
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 53 (3) (2024), 595 – 607
DOI : 10.15672/hujms.1130102

Research Article

Redundancy, weaving and Q-dual of K-g-frames
in Hilbert spaces

Xiangchun Xiao∗
�, Guoping Zhao�, Guorong Zhou�

School of Mathematics and Statistics, Xiamen University of Technology, Xiamen 361024, P.R.China

Abstract
In this paper we study exact K-g-frames, weaving of K-g-frames and Q-duals of g-frames
in Hilbert spaces. We present a sufficient condition for a g-Bessel sequence to be an exact
K-g-frame. Given two woven pairs (Λ, Γ) and (Θ, ∆) of K-g-frames, we investigate under
what conditions Λ can be K-g-woven with ∆ if Γ is K-g-woven with Θ. Given a K-g-frame
Λ and its dual Γ on U, we construct a new pair based on Λ and Γ so that they are woven
on a subspace R(K) of U. Finally, we characterize the Q-dual of g-frames using their
induced sequences.

Mathematics Subject Classification (2020). 42C15

Keywords. K-g-frame; exact K-g-frame; weaving; Q-dual

1. Introduction
In 2006 Sun [17] proposed the concept of g-frames, which generalizes frames [7], pseudo-

frames [1], fusion frames [5, 6], and so on. Since then, g-frames have become a hot topic
of research and have been studied intensively by many scholars. Recall that a collection
{Λj : j ∈ J} is called a g-frame for U with respect to {Vj : j ∈ J}, if there exist two
positive constants A, B such that

A‖f‖2 ≤
∑
j∈J

‖Λjf‖2 ≤ B‖f‖2, ∀ f ∈ U, (1.1)

where U,Vj are Hilbert spaces and Λj , j ∈ J are bounded linear operators from U into Vj .
From the previous literature we know that although g-frames share many of the properties
of the previously mentioned frames, there are still some different behaviours for g-frames,
e.g. in Hilbert spaces an exact g-frame is not equivalent to a g-Riesz basis [15, 17]. For
further information on g-frames, the reader can consult [11, 15, 17, 25] and the papers
therein.

K-g-frames are proposed by Xiao et al. in [20] to combine the g-frames with a bounded
linear operator K. The idea was from [10], in which the author used K-frames to study
the atomic systems. From [20] we know that the properties between g-frames and K-
g-frames are quite different, e.g., a g-Bessel sequence Λ := {Λj ∈ L(U,Vj) : j ∈ J} is a
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g-frame for U, iff its synthesis operator TΛ is surjective on U (see [25]), but for K-g-frames,
a g-Bessel sequence {Λj ∈ L(U,Vj) : j ∈ J} is a K-g-frame for U, is equivalent to the
synthesis operator TΛ being bounded and R(K) ⊆ R(TΛ) (see [20]). For more information
on K-g-frame and its special case K-frame, readers can refer to the [10, 18–20]. In this
paper we will give a sufficient condition for a g-Bessel sequence to be an exact K g-frame
(see Theorem 3.1).

Due to the redundancy, frames provide a stable expansion of elements in the whole
Hilbert space, which is very useful in practical applications. When expanding an element
using a frame {fi}i∈I in U, the canonical dual {S−1

F fi}i∈I is often used, where SF is the
frame operator of {fi}i∈I . The disadvantage is that it is usually difficult to compute
the inverse operator S−1

F when the dimension of U is large. A feasible way is to use an
alternate dual of {fi}i∈I to reconstruct the element, that is f =

∑
i∈I〈f, gi〉fi. Now types

of duals of frames are suggested, such as alternate dual, oblique dual and Q-dual, etc. Note
that Q-dual of fusion frames was first proposed by Heineken et al. in [12] to generalize
the canonical dual, and recently Q-duals of frames and g-frames were further studied by
Azandaryani in [2, 3]. For more information on duals of frames the reader can consult
[2, 3, 12, 13]. In this paper we will characterize the Q-dual of g-frames in terms of their
induced sequences.

