

Öz: Bu çalışmada, hesaplamalı matematik ve fizikte karşılaşılan beta fonksiyonu analiz 

edilmiştir. Bu fonksiyonun doğru değerlendirilmesi, kuantum mekaniksel hesaplamalardaki diğer 

matematiksel fonksiyonların doğruluğunu da etkilemektedir. Özellikle son yıllarda, sıfır ve 

negatif p ve q tam sayıları için beta fonksiyonu ile ilgili çalışmalara ilgi duyulmaktadır. Bu 

çalışma, beta fonksiyonunun neutrix limitlerini göz önünde bulundurarak, özellikle negatif p ve 

q tam sayılarında beta fonksiyonunun sayısal hesaplaması için yeni bağıntılar sunmaktadır. 

Ayrıca pozitif p ve q tam sayı değerleri için de beta fonksiyonunun tanımı dikkate alınarak, 

fonksiyonun tüm tam sayı değerlerinde hesaplanması için bir algoritma oluşturulmuştur. Son 

olarak, yeni yineleme bağıntılarımız ve algoritmamız yardımıyla elde edilen sayısal sonuçlar 

sunulmuştur. 

 

Anahtar kelimeler: Beta fonksiyonu, Gama fonksiyonu, Kuantum sayıları, Mathematica. 

 

1. Introduction 

The beta function, often referred to as the Euler beta function, is special function in 

mathematics. This function whose first studies were made by Euler and Legendre has a 

specific integral definition [1]. It is used in applied and engineering mathematics, 

statistics and probability, and computational physics. Recently, there is a great interest in 

the mathematical applications of beta function, some of these studies: [2-9]. Besides, in 

physics, the researchers observed that many properties of the strong nuclear force are 

defined by beta function, based on the data which are obtained during their research at 

CERN (The European Organization for Nuclear Research). This is the first time 

Veneziano has noticed this function in string theory [10].  Additionally, in a study in 
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which the beta function is associated with string theory/M-theory, it is indicated that this 

function is come across in the studies of physical density integrals for flat expanding 

isotropic universes [11]. Furthermore, there are other studies dealing with the 

mathematical relationship of the beta function to string theory [12,13]. 

The beta function can be written and obtained from the some other mathematical 

functions as gamma functions, binomial coefficients and factorial functions which are 

frequently used in works: [14-18]. In computational physics, this situation provides great 

advantage in molecular integral calculations. Because, the correct calculation of each of 

these coefficients and functions is important for accurate numerical results, and some of 

these works can be found in the references: [19-27]. The evaluation of definite integrals 

appears repeatedly in problems of mathematical physics as well as in pure mathematics. 

Three moderately general techniques are useful in evaluating definite integrals: contour 

integration, conversion to gamma or beta functions, and numerical quadrature [28]. When 

the beta function is considered from this point of view, it has an important place in 

mathematics. 

The various definitions and properties for beta function are available in literature [28, 29].   

The integral form of beta function is defined for positive parameters. This means that the 

beta function has a value for positive p and q integers. Besides, for non-positive p and q 

integers the integral of the beta function is divergent and its value is infinite. In these 

cases, for the evaluation of this integral, neutrix limits can be used. Recently, the concepts 

of the neutrix and neutrix limit due to van der Corput [30] have been used widely in many 

applications in mathematics, physics and statistics [31]. In this method, the finite value is 

properly obtained by neglecting the divergent parts of di vergent integral. Such an idea 

was devised by Hadamard and the finite integrals obtained with this method are called 

Hadamard type integrals [32]. Some other studies in the literature have shown that the 

beta function by taking the neutrix limit also has some values in cases in which that p and 

q are zero, negative or positive integers: [33-36]. First: one of p and q is positive integer 

and the other is negative integer. Second: both are negative integers. Third: one of the p 

and q equal to zero and the other is positive or negative integer. Fourth: both are zero. 

The main purpose of this paper is to provide recurrence relations and calculation method 

for the beta function by taking into account the neutrix limits. Firstly, the general 

properties of this function and its use in quantum mechanics are given. Then, to compose 

the framework of the calculation method, some relations and numerical applications are 

presented. The mentioned expressions show that the beta function can be evaluated for 

all integers by knowing  0,0B  and  0,1B . The numerical results are obtained with the 

help of our algorithms. Eventually, the graphs and the tables are clearly produced to have 

a better understanding of the aim of this paper. 

