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Abstract 

Accurate estimation of wheat yield using Remote Sensing-based models is critical in determining the effects of 

agricultural drought and sustainable food planning. In this study, Winter wheat yield was estimated for large fields and 

producer fields by applying Normalized Difference Vegetation Index (NDVI) based linear models (simple linear 

regression and multiple linear regression) and Machine Learning (ML) techniques (support vector machine_svm, 

multilayer perceptron_mlp, random forest_rf). In this study, depending on the ecological zone, crop sampling was 

carried out from 380 rainfed parcels where wheat was planted. On the basis of crop development periods (CDP), the 

highest correlation between NDVI and yield occurred during the flowering period. In this period, coefficient of 

determination (R2) was 63% in TIGEM fields and 50% in producer fields for MODIS data, and 61% and 65% for 

Landsat data, respectively. In TIGEM fields, the best prediction performance was obtained with the MLP model for 

MODIS (RMSE:0.23-0.65 t/ha) and Landsat (RMSE: 0.28-0.64 t/ha). On the other hand, the highest forecasting 

accuracy was acquired with the SVM model in producer fields. The RMSE values ranged from 0.74 to 0.80 t/ha for 

MODIS and 0.51 to 0.60 t/ha for Landsat 8. The error value obtained with MODIS was approximately 1.4 times higher 

than the Landsat 8 data in producer fields. For yield estimation, the best estimation can be made 4-6 weeks before the 

harvest. In regional yield estimations, satellite-based ML techniques outperformed linear models. ML models have 

shown that it can play an important role in crop yield prediction. In crop yield estimation, it is a priority to consider the 

impact of climate change and ecological differences on crop development. 
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Introduction 

Wheat is among the most important basic nutrients in 

world food production (Shiferaw et al., 2013). While the 

demand for food products increases with the rapid 

population growth in the world, it is predicted that the 

rate of increase in global grain production will slow 

down (Fischer et al., 2014). The negative effects of 

climate change also make it difficult to meet the demand 

(Ray et al., 2019; Aydoğdu et. Al., 2020). Careful 

agricultural production planning and managing support 

policies are priority issues to ensure food safety. 

Accurate and timely estimation of wheat yield is very 

important considering national food security and its 

impact on a global scale (Han et al., 2020; Rahman, 

2022). In this context, the management of wheat 

production, which is a basic ingredient in the nutrition of 

human populations, has strategic importance. Estimation 

of crop yield is important for determining and 

overcoming the negative effects of global warming on 

agricultural production due to climate change. Crop 

productivity is influenced by the interaction of 

Genotype, Environment and Management (G×E×M) 

(Cooper et al., 2021). In the estimation of crop yield; 

linear models, machine learning models and crop 

simulation models are applied. Remote Sensing 

technologies also play an important role in the estimation 

of efficiency. In order to increase the prediction 

accuracy, the model inputs, the accuracy of the data, as 

well as the spatial and temporal resolution of the data 

must match the scale of the data source. The Central 

Anatolian Region in Turkey is the main center where 

wheat production is widespread. While 52% of the 

agricultural areas in this region are cereal fields, 

approximately 60% of these areas are wheat fields 

(TUIK, 2021). The Central Anatolian Region has a semi-

arid climate regime and is a region where dry agriculture 

is intense. In regions with semi-arid precipitation regime, 

temporal and spatial fluctuations occur in production and 

yield between years depending on precipitation 

(Teasdale and Cavigelli, 2017). This situation 

necessitates the timely monitoring and correct 

management of agricultural production from the very 

beginning.  
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Remote sensing techniques are used to monitor 

agricultural activities spatially and temporally and to 

make accurate forecasts (Atzberger, 2013). Satellite data 

can play an important role in obtaining information 

about crop type and crop development conditions from 

field scale to regional and national level. Crop yield is 

under the influence of many factors such as climate, soil, 

geographical location, variety characteristics, cultivation 

technique during the crop development period. Today, 

remote sensing-based models are preferred over 

traditional techniques in predicting the efficiency of 

these complex relationships. Vegetation indices (VI) 

derived from values obtained by reflection and 

absorption from visible and near-infrared (NIR) bands 

are widely used in monitoring crop growth and yield 

estimation by Remote Sensing (Huete et al., 2002). 

Most of the studies in the literature indicate that the 

vegetation indices obtained from images with different 

spatial resolutions during crop development periods have 

been associated with yield and there have been some 

attempts to increase the estimation accuracy by using 

different modeling techniques (Rasmussen, 1997; 

Dempewolf et al., 2014; Johnson, 2016). Leaf area index 

(LAI) is an indicator of both the structure and 

development of vegetation. Therefore, it is possible to 

predict the wheat yield of a particular region with 

empirical models that correlate the maximum leaf area 

with the yield of NDVI (Kouadio et al., 2012). These 

empirical models are preferred because they require less 

data and are easy to apply on a regional scale. In the 

relationships established between VI and yield,  different 

types of variables were used, such as periodic value 

(Lopresti, 2015), average value (Boken and Shaykewich, 

2002; Mkhabela et al., 2011), cumulative value (Ren et 

al., 2008; Mashaba, 2017; Mirasi et al., 2019; Panek and 

Gozdowski, 2021) and maximum value (Becker-Reshef 

et al., 2010). It has been determined that seasonally 

integrated VIs can be predicted more accurately than a 

single period and have a high correlation with yield 

around the maximum time VI peaks (Guo et al., 2021; Ji 

et al., 2022).  