In a wireless sensor network with M nodes, each node is regarded as a frame {fij}i∈I ,
j = 1, · · · , M , we measure a signal f either with fij , can the signal f be robustly recovered
from these measurements {〈f, fi1〉}i∈σ1 ∪· · ·∪{〈f, fiM 〉}i∈σM , where {σi}M

i=1 is an arbitrary
partition of I. To simulate such a question in distributed signal processing, Bemrose,
Casazza, Grochenig, et al. introduced a new concept weaving of frames in [4]. After that,
the weaving of frames became a research hotspot studied by many scholars, we refer the
readers to consult [4,8,9,14,16,21–24] and the papers therein. Now the weaving principle
is applied to other frames. In [9] the authors introduced the weaving of K-g-frames. In
this paper, we will further study the properties of the weaving of K-g-frames. We are
motivated by the following question.

Question: Suppose that ({Λj : j ∈ J}, {Γj : j ∈ J}), ({Θj : j ∈ J}, {∆j : j ∈ J})
are two K-g-woven pairs on U. If {Γj : j ∈ J} is K-g-woven with either {Θj : j ∈ J}
or {∆j : j ∈ J} on U, under what conditions can {Λj : j ∈ J} be K-g-woven with
{∆j : j ∈ J} or {Θj : j ∈ J} on U?

In [8] the authors discussed that a g-frame and its dual g-frames are woven. Motivated
by the work of [8], it is natural to consider whether a K-g-frame {Λj : j ∈ J} on U and
its dual are woven on U? It does not hold in general (see Section 5). We then construct a
new pair based on {Λj : j ∈ J} and {Γj : j ∈ J} so that they are woven on the subspace
R(K) of U.

This paper is organized as follows. In Section 2 we recall some lemmas and preliminaries
of K-g-frames in Hilbert spaces. In Section 3 we give a sufficient condition for a given g-
Bessel sequence to be an exact K-g-frame. Given two K-g-woven pairs (Λ, Γ) and (Θ, ∆),
we will show in Section 4 that any two g-Bessel sequences in these two K-g-woven pairs
are possible K-g-woven. Given a K-g-frame {Λj : j ∈ J} and its dual {Γj : j ∈ J} on U,
in Section 5 we will construct a new pair based on {Λj : j ∈ J} and {Γj : j ∈ J} so that
they are woven on a subspace R(K) of U. In Section 6 we characterize a Q-dual pair of
g-frames in terms of their induced sequences.

Throughout this paper, we adopt such notations: U and V are Hilbert spaces, with
inner product 〈·, ·〉, and norm ‖ · ‖; the identity operator on U is denoted by IU; L(U,V)
denotes by the collection of all linear bounded operators from U to V, if U = V, then
L(U,V) is abbreviated as L(U); 0 6= K ∈ L(U), K∗ and K+ denote the adjoint operator
and pseudo-inverse of K, respectively; if Q ∈ L(U,V), R(Q) and N(Q) denote the range
and null space of Q, respectively; {Vj}j∈J is a sequence of closed subspaces of V, where J
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is a subset of the integer set Z; U ⊂ V means U is strictly contained in V, U ⊆ V includes
two cases U ⊂ V and U = V.

2. Preliminaries
In this section we mainly recall some preliminaries of K-g-frames in Hilbert spaces.

Definition 2.1 ([20]). A sequence {Λj ∈ L(U,Vj) : j ∈ J} is called a K-g-frame for U

with respect to (w.r.t.) {Vj : j ∈ J}, if there exist A, B > 0 such that

A‖K∗f‖2 ≤
∑
j∈J

‖Λjf‖2 ≤ B‖f‖2, ∀ f ∈ U. (2.1)

We call A, B the lower and upper frame bound of K-g-frame {Λj : j ∈ J}, respectively.
We call {Λj : j ∈ J} a g-Bessel sequence if only the right side of (2.1) holds.

We call {Λj : j ∈ J} an exact K-g-frame if it ceases to be a K-g-frame whenever any
one of its elements is removed.

We also need to introduce a basic space l2({Vj}j∈J) as follows:

l2({Vj}j∈J) =
{

{gj}j∈J : gj ∈ Vj , j ∈ J and
∑
j∈J

‖gj‖2 < +∞
}

,

with the inner product
〈{fj}j∈J , {gj}j∈J〉 =

∑
j∈J

〈fj , gj〉.