 

2. Material and Method 

2.1 Beta function and its relation to molecular integrals 

The beta function  ,B p q  is one of the special functions and it has an integral definition 

which called the Euler integral of the first kind in mathematics, it is defined by [1]: 

 

   
1

11

0

, 1
qpB p q t t dt
   (1) 

 

for 0p   and 0q  . This function can be expressed in terms of the gamma function which 

is the Euler integral of second kind by the following equation [1]: 
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 
   

 
,

p q
B p q

p q

 


 
 (2) 

 

where 0p  , 0q   and  p  is gamma function and defined over factorial function as 

   1 !p p   . In many computational sciences, binomial coefficient is often used and 

its general form: 

 

 

!

! !

p p

q q p q

 
 

 
 (3) 

 

The combination of Equations (2) and (3), binomial coefficient can be explained in terms 

of beta function as:  

 

   

1

, 1

p

q p q B p q q

 
 

   
 (4) 

 

In molecular quantum mechanical calculations, molecular integrals are appeared and their 

solutions are very important. At this point, a suitable basis function (orbital) must be 

selected. Generally, Slater type orbitals (STOs) are widely used for the solution of 

molecular integrals. The STOs with the n, l and m quantum numbers are given by  

 

 
 

 
   


 ,exp

!2

2
, 1

2/1

,

m

l

n
n

m

ln Yrr
n

rx  


 (5) 

 

where  > 0 is the screening parameter and   ,m

lY is spherical harmonics.  

The overlap integrals of two STOs with screening parameters  and  are given by 

 

       rdRrrRS
m

ln

m

ln

mln

mln


3

,

*

, ,,;, 2

22

1

11

222

111     (6) 

 

If we use Equation (4), the overlap integrals in Equation (22) of reference [25] have been 

written by beta function:  

 

 
 

 

 
    

1
max

2 2 2

1 1 1

min

2

2 2 1 1 2 1 1 1 2 23/ 2

1
, ; 1

2

l l
ln l m

n l m

l l

S R l m l m l m m n l n l  
 


      

(7) 
      

1 2n n        1 1 1 2 2 2 1 1 2 2, 1 , 1 , 1 , 1B n l l B n l l B n n B n n       

        

   
 2 1

2 1 1 1 1 2 2 2

, ,

0 0 1

1, ; 1,
1 2 ,

, 1

lt L
s r r s m ml

k k l l

s r k

a l n l l n l
g R

L r B L r r



  


  



  

   


  
   

 

As can be seen from the Equation (7) that overlap integrals contain beta function. Hence, 

the correct calculation of this function affects the accuracy of the overlap integrals. It's 

well known that overlap integrals are the most basic molecular integrals and all other 

multi-center molecular integrals can be expressed in terms of them. For example, 

following electric multipole moment integrals are given in terms of overlap integrals [27]: 



291 

 

 

         
max

2 22 2 2 2 2 2

1 1 1 1 1 1

min

2 , , ( ), ,

, 0 , , , 0 , ,, ; , , , ;
L

n L mn l m n l m

n l m b ab L b n l m ab

L L

M R R G R S R


 

   
 

    
 

 

  

 

(8) 

 

 

2.2 The reduction relations of beta function 

A beta function can be written in terms of another and some reduction properties of it are 

[28]: 

 

   , ,B p q B q p  (9) 

     , 1, , 1B p q B p q B p q     (10) 

   , , 1
p q

B p q B p q
q


   (11) 

   
1

, 1, 1
q

B p q B p q
p


    (12) 

       , , , ,B p q B p q t B q t B p q t    (13) 

 

here 0t  . The beta function has also some properties for positive p and q integers [37]: 

 

     , 1 1, ,
q q

B p q B p q B p q
p p q

   


 (14) 

 
 

,1
sin

B p p
p




     ,    0 1p   (15) 

 

1 11

1 1,

p q p q
q p

p qB p q

      
    

    
 (16) 

 

The beta function for non-positive p or q integers is also available in the literature. Fisher, 

Orankitjaroe and Lin show that beta function has a finite value in case of p or q equal to 

zero [35]: 

 

 0,0 0B   (17) 

   ,0 1B n n    (18) 

   ,0B n n    (19) 

 

for  1,2,...n   and 

 

 

1

0, 0

1 1,2,...
n

i

n

n
i n








 





 (20) 

 

The another definition of beta function is [34, 36] 
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 
 1

0,

1 1
,

ip

i i q

p
B p q

i i q



 

  
   

 
  (21) 

 

where q is non-negative integer and p is positive integer. The another situation related to 

beta function is  

 

 
1 1

0 0

1 1
,

q p

i j

p i q j
B p q

i jq i p j

 

 

    
       

    
   (22) 

 

for non-negative p and q integers [34, 36].  In addition to these,  according to Fisher and 

Kuribayashi (1987) which cited in the work by Özçağ et al. [33], the beta function has 

following relations: 

 

   
   1 ! !