Machine learning (ML), a branch of Artificial 

Intelligence, is a practical, data-driven approach that can 

provide better yield prediction based on various features 

by focusing on learning (Klompenburg et. al., 2020). 

Previous studies have indicated that ML techniques, 

along with linear approaches using differently calibrated 

models, can play an important role in crop yield 

estimation (Kaul et al. 2005; Ji et al. 2007; Jeong et al., 

2016; Sayago and Bocco 2018; Cai et al. 2019; Han et 

al., 2020; Gomez et al., 2021). It can better explain the 

nonlinear relationships between ML algorithms and 

multiple data sources (Chlingaryan et al., 2018). Many 

sets of algorithms are available for prediction models 

(e.g. random forest, support vector regression, kernel 

machines and neural networks). Model performances 

generally increase when there is more available training 

data (Goodfellow et al., 2016). Low-resolution Moderate 

Resolution Imaging Spectroradiometer (MODIS) 

satellite imagery is widely used due to its spatial, 

spectral and radiometric resolution for continuous 

monitoring of crop growth and for the creation of 

prediction models in large areas (regional, national 

scale). Although such images do not have high spatial 

resolution, it is possible to have cloud-free images due to 

the high repeating visit frequency of the sensor (1–2 

days). On the other hand, low spatial resolution is not 

sufficient for estimations for producer fields with small 

field areas. High spatial resolution satellite images are 

used to overcome this problem on a field basis and to 

determine the difference in crop development within the 

field. Although the temporal resolution of Landsat 

images is low (16 days) in terms of spatial resolution (30 

m), it allows yield estimations to be made at the scale of 

the producer field in determining the variability in crop 

development due to land characteristics and growing 

technique applications. 

In this study, the creation of yield prediction models for 

winter wheat (Triticum aestivum L.) is aimed based on 

both the spatial resolution of satellite images and the 

field sizes of wheat production areas. In this context the 

relationships between yield and NDVI on the basis of 

crop development periods were investigated. LR, MLP, 

SVM and RF model performances for different field 

sizes were compared using NDVI data obtained from 

MODIS and Landsat satellite images. 

Materials and Methods 

Study Area 

The study area is located in the Central Anatolian 

Region of Turkey. It covers the central and southern 

parts of Ankara province and the northern part of Konya 

province, which is between the Sakarya river in the west, 

the Kızılırmak river and the Salt Lake in the east (Figure 

1). The elevation of the area varies between 610 m and 

2065 m. There are 14 districts within the project area. 

The surface area of the project area is 22,900 km2. The 

study area has a semi-arid climate regime that typically 

characterizes the Central Anatolia Region, with an 

approximate annual average temperature of 12.0°C 

(MGM, 2021). While the annual average total 

precipitation varies between 330 and 390 mm, there are 

differences between years and seasonal distributions due 

to the scattered precipitation regime. The region is 

mainly composed of dry agricultural areas and grain 

cultivation is common. In grain fields, wheat and barley, 

rye and oat production are carried out. Other than grain, 

chickpeas, beans, lentils, sunflowers, safflower, sugar 

beet and corn are also produced throughout the region. 

Remote Sensing Data 

NDVI data, which is the main input of the crop yield 

estimation models, was obtained from MODIS and 

Landsat satellite images. NDVI, is derived from 

reflection in the red (R) and near-infrared bands (NIR) 

while representing the relationship of the product to dry 

matter deposition by monitoring vegetation growth 

conditions in large areas (Rouse et al., 1973; Mehta et 

al., 2021; Panchal et al., 2021). MODIS image has 250 

m spatial resolution, 1-2 days temporal resolution and 36 

bands (0.4 μm to 14.4 μm). MODIS data consists of 16-

day composite images and is very useful for crop 
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monitoring in large areas by reducing the cloudiness 

effect. 288 images (MOD13Q1.h20v06) of the long-term 

time series (2001-2018) obtained from the MODIS 

TERRA platform (USGS, 2022) were used.  

The Savitzky-Golay filter (Savitzky and Golay, 1964) 

was used to eliminate anomalies such as smearing errors 

and cloudiness that occur in the time series of MODIS 

images, and the TIMESAT program was used to apply 

the image correction technique (Jönsson and Eklundh, 

2004). During 2001-2018, we used 240 images from 

Landsat-5 TM (7 bands, 0.45 to 12.5 μm), Landsat-7 

ETM (8 bands, 0.45 to 12.5 μm) and Landsat-8 OLI & 

TIRS (11 bands, 0.43 to 12.51 μm) sensors with 177/33 

and 178/33 World Reference System-2 (WRS-2) 

path/rows. Images are in the WGS 84 UTM Zone 36 

coordinate system and the cloudiness is less than 30%. 

Crop Yields 

In yield estimation models, wheat yields obtained from 

large lands and producer fields were evaluated. 