In [25] it was shown that l2({Vj}j∈J) is a complex Hilbert space.

Definition 2.2 ([17]). Let {Λj : j ∈ J} be a g-Bessel sequence in U w.r.t. {Vj : j ∈ J}.
For {gj}j∈J ∈ l2({Vj}j∈J), if

∑
j∈J Λ∗

jgj = 0 implies that gj = 0 for any j ∈ J , then
{Λj : j ∈ J} is called l2({Vj}j∈J)-linear independent.

Remark 2.3. Note that, if a g-Bessel sequence {Λj : j ∈ J} is l2({Vj}j∈J)-linear inde-
pendent, then Λj 6= 0 for any j ∈ J .

Assume that Λ := {Λj ∈ L(U,Vj) : j ∈ J} is a g-Bessel sequence in U, the synthesis
operator TΛ is defined in [25] as follows:

TΛ : l2({Vj}j∈J) → U, TΛ({gj}j∈J) =
∑
j∈J

Λ∗
jgj . (2.2)

In order to characterize exact K-g-frames, for some j0 ∈ J , we also need to define Tj0 as
follows

Tj0 : l2({Vj}j∈J\{j0}) → U, T ({gj}j∈J\{j0}) =
∑

j∈J,j 6=j0

Λ∗
jgj . (2.3)

Given a K-g-frame {Λj : j ∈ J} in U w.r.t. {Vj : j ∈ J}, if there exists a g-Bessel
sequence {Γj : j ∈ J} in U w.r.t. {Vj : j ∈ J}, such that

Kf =
∑
j∈J

Λ∗
jΓjf, ∀f ∈ U, (2.4)

then {Γj}j∈J is called a dual K-g-Bessel sequence of {Λj}j∈J on U. Note that in general
{Λj}j∈J and {Γj}j∈J in (2.4) are not interchangeable, i.e. in general Kf 6=

∑
j∈J Γ∗

jΛjf .
If K = IU, (2.4) becomes f =

∑
j∈J Λ∗

jΓjf, ∀f ∈ U, in this case {Λj : j ∈ J} is a g-frame,
and {Γj}j∈J is called an alternate dual g-frame of {Λj}j∈J . Moreover, if we let K = IU
and Vj = C, Λjf = 〈f, fi〉, Γjf = 〈f, gi〉, ∀j ∈ J , then {Λj : j ∈ J} is a g-frame for U w.r.t.
{Vj : j ∈ J}, iff {fj}j∈J is a frame for U. Then from (2.4) we get f =

∑
j∈J〈f, gj〉fj ,

∀f ∈ U, and {gj}j∈J is called an alternate dual of {fj}j∈J .
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In order to generalize the canonical dual of frames Heineken et al. introduced Q-dual of
fusion frames in [12]. Later the properties of Q-dual of g-frames and frames were further
studied by Azandaryani in [2,3]. In this paper we will give an equivalent characterization
of Q-dual of g-frames.
Definition 2.4 ([2]). Let Q ∈ L(l2({Vj}j∈J)), Λ := {Λj : j ∈ J} and Γ := {Γj : j ∈ J}
be g-Bessel sequences in U w.r.t. {Vj : j ∈ J}, with synthesis operators TΛ and TΓ,
respectively. If TΛQT ∗

Γ = IU, then {Γj : j ∈ J} is called a Q-dual of {Λj : j ∈ J}. In
particular, if Q = Il2({Vj}j∈J ), then {Γj : j ∈ J} is called the alternate dual of {Λj : j ∈ J}.

In [4] the authors wanted to simulate a question in distributed signal processing and
introduced a new concept weaving of frames as follows.
Definition 2.5 ([4]). Let I be an index set, and let {fi}i∈I and {gi}i∈I be frames for H.
If there exist A, B > 0 such that for any partition {σj}2

j=1 of I, {fi}i∈σ1 ∪ {gi}i∈σ2 is a
frame for H with frame bounds A, B, then {fi}i∈I and {gi}i∈I are said to be woven on H

with universal frame bounds A, B, and {fi}i∈σ1 ∪ {gi}i∈σ2 is called a weaving.
Soon afterwards the weaving of frames was generalized to K-g-frames in [9].