, 1
!

q q p q
B p q

p

 
      for 1,2,...,q p ,  1,2,...p   (23) 

 

and  

 

   
 

 
   

1 !
, 1 1

! !

p q
B p q p q p

p q p
 


       

   for 1, 2,...q p p    (24) 

 

and here again the symmetry property given by Equation (9) is valid for all p and q 

integers. These equations provide a great advantage as they allow the beta function to be 

calculated when p and q are zero or negative integers. 

 

3. Methodology and Relations 

The beta function can be shown in different mathematical forms. In this section, we 

consider to use these forms in the calculation processes of the beta function. When p and 

q are positive integers and with the consideration of      1 1p p p      property of 

the gamma function, then the beta function in Equation (2) can be again written as below: 

 

 
     

   

1 1
,

1 1

p p q
B p q

p q p q

   


    
 

(25) 
 

 
 

1
1,

1

p
B p q

p q


 

 
 

 

When the definition regarding the gamma function is made over q, the following 

expression is obtained similar to Equation (25): 

 

 
 

 
 

1
, , 1

1

q
B p q B p q

p q


 

 
 (26) 

 

by using the definition given in Equation (2), the value of the beta function for a special 

case that 1p   and 1q   is obtained as follows: 
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 
   

 

1 1
1,

1

q
B q

q q

 
 

 
 (27) 

 

It clearly appears that by using the Equations (9), (18) and (20) together, then the beta 

functions    1,0 0,1 0B B  . Furthermore, the any value of beta function can be again 

obtained by using a beta function (without using the factorial or gamma function). In the 

case of 0p   and 2q  , the beta function can be calculated via the knowing values of 

 0,0B  and  0,1B . When 1p   and 1q  , the beta function is obtained from Equation 

(27). The another is 1p   and 0q   situation, and then the value of beta function can be 

found from  1,B q . All of these situations are summarized below: 

 

 

 

 

 
 

0 ; 0, 0

0 ; 0, 1

1
, 1 ; 0, 2

1
,

1
; 1, 1

1
1, 1, 0

1

p q

p q

B p q p q
q

B p q

p q
q

p
B p q p q

p q

 


 



   


 
  



   
  

 (28) 

 

We can give some examples right now. Let's compute the beta function for 3p   and 

5q  : 

 

     
2 2 1 2 1 1 1

3, 5 2,5 1,5
7 7 6 7 6 5 105

B B B     

 

The another example for beta function is below: 

 

       
1 1 1 1 1 1

0,5 0,4 0,3 0,2
1 5 1 4 1 5 1 3 1 4 1 5

B B B B        
     

 

            
1 1 1 1 1 1 1 1

0,1 0
1 2 1 3 1 4 1 5 1 2 1 3 1 4 1 5

B         
       

 

           
25

12
   

 

At this point, if we know  0,0 0B   and  0,1 0B  , all other values of  0,B q  can be 

calculated for integers that less than zero of q. Thanks to this calculation method, the 

value of beta function can be found for negative q integers and all p integers as: 
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 

 

   

     

1
, 1 ; 0, 0

, 1, , 1 ; 0, 0

1, 1, 1 ; 0, 0 and Cond.1or Cond.2

B p q p q
q

B p q B p q B p q p q

B p q B p q p q


   


     
      



 

(29) 

 

The third line of this equation requires two more conditions besides 0p   and 0q   to 

calculate. The summary of these conditions are below:  

Condition 1: The third line of Equation (29) runs over and over again until it reaches as 

 0,B a  or  , 0B b  values with zero. Here a and b are integers. 