Representing the large lands, within the study area, the 

dry farming yields of the fields belonging to the Polatlı, 

Altınova and Gözlü enterprises, which are affiliated to 

the General Directorate of Agricultural Enterprises 

(TIGEM) throughout the years 2001-2018 were used. 

TIGEM is a government institution that produces and 

distributes certified seeds as well as plant and animal 

production. The average field area of TİGEM enterprises 

is greater than 100 ha. The yield values of the producer 

fields were obtained from field studies in 2016, 2017 and 

2018. Harvest data were obtained from agricultural areas 

where the fallow-sowing system was applied and from 

producer fields ranging from 1.4 ha to 25 ha. The yield 

averages of the fields from which the crop samples were 

taken, for the years 2016, 2017 and 2018, are 3.34 t/ha, 

3.02 t/ha and 3.84 t/ha, respectively. Crop samples 

representing the sampled fields were taken from 1.0 

m*0.5 m areas of three different regions. Sampling 

points were selected according to the random sampling 

method, considering the ecological regions created 

according to climate and topographic factors. In this 

context, sampling was carried out from 380 locations, 

106 in 2016, 144 in 2017 and 130 in 2018. At the same 

time, the geographic coordinate locations of the 

sampling were recorded by GPS. Finally, after blending 

the crop material collected from the locations, the wheat 

grains were ±0.01 g. It was weighed with a precision 

electronic balance. 

Fig.1 Location map of the study area. 

Yield Estimation Models 
The growing season for winter wheat starts in mid-

October and continues until the end of July. Periodic 

vegetation indices (NDVI) were created first to 

determine the yield estimation model performances. 

Crop development varies over the years according to 

climatic conditions. In order to determine these 

differences, time series data were created and associated 

https://lpdaac.usgs.gov/tools/usgs-earthexplorer/
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with the phenological periods of wheat. Since the effects 
of phenological periods on crop development are 
different, 12 vegetation periods were determined by 
comparing these periods with satellite image dates. 
Vegetation periods include 16 days of composite image. 
The beginning of each period is indicated as the day of 
the year (Table 1). These periods are; germination 
(DOY:289, 305), tillering (DOY:321, 337, 65), jointing 
(DOY:81.97), booting (DOY:113), heading/flowering 
(DOY:129, 145) and ripening (DOY:145,161).  

Table 1- Periodic time intervals of satellite data 

Simple regression models were created to periodically 
determine the relationships between yield and NDVI. 
Depending on the phenological development of wheat, 
the input data were determined for the period when the 
maximum coverage and NDVI value were peaked, and 
prediction models were created accordingly. As model 
inputs; main period NDVI (NDVIp), maximum NDVI 
(NDVIm) and cumulative NDVI (NDVIc) values are 
used. Model performances were determined by creating 
linear and non-linear models with NDVI data and field 
yield values. In this context, as traditional approach, 
multiple regression model and ML models MLP, SVM 
and RF were applied. 

Multiple Linear Regression (MLR) 
Linear regression models are functional descriptions of 
the observed (dependent) value and influencing 
(independent) events. As being a traditional model, it has 
been extensively applied in yield estimation for many 
areas (Huang et al., 2013; Lopresti et al., 2015; Mashaba 
et al., 2016; Satir and Berberoglu, 2016). During the 
model creation, the correlation levels were determined 
by applying simple linear regression analysis between 
the dependent variable yield and VI as independent 
variables. For the models based on years, stepwise, 
which is a multiple regression model (MLR) for the 
main period NDVI, NDVIm and NDVIc values, was 
applied. In this model, the independent variable with the 
lowest significance level in the previous model was 
removed at each stage for the dependent variable, and 
the model with the highest significance level was 
obtained. 

Multilayer Perceptron (MLP) 
Multilayer Perceptron (MLP) is a feed-forward neural 
network type using a supervised learning technique 
called backpropagation. Nonlinear relationships between 
the data within the corresponding datasets are processed 
functionally. The MLP model structure consists of input 
layers, hidden layers, and output layers, where each 

neuron is connected to all neurons in the next layer. The 
model is trained with the training data and the prediction 
performance is evaluated from the test data based on the 
error between the expected and determined output 
(Paudel et al., 2021). In order to use this model and data 
in the best way, a feature extraction process was 
performed first to find the particular features that best 
represent the problem in hand. The aim is to train the 
network based on the dataset using these features with 
the backpropagation learning algorithm. In order to 
achieve this, an iterative structure was followed. The 
model was trained using the training data on different 
network topologies, and then the performance of the 
predicted model was measured on the test data. In order 
to prevent overfitting k-fold Cross Validation (CV) is 
implemented. 

Random Forest (RF) 
Random Forest is a learning technique that combines a 
set of decision trees for classification or regression 
(Breiman, 2001). The RF is constructed by selecting 
each tree, a random set of variables, and samples of the 
dataset. It works by constructing many decision trees and 
extracting predictions by combining a set of baseline 
decisions in regression models. During the training 
process, each decision tree is trained using some random 
partition of the data. However, each decision tree also 
uses a random subset of the full feature set. As a result, 
each decision tree is different and their overall 
contribution in the decision process results in better 
generalization without explicit need for Cross 
Validation.  