Definition 2.6 ([9]). Let J be an index set, and let {Λj : j ∈ J} and {Γj : j ∈ J} be
K-g-frames for U w.r.t. {Vj : j ∈ J}. If there exist A, B > 0 such that for any partition
{σj}2

j=1 of J , {Λj}i∈σ1 ∪ {Γj}i∈σ2 is a K-g-frame for U with K-g-frame bounds A, B, then
{Λj : j ∈ J} and {Γj : j ∈ J} are said to be K-g-woven on U with universal K-g-frame
bounds A, B, each {Λj}j∈σ1 ∪ {Γj}j∈σ2 is called a weaving.

If K = IU, then K-g-frame is just the g-frame. From Definition 2.6 we can get the
weaving of g-frames as follows.
Definition 2.7 ([9,14]). Let J be an index set, and let {Λj : j ∈ J} and {Γj : j ∈ J} be g-
frames in U w.r.t. {Vj : j ∈ J}. If there exist A, B > 0 such that for any partition {σj}2

j=1
of J , {Λj}i∈σ1 ∪ {Γj}i∈σ2 is a g-frame for U with g-frame bounds A, B, then {Λj : j ∈ J}
and {Γj : j ∈ J} are said to be woven on U with universal g-frame bounds A, B.

In the rest of this section we recall some known lemmas which we need later.
Lemma 2.8 ([7]). Suppose that H1 and H2 are two Hilbert spaces, and Q ∈ L(H1,H2)
with closed range. Then there exists a unique bounded operator Q+ : H2 → H1, called the
pseudo-inverse operator of Q, satisfying

N(Q+) = R(Q)⊥, R(Q+) = N(Q)⊥, QQ+ = PR(Q), Q+Q = PR(Q+), (2.5)
where PR(Q) is the orthogonal projection from H2 onto R(Q), PR(Q+) is the orthogonal
projection from H1 onto R(Q+).

If Q is a bounded invertible operator, then Q+ = Q−1.
Lemma 2.9 ([20]). A sequence Λ := {Λj ∈ L(U,Vj) : j ∈ J} is a K-g-frame for U with
respect to {Vj : j ∈ J}, if and only if the synthesis operator TΛ defined by (2.2) is well
defined and bounded, and R(K) ⊆ R(TΛ).
Remark 2.10. In fact when R(K) = R(TΛ) Theorem 3.5 in [20] also holds, hence in
Lemma 2.9 we use R(K) ⊆ R(TΛ).

3. Conditions of exact K-g-frames
In the following we give a sufficient condition for a given g-Bessel sequence to be an

exact K-g-frame.
Theorem 3.1. Suppose that Λ := {Λj ∈ L(U,Vj) : j ∈ J} is a g-Bessel sequence in U

w.r.t. {Vj : j ∈ J}. If the following two conditions hold,
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(i) R(K) = R(TΛ), where TΛ is the synthesis operator for {Λj : j ∈ J};
(ii) for any j ∈ J , we have R(Tj) & R(TΛ), where Tj is defined as in (2.3);

then {Λj : j ∈ J} is an exact K-g-frame for U.

Proof. Suppose that the conditions (i), (ii) hold. Λ is a g-Bessel sequence in U, so TΛ is
bounded. By Lemma 2.9 we know that {Λj : j ∈ J} is a K-g-frame for U. Next we use
the contradiction to prove that {Λj : j ∈ J} is exact.

Assume that K-g-frame {Λj : j ∈ J} is not exact. Then there at least exists some
j0 ∈ J such that {Λj : j ∈ J\{j0}} is a K-g-frame for U. Again by Lemma 2.9 we get
R(K) ⊆ R(Tj0). Combining with the condition (ii) we have R(K) ⊆ R(Tj0) $ R(TΛ),
which contradicts to R(K) = R(TΛ). Therefore {Λj : j ∈ J} is an exact K-g-frame for
U. �

Note that the condition (ii) in Theorem 3.1 is necessary for an exact K-g-frame.