Condition 2: If 1p q   exists, condition 1 runs and finds a numerical value. Later, the 

beta function that is desired to be calculated is found by dividing this numerical value by 

p q . An example illustrating this calculation method is given below: 

 

     

       

   

5, 3 4, 3 4, 2

3, 3 3, 2 3, 2 3, 1

(2, 3) (2, 2) 2 (2, 2) 2 (2, 1) 2, 1 2,0

B B B

B B B B

B B B B B B

    

       

          

 

    

   

(1, 3) (1, 2) 3 (1, 2) 3 (1, 1) 3 (1, 1) 3 (1,0) (2,0)

(0, 3) (0, 2) 4 (0, 2) 4 (0, 1) 6 (0, 1) 6 (0,0)

3 (1,0) (2,0)

(0, 3) 5 (0, 2) 10 (0, 1) 6 (0,0) 3 (1,0) (2,0)

11 3
5 10 1 6 0 3

6 2

B B B B B B B

B B B B B B

B B

B B B B B B

           

          

 

        

 
        

 
   0 1

10

3

 

 

 

 

In this numerical application, the value of  0, 3B  ,  0, 2B   and  0, 1B   functions 

are computed from the first line of Equation (29). At the same time,   0, 0B ,  1,0B  

and  2,0B  are also computed from the first, second and third lines of Equation (28). 

After this operations, the obtained value is divided by p q  and finally  5, 3B   has 

been found as: 

 

 
 

10 3 5
5, 3

5 3 3
B


   

 
 

 

The symmetry property is valid for all values of the beta function which are given here. 

Some examples of the cases contained in Equation (29) are presented in the diagram in 

Figure 1. The following diagram is given for a better understanding of the our calculation 

principle for beta function with negative integers. Let’s take an numerical calculation for 

 2, 3B   : 
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Figure 1. The diagram for the calculation of beta function for 2p    and 3q   . 

 

In the calculations of this diagram, first and second lines of Equation (29), and Equation 

(17) are used. It is clearly seen form Figure 1 that a beta function is obtained from the 

another beta function. The numerical calculations for many different cases are introduced 

in Table 1. 

The beta function with 0p   and 0q   is given by the following form: 

 

 
   

 
,

p q
B p q

p q

  
 

  
 (30) 

 

here, during the 0p q    or q p , an indeterminate form is encountered. As z is a 

positive integer and -z is a simple pole function for the gamma function, the following 

definition exists in relation [17, 38]: 

 

 
 1 1

!

z

z
z





     (31) 

 

When this situation is created for 1z  and 2z  and   is chosen quite small, the ratio of 

gamma functions with negative integers is: 
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 

 

 

 
 

1

1 2

2

1 2 2

0
2 1 1

1 ( ) ! ( )!1
lim 1

( ) ! ( )!1

z

z z

z

z z z

z z z




 





   
  

   
 (32) 

 

at this point, we can use the definition given below for the ratio of gamma functions with 

negative integers in Equation (30): 

 

 

 
 

 

 

1
1

1

qp p q

p q p

    
 

    
 (33) 

 

If this expression is used in Equation (30) and rearranged, another form of Equation (23) 

is obtained as: 

 

   
   

 

1
, 1

1

q p q q
B p q

p

    
  

 
 (34) 

 

and then with the arrangement of this equation, following relation is achieved for the beta 

function: 

 

     , 1 1,
q

B p q B p q q


      (35) 

 

Some numerical examples for this equation: 

 

     
1 1

4,1 1 4,1
4

B B


      

 

     
3 1

5,3 1 3,3
30

B B


      

 

Even though Equation (35) is defined for 0p  , 0q   and q p , we confirm that this 

equation is also valid for 0p  , 0q   and 1q p  . More numerical applications 

including these situations are presented in Table 2. 

 

4. Results 

In this section, the details of numerical calculations for beta function are given over the 

tables and figures. The algorithms in this work are written in Mathematica programming 

language by using the Intel(R) Core(TM) i5 CPU M465 @ 2.53 Ghz computer. Numerical 

values in Table 1 are compared by using Mathematica 10 [39], Maple 15 [40] and Matlab 

R2015a [41] programming languages. The values of the beta function for some p and q 

integers are given in Table 1. Here, Algorithm 1 includes Equations (2), (9), (17)-(20) 

and (22)-(24) which are based on previous works. On the other hand, Algorithm 2 also 

includes Equation (9), and our new Equations (28) and (29).  
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Table 1. Numerical results for beta function 

B(p, q) Algorithm 1 Algorithm 2 
 Mathematica 10 

Beta[a, b]   

Maple15 

beta(a,b) 

Matlab R2015a 

beta(a,b) 