Support Vector Machine (SVM) 
A support vector machine (SVM) is a machine learning 
algorithm that can be used for both binary classification 
and regression. SVM is a supervised non-parametric 
algorithm that partitions the data using kernels and 
separating the margins between the two as much as 
possible (Gunn, 1998). Kernel functions, along with 
other SVM hyperparameters are optimized such that the 
resulting model achieves the highest margin between the 
two classes. As a result, SVM is also called maximum 
margin classifier. During SVM regression, the input is 
mapped to a high-dimensional feature space using a 
kernel function and a linear regression model is created 
to minimize errors (Hearst et al., 1998). In this study, the 
Gaussian kernel function is used. Cross Validation also 
is not necessary in the SVM case, since it optimizes the 
margin between the different classes; hence it can 
overfit. 

Model Validation 
In the forecasting model, it is aimed to make yield 
predictions based on the crop development period. Yield 
estimation model outputs were produced at 250 m and 
30 m spatial resolutions. Training and testing procedures 
were applied for LR, SVM, MLP and RF methods. 
Estimation results were compared to determine model 
performances. Each model was trained using 2 years of 
data and the remaining year was spared for testing. This 
was implemented for every year such that all the 
available data was tested  by a 3-fold-cross-validation 

DOY Date DOY Date 

289 16 Oct - 31 Oct 

305 01 Nov -16 Nov 

321 17 Nov - 02 Dec 

337 03 Dec - 18 Dec 

353 19 Dec - 03 Jan 

65 06 Mar - 21 Mar 

81 22 Mar - 06 Apr 

97 07 Apr - 22 Apr 

113 23 Apr - 08 May 

129 09 May - 24 May 

145 25 May - 09 Jun 

161 10 Jun - 25 Jun 
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method. Model performances were evaluated through 

coefficient of determination (R2), Root Mean Square 

Eror (RMSE) and Mean Absolute Percentage Error 

(MAPE) accuracy metrics. 

𝑅2 =
(Σ𝑖=1  
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2
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Here, n is the number of observations, yi is the observed 

yield, fi is the estimated yield, �̅�  and 𝑓 ̅ are the mean 

values. The closer the R2 value is to 1, the higher the 

prediction performance of the model. Smaller RMSE and 

MAPE values indicate less discrepancy between 

observed and predicted yield. 

Results 

Relationships between NDVI and yield during CDP 

In this study, ndvi obtained from modis and landsat 

images was used as vegetation index. Relationships 

between wheat yield and NDVI during the CDP were 

monitored for TIGEM and producer fields. The effect of 

the phenological period was determined for the yield 

estimation model. 

MODIS-NDVI and yield in TIGEM fields 

During the development period, simple linear models 

were constructed between the average field NDVI data 

and the field yields for the TIGEM lands for 2001-2018.  

When the vegetation indices are examined periodically 

with MODIS images, it is observed that while R2 was 

0.14 in the 321st period of crop emergence after planting, 

it increased to 0.28 with the onset of tillering. In the 65th 

period, for the crop R2 was 0.31 and in the 113th period, 

the relationship ratio increased with the crop's booting 

period and R2 rose to 0.48. Furthermore,  in the 129th 

period which is the flowering period,  R2 reached the 

peak value of 0.63. The high correlation (R2:0.54) 

continued in the 145th period and the index value 

decreased (R2:0.34) as the crop entered the maturation 

period with the 161st period (Figure 2).  

MODIS-NDVI and yield in producer fields 

In field studies, the relationships between NDVI data 

obtained from MODIS and Landsat 8 satellite images 

and yield were determined during the CDP. Wheat yield 

values obtained from crop samples collected in field 

studies in 2016, 2017 and 2018 were used. 

When the vegetation indices obtained from MODIS 

images are examined seasonally, it is observed that while 

there was an initial relationship of R2:0.15 in the post-

germination period of the crop, then it became R2:0.32 in 

March during the vegetative development period. Then, 

it reached at the levels of R2:0.43 result of the 

acceleration of crop growth with the booting period. It 

increased to R2:0.50 during the flowering period (Figure 

3). Due to the spatial resolution of the MODIS satellite 

image, the correlation levels decreased significantly for 

small fields.  

There are several studies in the literature for wheat yield 

estimation using linear modeling through MODIS 

satellite imagery. Mashaba et al. (2017) found a high 

correlation (R2: 0.73) between yield and NDVI during 

flowering, while Lopresti et al. (2015) North of Buenos 

Aires province, Argentina showed a good correlation 

(R2:0.52) between wheat yield and MODIS-NDVI 1 

month before harvest during flowering period. A similar 

result was given in a national study in the USA in the 

relationship between NDVI data obtained from 250 m 

spatial and 16 day temporal resolution MODIS images 

and yield (R2: 0.51) for the period between the end of 

May and the beginning of June, when the vegetation 

reached its peak level (Jahnson, 2016). Panek and 

Gozdowski (2020) determined the varying correlation 

levels between yield and NDVI (R2: 0.49- 0.71) in 

Central Europe during flowering and grain-filling 

periods. In the study conducted in Canada, (Mkhabela et 

al., 2011) a high correlation (R2: 0.47-0.80) was 

determined between the yield of flowering and grain-

filling periods covering July and early August for Wheat 

in semi-arid climate conditions and NDVI. In our study, 

the relationship of NDVI data obtained from MODIS 

satellite image with 250 m spatial resolution and 16-day 

temporal resolution with yield during flowering and 

grain-filling period was found to be R2:0.49-0.62 in 

TIGEM fields and R2:0.38-0.42 in producer fields. The 

relationships between the developmental periods of 

wheat and the yield were statistically significant (p < 

0.0001). 