Theorem 3.2. Suppose that Λ := {Λj ∈ L(U,Vj) : j ∈ J} is a g-Bessel sequence in U

w.r.t. {Vj : j ∈ J}. If {Λj : j ∈ J} is an exact K-g-frame for U, then the condition (ii)
in Theorem 3.1 holds.

Proof. Let {Λj ∈ L(U,Vj) : j ∈ J} be an exact K-g-frame for U, with synthesis operator
TΛ. It is obvious that R(Tj) ⊆ R(TΛ), ∀j ∈ J , where Tj is defined as in (2.3). We apply
the proof by contradiction to prove R(Tj) & R(TΛ) for any j ∈ J . Assume that there
exists some j0 ∈ J such that R(Tj0) = R(TΛ). Since {Λj : j ∈ J} is an exact K-g-
frame, from Lemma 2.9 we get R(K) ⊆ R(TΛ), then we have R(K) ⊆ R(Tj0), again by
Lemma 2.9 it follows that {Λj}j∈J\{j0} is a K-g-frame for U. This contradicts to that
{Λj : j ∈ J} is exact. Hence R(Tj) 6= R(TΛ), combining with R(Tj) ⊆ R(TΛ), therefore
we have R(Tj) & R(TΛ) for any j ∈ J . �

In Theorem 3.10 in [23] the author got an equivalent characterization of an exact K-g-
frame as follows.

Theorem 3.3 ([23] ). Suppose that {Λj ∈ L(U,Vj) : j ∈ J} is a g-Bessel sequence in
U w.r.t. {Vj : j ∈ J}, and for any j ∈ J , dimVj = 1. Then {Λj : j ∈ J} is an exact
K-g-frame for U, if and only if the following two conditions hold:

(i) {Λj : j ∈ J} is l2({Vj}j∈J)-linear independent;
(ii) There exists a dual K-g-Bessel sequence {Γj ∈ L(U,Vj) : j ∈ J} in U satisfying

(2.4) such that for any j ∈ J , Γj 6= 0.

Note that, given a g-Bessel sequence {Λj ∈ L(U,Vj) : j ∈ J} in U, if {Λj : j ∈ J}
only satisfies condition (i) in Theorem 3.1, or only satisfies condition (ii) in Theorem 3.3,
we can’t deduce that {Λj : j ∈ J} is an exact K-g-frame for U. Please see the following
counterexamples.

Example 3.4. Let {ej}∞
j=1 be an orthonormal basis for U.

(i) Let Vj = span{ej , ej+1, ej+2}, j ∈ N\{4, 5, 6}, Vj = Vj−3, j = 4, 5, 6. Define K :
U → U and Λj : U → Vj as follows

Kei = ei, i = 1, 2, 3, Kej = 0, j ≥ 4; (3.1)
Λjf = 〈f, ej〉ej , j = 1, 2, 3, Λjf = Λj−3f, j = 4, 5, 6, Λjf = 0, j ≥ 7.

Obviously Λ := {Λj}∞
j=1 is a g-Bessel sequence in U. For any f ∈ U, and gj = cjej +

cj+1ej+1 + cj+2ej+2 ∈ Vj , where cj , cj+1, cj+2 ∈ C, j = 1, 2, 3, we have

〈Λ∗
jgj , f〉 = 〈gj , Λjf〉 = 〈cjej + cj+1ej+1 + cj+2ej+2, 〈f, ej〉ej〉 = cj〈f, ej〉 = 〈cjej , f〉.

Hence we get R(K) = R(TΛ) = span{e1, e2, e3}, by Lemma 2.9 {Λj}∞
j=1 is a K-g-frame for

U. It’s easy to check that {Λj}j∈N\{j0} is still a K-g-frame for U if we erase any Λj0 , j0 ≥ 4,
since R(K) = R(Tj0). Hence {Λj}∞

j=1 is not an exact K-g-frame for U.
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(ii) Let K be defined as in (3.1). Let Vj = span{ej}, j = 1, 2, V3 = V4 = span{e3},Vj =
span{ej−1}, j ≥ 5. Define Λj , Γj : U → Vj as follows

Λjf = 〈f, ej〉ej , j = 1, 2, Λ3f = Λ4f = 〈f, e3〉e3, Λjf = 0, j ≥ 5;

Γjf = 〈f, ej〉ej , j = 1, 2, Γ3f = Γ4f = 〈f,
1
2e3〉e3, Γjf = 〈f, ej−1〉ej−1, j ≥ 5.