B (0, 0) 0 0 ComplexInfinity Error NaN 

B (0, 1) 0 
0 

ComplexInfinity Error Inf 

B (0, -1) -1 -1 ComplexInfinity Error Error 

B (-3, 0) -11/6 -11/6 ComplexInfinity Error Error 

   B (3, 0) -3/2 -3/2 ComplexInfinity Error Inf 

 B (-3, -2) -37/3 -37/3 ComplexInfinity Error Error 

 B (-3, -1) -16/3 -16/3 ComplexInfinity Error Error 

B (-3, 1) -1/3 -1/3 -1/3 -1/3 Error 

B (-4, 3) -1/12 -1/12 -1/12 -1/12 Error 

B (2, -1) -1 -1 ComplexInfinity Error Error 

B (3, -1) 0 0 ComplexInfinity Error Error 

B (2, -2) 1/2 1/2 1/2 1/2 Error 

  B (3, 1) 1/3 1/3 1/3 1/3 1/3 

  B (3, 5) 1/105 1/105 1/105 1/105 1/105 

  B (-5, 8) -329/60 -329/60 ComplexInfinity Error Error 

 

It is seen that the beta function which calculated using Algorithm 1 and Algorithm 2 has 

a finite value especially for 0p   and 0q  . So, these two algorithms in Table 1 generate 

completely the same numerical results. However, Mathematica 10, Maple 15 and Matlab 

R2015a programming languages produce Complexinfinity, error, infinity (Inf), and not a 

number (NaN) results for the beta function in the same p and q integers.  

Table 2 contains the results obtained from Equation (35) using Algorithm 1, Algorithm 2 

and Mathematica 10. If we taking account Equation (35), beta function on the right side 

of this equation consists of zero and positive integers while the function on the left side 

includes zero and negative integers. This provides a great advantage to calculate beta 

function with zero and negative integers. In Table 2, computational results have been 

presented via Algorithm 1, Algorithm 2 and Mathematica 10 for the two sides of this 

equation. The table proves that Algorithm 1 and Algorithm 2 are successful to 

demonstrate the validity of this equation since they produce the same results. 

 
Table 2. Some numerical results for Equation (35) 

B(-p,q)  1
q

 B(p-q+1,q)  Algorithm 1 Algorithm 2 Mathematica 10 

B (0, 0) B (1, 0) 0 0 ComplexInfinity 

B (0, 1) -B (0, 0) 0 0 ComplexInfinity 

B (-4, 0) B (5, 0) -25/12 -25/12 ComplexInfinity 

B (-4, 1) -B (4, 1)  -1/4 -1/4 -1/4 

B (-2, 3)  -B (0, 3)  3/2 3/2 ComplexInfinity 

B (-4, 5)  -B (0, 5)  25/12 25/12 ComplexInfinity 

B (-5, 3)  -B (3, 3)  -1/30 -1/30 -1/30 

B (-7, 7)  -B (1, 7)  -1/7 -1/7 -1/7 

B (-10, 2)  B (9, 2)  1/90 1/90 1/90 

 

Figure 2 contains graphs about computational results of beta function by using  Algorithm 

1 and Mathematica 10. In these graphs, it is well seen that Algorithm 1 calculates more 

numerical values than Mathematica 10 for beta function with 5q   , 0q  , 5q   and 
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25 25p   . If we consider first graph in Figure 2 that Algorithm 1 calculates all values 

of beta function, however, Mathematica 10 finds only a few results on the right side of 

the origin. Furthermore, in the second graph only Algorithm 1 generates numerical 

results. In the third graph,  Algorithm 1 gives more numerical results on the left side of 

the origin. 

 

 
Figure 2. The graphs of beta function for 25 25p    and some q values 

 

In Figure 3, the graphs are presented for beta functions  , 10B p  ,  , 0B p  and  ,3B p  

by using both Algorithm 1 and Algorithm 2.  These graphs confirm that Algorithm 1 and 

Algorithm 2 compute exactly the same results for a wide range of p and q integers. 

 

 

Figure 3. The graphs of the beta function for 50 50p    and some q values 
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5. Conclusion and Comment 

In this paper, we have created two algorithms for computational processes of beta 

function. While one of the them is following up equations from previous works, the 

another is using our own. At the end of this work, we reach two recurrence relations (28) 

and (29) that yield results consistent with the literature for the beta function with all 

integers.These new equations follow a different path than the equations in the previous 

works and they compute beta function without using the factorial and gamma function. 

Our new algorithm which based on these equations is quite successful to compute beta 

function especially in the case of negative integers. Eventually, we would like to remark 

that our relations and algorithm which are described in this paper are very effective and 

useful in areas where needed the beta function  such as computational physics, applied 

and engineering mathematics, statistics and probability. 