Landsat-NDVI and yield in TIGEM fields 

In the periodic monitoring of crop growth, regression 

models were created between the average field NDVI 

data of 2001-2018 for TIGEM fields and the average 

NDVI data obtained from LANDSAT 5, 7 and 8 images. 

When the vegetation indices were examined 

periodically, it is observed that while R2 was 0.14 in the 

321st period after planting, it increased to 0.22 with the 

onset of tillering. While R2 was at the levels of 0.26 in 

the 65th period after the winter period, and 0.31 in the 

97th period, it increased to the level of 0.51 in the 113th 

period with the stem lift period of the crop, and reached 

the level of 0.61, peaking in the 129th period, which is 

the flowering period of the crop. The high correlation 

(R2:0.50) continued in the 145th period and decreased 

(R2:0.29) rapidly at 6 months as the crop entered the 

maturation period in the 161st period (Figure 4). 

Landsat-NDVI and yield in producer fields 

Wheat yields collected in field studies and NDVI data 

obtained from LANDSAT 8 satellite images were 

compared during the CDP. While the initial relationship 

during the germination period of the crop indicated an R2 

of 0.10, it reached the levels of R2:0.27 during the 

beginning of the vegetative period in March (65th 

semester). R2 became 0.43 with the acceleration of crop 

growth during the stemming period. During the 

flowering period, these values reached their best levels 

with R2:0.65. However, it was observed that the 

flowering period shifted to the 145th period and R2 

decreased to 0.26 in areas with high altitudes in the study 
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area (Figure 5). In the study, the effect of land size and 

ecological differences was observed depending on the 

resolution of the image. It was observed that the 

correlation levels between yield and NDVI decreased 

significantly in the producer lands when the product 

passed from the flowering period to the maturation 

period, while high correlation levels continued in the 

TIGEM lands with similar ecology. 

It has been shown that the temporal period when the 

NDVI value peaks from a Landsat image from March to 

June stands out as the primary parameter for evaluating 

wheat yield and is strongly correlated with yield. In 

similar studies with Landsat, strong correlations were 

observed between yield and NDVI. According to Jelínek 

et al. (2020), in field studies, a relationship at the level of 

R2:0.64 was determined between Landsat 8 NDVI data 

and wheat yield. . In the study conducted in the Tisza 

basin in Hungary (Nagy et al., 2021), the strongest 

relationship (R2: 0.64) was observed between the NDVI 

data obtained from Landsat 8 images and the yield for 

the May-early June period when the wheat reached its 

peak level. 

NDVI values reach the highest value during the 

flowering period in connection with the increase in the 

chlorophyll content in the leaves during the wheat 

development periods. As the plant enters the maturation 

period (DOY 161), the NDVI value decreases with the 

decrease in moisture content due to the yellowing of the 

leaves, and a weak relationship with yield is observed. In 

the study area, the 129th and 145th periods have the 

highest coefficient of determination among the forecast 

models, reaching the maximum biomass value by the 

end of May, indicating that it is the best time to make a 

forecast. These periods include the flowering and grain 

filling periods within the phenological period of the 

crop. These results are consistent with studies reporting a 

high correlation between NDVI and yield during 

flowering and grain filling (Mkhabela et al., 2011, 

Mashaba et al., 2017, Panek and Gozdowski, 2020). The 

most suitable period for wheat yield estimation in the 

study area is flowering and grain filling periods, which 

corresponds to 4-6 weeks before harvest. The 

relationships between the developmental periods of 

wheat and the yield were statistically significant (p < 

0.0001). 

Fig. 2 Seasonal relationships between MODIS-NDVI and yield in TIGEM fields 
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Fig. 3 Seasonal relationships between MODIS-NDVI and yield in producer fields. 

Fig. 4 Seasonal relationships between Landsat 8-NDVI and yield in TIGEM fields. 
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Fig. 5 Seasonal relationships between Landsat 8-NDVI and yield in producer fields. 

Comparison of model performances 

Model estimation performances were compared for 

fields with different areal sizes in rainfed agricultural 

areas where wheat is planted. In this context, NDVIp, 

NDVIm and NDVIc data obtained from Modis and 

Landsat satellite images were used as model inputs in 

large fields (TIGEM) and producer fields. NDVIp, 

NDVIm and NDVIc values between the end of tillering 

period and the milk production period were used as 

model variables within the development periods of 

wheat. Stepwise multiple regression model (MLR) was 

applied as linear model whereas MLP, RF and SVM 

techniques were applied as ML models. Forecasts were 

made at the end of May and beginning of June, four 

weeks before the harvest period.  

Yield prediction with ML models in TIGEM fields 

Efficiency values obtained from TIGEM fields and 

MLR, MLP, RF and SVM model performances for 

MODIS and Landsat NDVI data between 2001-2018 

were compared. Yield estimation was made for each 

year and the data of the estimated year were not included 

in the model. Among the models created with the NDVI 

data obtained from the MODIS satellite image, the best 

estimation was made with the MLP model. The 

estimation performance of the MLP model over the years 

ranged from RMSE between 0.23-0.65 t/ha. The MLP 

model was followed by the SVM (RMSE of 0.29-0.81 

t/ha), MLR (RMSE of 0.33-0.77 t/ha) and RF (RMSE of 

0.39-0.84 t/ha) models (Figure 6a). In a similar fashion, 

among the models created with the NDVI data obtained 

from the Landsat satellite image, the best estimation was 

also made with the MLP model. The estimation 

performance made with the MLP model over the years 

ranged from RMSE between 0.28-0.64 t/ha. The MLP 

model was followed by the SVM (RMSE: 0.30-0.95 

t/ha), MLR (RMSE: 0.33-0.95 t/ha) and RF (RMSE: 

0.46-0.89 t/ha) models. 

Fig. 6 Variation of model performances (RMSE, t/ha) for MODIS (a) and Landsat (b) data in TIGEM fields. 
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Temporal variation of model accuracies in TIGEM 

fields 

When the NDVI time series are monitored on a yearly 

basis, it is seen that the RMSE value for MODIS data 

fell below 0.30 t/ha and reached 0.80 t/ha due to the 

extreme climatic conditions. While Landsat data 

decreased to around 0.30 t/ha, it exceeded 0.90 t/ha in 

years when the error value increased (Figure 7a). 

According to the long term average error values; RMSE 

values obtained with MODIS data for MLP, SVM, MLR 

and RF are 0.43 t/ha, 0.49 t/ha, 0.50 t/ha, 0.62 t/ha, 

respectively. Meanwhile, for Landsat data, RMSE values 

for MLP, SVM, MLR and RF are 0.46 t/ha, 0.52 t/ha, 

0.54 t/ha, 0.65 t/ha, respectively (Figure 7b).  

MLP and SVM models showed the best performance in 

both data sets. A better estimation was made with 

MODIS data compared against the Landsat data. The 

fact that MODIS has a high temporal resolution has a 

positive effect, while the temporal resolution of Landsat 

data is 16 days and cloudiness etc. during the critical 

periods of product development affected the results. 

Hence, the error values have increased in some of the 

years for these reasons. The amount of precipitation that 

the crop receives during the growing period is important 

in model performances. In the forecast years, 2002 and 

2007 were dry years and 2010 and 2015 were humid 

years. It is observed that the RMSE value has increased 

(> 0.5 t/ha) in the semi-arid climatic conditions of the 

region during these years. It can be said that rather than 

the total seasonal precipitation, the extremely dry or 

rainy period during the April-June period, which is 

critical in the growing period of the crop, increases the 

error. 

Within the scope of the study, the error values obtained 

from the yield estimation model results with MLR 

overlap with similar studies for MODIS (RMSE: 0.50 

t/ha) and Landsat (RMSE: 0.54 t/ha) data. Becker-

Reshef's et al. (2010) study in Ukraine, the model 

accuracy for MODIS was found to be RMSE: 0.44 t/ha. 

Kouadio et al. (2012) in their study using MODIS data, 

estimated the model performance at regional scale as 

RMSE: 0.57 t/ha. Lyle et al. (2013)  in a study using 

Landsat 5 and 7 images in large farm areas in Australia, 

it was found that there was a good correlation between 

NDVI and yield, and the average RMSE for the models 

was 0.58 t/ha. Skakun et al. (2017) In regional scale 

yield estimation, ndvi data obtained from Landsat-8 

satellite image and official statistical yield values were 

compared and model accuracy (RMSE 0.57 t/ha) was 

determined. 

 

Fig. 7 Variation of error value according to MODIS (a) and Landsat (b) time series data. 

Yield estimation with ML in producer fields 

The performances of MLR, MLP, RF and SVM models 

were compared for yield estimations for producer fields. 

NDVIp, NDVIm and NDVIc data were used as model 

input data. Model estimation results were made four 

weeks before the harvest date. The SVM model showed 

the highest performance among the models using 

MODIS data. With SVM, the best estimation was in 

2017 (RMSE:0.74 t/ha, MAPE: 20.3%), while 2016 

(RMSE:0.78 t/ha, MAPE: 21.4%) and 2018 (RMSE:0.80 

t/ha, MAPE: 16.2%) have followed. With the MLP 

model, the best estimation was achieved in 2017 

(RMSE: 0.80 t/ha, MAPE: 21.8%), while the worst 

estimation was for 2018 (RMSE: 0.90 t/ha, MAPE: 

19%). The traditional MLR model is comparable in 2017 

(RMSE:0.82 t/ha, MAPE: 25.3%), 2016 (RMSE:0.85 

t/ha, MAPE: 21.8%) and 2018 (RMSE:0.88 t/ha, MAPE: 

18.2%). For MLR, similar error values were obtained for 

each year. The RF model results have higher error 

(RMSE > 0.95 t/ha) values than other models  (Table 2). 