 

Appendix. The algorithms 

This section describes the details of two algorithms that contain the Mathematica codes 

of calculations. These are presented here: 

Algorithm 1: 

fi[a_]:= Module[{aa}, 
   If[a==0,bn=0,tot=0; 

     For[ix=1,ix<=a,ix++, 
       tot=tot +(1/ix)]; 
    bn=tot]; 

   aa=bn]; 
betaf[k_,l_]:= Module[{jj}, 

   s=Max[k,l]; 
   c=Min[k,l]; 

   If[And[s==0,c==0],bet=0,If[And[c==0,s>=1],bet=-fi[s-1]]]; 
   If[And[c<0,s==0],bet=-fi[Abs[c]]]; 
   If[And[s>0,c>0],bet=Gamma[s]*Gamma[c]/Gamma[s+c]]; 

   If[And[s>0,c<0], 
     If[s<=Abs[c],bet=Power[-1,s]*((s-1)!*(Abs[c]-s)!)/Abs[c]!, 
        bet=Power[-1,Abs[c]]*(s-1)!/(Abs[c]!*(s-Abs[c])!)* 

(fi[Abs[c]]-fi[s-Abs[c]-1])]]; 

   If[And[s<0,c<0], 
       toti=0; 
       For[i=0,i<=Abs[s]-1,i++, 

         coef=-Binomial[Abs[c]+i,i]/(Abs[s]-i); 
        toti=toti+coef]; 
       totj=0; 

       For[j=0,j<=Abs[c]-1,j++, 
         coef=-Binomial[Abs[s]+j,j]/(Abs[c]-j); 
         totj=totj+coef]; 
     bet=toti+totj]; 
   jj=bet]; 

p=Input["Please enter integer p"];q=Input["Please enter integer 
q"]; 

Print["p=",p,"  q=",q]; 
Print["Beta Function (Algorithm 1)=", betaf[p, q]]; 
Print["Beta Function (Mathematica)=", Beta[p, q]]; 

p = -3   q = -2 
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Beta Function (Algorithm 1)= 
37

-
3
 

Beta Function (Mathematica)= ComplexInfinity 

Algorithm 2: 

betaf[px_,qx_]:= Module[{dd}, 
   m=Max[px,qx]; 

   n=Min[px,qx]; 
   If[px<qx,m=qx;n=px]; 
   If[m>=0,kup=m; 
      If[n>=0,lup=-n,lup=n], 
        kup=Abs[m]; 
        lup=n+1]; 

   f=(Abs[m]+1)*(Abs[n]+1); 
   Array[cx,f]; 

   If[And[n==0,Or[m==0,m==1]],bet=0, 
    cx[0,0]=0; 
    cx[0,1]=0; 
    For[k=0,k<=kup,k++, 
     For[l=0,l>=lup,l--, 
      If[m>=0, 
        If[n>=0, 

          a=Min[k,Abs[l]]; 
          b=Max[k,Abs[l]]; 

          If[a==0, 
            If[b>1,cx[a,b]= cx[a,b-1]+1/(1-b)], 
             If[a==1,cx[a,b]= 1/b, 

cx[a,b]=(a-1)/(a+b-1)*cx[a-
1,b]]], 

          a=k; 
          b=l; 
          If[a==0,If[b=!=0,cx[a,b]= cx[a,b+1]+1/b; 
                cx[a,b]= cx[a,b]], 

           If[b==0,cx[a,b+1]= 1/a]; 
           cx[a,b]= cx[a-1,b]-cx[a-1,b+1]]], 
        a=-k; 
        b=l-1; 

        If[a==0,If[b=!=0,cx[a,b]= cx[a,b+1]+1/b; 

             cx[b,a]= cx[a,b]], 
           cx[a,b]= cx[a+1,b]+cx[a,b+1]]]; 
       beta= cx[a,b]; 
       If[And[k==kup,l==lup],bet= beta]]]]; 
   If[And[m>0,n<0], 
    If[m+n>0, 
     bet= cx[m,n]/(m+n)]]; 

   dd=bet]; 
p=Input["Please enter integer p"];q=Input["Please enter integer 
q"]; 

Print["p =",p,"  q =",q]; 

Print["Beta Function (Algorithm 2)=", betaf[p, q]]; 
Print["Beta Function (Mathematica)=", Beta[p, q]]; 

p = -3   q = -2 
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Beta Function (Algorithm 2)= 
37

-
3
 

Beta Function (Mathematica)= ComplexInfinity 
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