A remarkable improvement was seen in the model 

results using Landsat 8 data. Among the models, the 

SVM model showed the highest performance. While the 

best estimation with SVM was made in 2017 (RMSE: 

0.51 t/ha, MAPE: 13.9 %), they were followed by 2016 

(RMSE: 0.53 t/ha, MAPE: 13.1 %) and 2018 (RMSE: 

0.60 t/ha, MAPE: 13.1 %) respectively. The best 

estimate after SVM was achieved with MLP. The best 

estimation for the MLP model is in 2017 (RMSE:0.55 

t/ha, MAPE:15.5 %). Meanwhile, 2016 (RMSE:0.58 

t/ha, MAPE:15.1 %) and 2018 (RMSE:0.63t/ha, 

MAPE:12.7 %) error values slightly increased. MLR 

model best estimates are respectively 2017 (RMSE:0.58 

t/ha, MAPE:14.9 %), 2016 (RMSE:0.60 t/ha, MAPE: 

15.3 %) and 2018 (RMSE:0.65 t/ha, MAPE: 13.5%) 

occurred over the years. Slightly higher error values 

were obtained by the RF model compared to other 

models in 2016 (RMSE:0.69 t/ha, MAPE:16.5 %), 2017 

(RMSE:0.66 t/ha, MAPE:18.1 %) and 2018 (RMSE:0.71 

t/ha, MAPE:15.2%) (Table 2). 

MLR               ML             RF             SVM MLR             MLP   RF   SVM (b) (a) 
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Table 2 Forecast model performances (RMSE_t/ha, MAPE_%) by years for MODIS and Landsat 8 in producer fields 

MLR MLP RF SVM 

Year RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

M
O

D
IS

 

2018 0.88 18.2 0.90 19.0 0.97 21.3 0.80 16.2 

2017 0.82 25.3 0.80 21.8 1.00 28.3 0.74 20.3 

2016 0.85 21.8 0.83 22.1 0.95 26.2 0.78 21.4 

Average 0.85 21.8 0.84 21.0 0.97 25.3 0.77 19.3 

L
an

d
sa

t 
8
 

2018 0.65 13.5 0.63 12.7 0.71 15.2 0.60 13.1 

2017 0.58 14.9 0.55 15.5 0.66 18.1 0.51 13.9 

2016 0.60 15.3 0.58 15.1 0.69 16.5 0.53 13.1 

Average 0.61 14.6 0.59 14.4 0.69 16.6 0.55 13.4 

In the modeling made using MODIS data, the most 

successful prediction was made with the SVM model. 

Model estimation error with SVM was found in the 

range of RMSE: 0.74-0.80 t/ha (avg.:0.77 t/ha). Other 

models followed with MLP (RMSE: 0.80-0.90 t/ha, 

avg.:0.84 t/ha), MLR (RMSE: 0.82-0.88 t/ha, avg.:0.85 

t/ha) and RF (RMSE: 0.95-1.0 t/ha, avg.:0.97 t/ha). In 

the models made for Landsat 8 data, the best prediction 

performance was obtained with SVM (RMSE: 0.51-0.60 

t/ha, avg.:0.55 t/ha). The SVM model was followed by 

the MLP (RMSE: 0.55-0.63 t/ha, avg.:0.59 t/ha), MLR 

(RMSE: 0.58-0.65 t/ha, avg.:0.61 t/ha) and RF (RMSE: 

0.66-0.71 t/ha, avg.:0.69 t/ha) models.  

When the model performances of MODIS and Landsat 8 

satellites in producer fields were compared for 2016, 

2017 and 2018, it was determined that SVM technique 

made the best estimation compared to MLP, RF and 

MLR models. In some studies comparing linear and ML 

models, it was stated that ML model performances were 

better (Jeong, 2016; Chen and Jing, 2017; Cai et al,, 

2019; Guo et al., 2021). It is observed that different 

models stand out in accuracy in studies conducted in 

different geographical locations using ML techniques. 

According to Gomez et al. (2021),  among the ML 

techniques applied in the study conducted in Mexico, it 

was determined that the RF model produced results with 

the highest accuracy (RMSE: 0.78-0.83 tons/ha). Wang 

et al. (2020) compared linear and nonlinear models for 

yield estimation for winter wheat in the USA. Among 

the ML techniques, Adaptive Boosting (R2: 0.86, 

RMSE:0.51 t/ha) showed the best performance. ML 

models were able to predict better than linear models. In 

Kamir et al. (2020) study, wheat yield in Australia was 

estimated using ML models. Among the ML models, the 

SVM (R2:0.86, RMSE:0.51 t/ha) model showed the best 

prediction accuracy.  

In the SVM model, where the best estimation is made, 

the RMSE values obtained for MODIS and Landsat 8 are 

0.80 t/ha and 0.60 t/ha for 2018, 0.74 t/ha and 0.51 t/ha 

for 2017 and 0.78 t/ha and 0.53 t/ha for 2016 

respectively. The error value obtained with MODIS was 

approximately 1.4 times higher than the Landsat 8 data 

in producer fields (Figure 8).  

Similar results are observed for the MLP, RF and MLR 

models. In the study based on crop development periods, 

a good prediction accuracy was obtained with the SVM 

model. Obtaining results at similar levels in previous 

studies supported the argument that the SVM model is 

one of the appropriate methods for estimating crop yield 

(Joshi et al., 2021; Ju et al. 2021; Abebe et al., 2022; Li 

et al., 2022). 

Fig. 8 Model performances by years in producer lands 

Discussion and Conclusion 

Yield estimation was implemented for TIGEM and 

producer fields using NDVI data obtained from MODIS 

and Landsat satellite images using LR, MLP, SVM and 

RF modeling techniques. It is aimed that the applied 

model best predicts the yield value and the error rate is at 

the lowest level. Model input data, yield values, and 

extra climatic conditions depending on the phenological 

period affect the prediction model accuracy. The spatial 

and temporal resolution of satellite images, which are the 

main data source, overlap with the data source, which 

will increase the performance of the applied model. In 

this context, model performance behaviors were 

investigated with data obtained from different field sizes. 

When the empirical relationship between the satellite-

derived vegetation index and historical yield values is 

modeled with statistical regression-based approaches, the 

model is localized and cannot be easily generalized to 

other different areas. The main disadvantage of empirical 

models estimating yield from spectral data is the 
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difficulty of extending locally calibrated estimation 

methods to other areas or other scales, as it is linked to 

the environmental characteristics of the geographic area 

(Becker-Reshef et al., 2010; Vannoppen and Gobin, 

2021). Effective performance can be achieved in areas 

with similar climate and ecological structure. As crop 

development varies over time, correlating crop 

phenology with vegetation indices can provide a 

significant benefit for crop yield prediction models. 

Thus, considering crop phenology in yield estimation 

can increase the accuracy of the estimation.  

During the crop development period, the seasonal NDVI 

value and the cumulative NDVI value obtained at 

maximum crop coverage were highly and linearly 

correlated. With the acquisition of new NDVI data every 

month, forecast performances were improved, reaching 

the highest level when all data were collected. Therefore, 

a more accurate estimation of its yield is possible 

approximately 4-6 weeks before harvest. 

The differences between the years in the climate data, 

especially the irregularity and variability in the 

precipitation, also affect the estimation results. 

Ecological differences and the tolerance of the crop 

variety increase the variability in yield during the periods 

when the crop is under water stress. Ecological 

differences cause temporal shifts in the phenological 

stages of the crop in this case it affects the model 

performance. The effect of the climatic conditions 

occurring during the critical development periods on the 

harvest yield of the crop is also quite large. The fact that 

the models created can explain this change in vegetation 

will cause a decrease in the error rate. The model that 

can best explain the positive and negative aspects of the 

season will show the best performance. Estimation 

results can be improved by using effective climate 

parameters for the studied area as well as vegetation 

indices obtained from satellite images.  

Among the factors affecting model performances are 

mixing of field sizes and product reflectance values, 

historical yield values and accuracy. Our most important 

advantage in this study was that we have wheat planted 

field borders. Thus, the interference of satellite image 

reflection values with other products is prevented to a 

certain extent. This situation creates negativity in 

reflectance values due to field interactions in low 

resolution images, especially in regions with small field 

area. In the creation of NDVI time series obtained 

periodically, MODIS satellite image provides an 

advantage in overcoming problems such as cloudiness 

compared to Landsat satellite image due to its high 

temporal resolution, while it has a disadvantage due to 

low spatial resolution in producer fields.  

Another important issue is the accuracy of the yield 

values. If the efficiency values are not healthy, this will 

increase the error rate and decrease the model 

performance. In this study, we used measured field 

yields to reduce this error as much as possible. It is 

important that the spatial resolution of the satellite image 

is high so that the data obtained on the basis of location 

in the producer fields can represent the field. In medium 

and low resolution images such as MODIS, the 

prediction accuracy results are reduced due to the mixing 

of product reflection values. In the results we obtained in 

the producer fields, we saw that the MODIS (250 m) 

data made an estimation with approximately 1.4 times 

more error than the Landsat 8 (30 m) data. 

In large fields, the models created with MODIS and 

Landsat have similar results. Although the image 

resolutions are different, due to the field sizes of more 

than 100 ha, it has provided sufficient performance for 

medium resolution images. The use of 30 m resolution 

data obtained from the Landsat satellite image in the 

producer's fields has had a positive effect by increasing 

the performance of the model. Yield estimation models 

can be developed by using sensors with higher repetition 

frequency and better spatial resolution (10 m) for more 

accurate estimation in small field structures such as 

producer fields. 

The best estimation was made with the SVM model 

among the model performances in the producer's fields. 

This has been confirmed over the years and for different 

spatial resolutions. ML models have shown that it can 

play an important role in crop yield prediction. With the 

results obtained, it will be possible to predict the wheat 

yield early, cost-effectively and more accurately and to 

reveal the yield variability in terms of area.  
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