It’s easy to check that Λ := {Λj}∞
j=1 and Γ := {Γj}∞

j=1 are g-Bessel sequences in U. By
direct calculations we obtain Λ∗

jgj = gj , j = 1, 2, 3, 4, Λ∗
jgj = 0, j ≥ 5, where gj ∈ Vj . So

for any gj = cjej ∈ Vj , where cj ∈ C, we have TΛ({gj}∞
j=1) =

∑∞
j=1 Λ∗

jgj =
∑4

j=1 Λ∗
jgj =∑3

j=1 cjej + c4e3 = c1e1 + c2e2 + (c3 + c4)e3. Hence R(K) = R(TΛ) = span{e1, e2, e3}, by
Lemma 2.9 {Λj}∞

j=1 is a K-g-frame for U.
On the other hand, for any f ∈ U, there exist {cj}j∈N ⊂ C such that f =

∑∞
j=1 cjej .

So we have

Kf =
∞∑

j=1
cjKej =

3∑
j=1

cjej ,

∞∑
j=1

Λ∗
jΓjf =

4∑
j=1

Λ∗
jΓjf =

4∑
j=1

Γjf

= 〈f, e1〉e1 + 〈f, e2〉e2 + 〈f,
1
2e3〉e3 + 〈f,

1
2e3〉e3

=
3∑

j=1
〈f, ej〉ej =

3∑
j=1

cjej = Kf.

Hence {Γj}∞
j=1 is a dual K-g-Bessel sequence of {Λj}∞

j=1 satisfying (2.4). It is obvious
Γj 6= 0, j ∈ N.

Next we show that {Λj}∞
j=1 is not an exact K-g-frame for U. If we erase Λj0 , j0 ≥ 4, we

can verify R(K) = R(Tj0) = span{e1, e2, e3}, hence {Λj}j∈N\{j0} is a K-g-frame for U by
Lemma 2.9.

4. Weaving of any two g-Bessel sequences in two K-g-woven pairs
In this section we will answer the question proposed in Section 1 on the weaving of

K-g-frames. Then we get a result as follows.
Theorem 4.1. Let K, Q ∈ L(U) be surjective operators on U, {Λj : j ∈ J}, {Γj : j ∈ J},
{Θj : j ∈ J} and {∆j : j ∈ J} be g-Bessel sequences on U w.r.t. {Vj : j ∈ J}. Suppose
that {Λj : j ∈ J} and {Γj : j ∈ J}, {Θj : j ∈ J} and {∆j : j ∈ J} are K-g-woven
on U, respectively with universal K-g-frames bounds A, B and C, D. If {Γj : j ∈ J}
is K-g-woven with {Θj : j ∈ J} with universal K-g-frame bounds A1, B1, and satisfies
QK = KQ, A + C > B1‖Q‖2‖K+‖2‖Q+‖2 and (B + D)‖Q‖2‖Q+‖2‖K+‖2 > A1, then
{ΛjQ∗ : j ∈ J} and {∆jQ∗ : j ∈ J} are K-g-woven on U, with universal K-g-frame
bounds

A + C − B1‖Q‖2‖K+‖2‖Q+‖2

‖Q+‖2 ,
(B + D)‖Q‖2‖Q+‖2‖K+‖2 − A1

‖Q+‖2‖K+‖2 .

Proof. Since Q ∈ L(U) is surjective on U, by Lemma 2.8 there exists a pseudo-inverse
operator Q+ such that QQ+ = PR(Q) = PU. It follows that PU = P ∗

U = (Q+)∗Q∗. Hence
for any f ∈ U, we have

‖f‖ = ‖(Q+)∗Q∗f‖ ≤ ‖(Q+)∗‖‖Q∗f‖ = ‖Q+‖‖Q∗f‖, (4.1)
and consequently

‖Q∗f‖ ≥ 1
‖Q+‖

‖f‖, ∀f ∈ U. (4.2)
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K ∈ L(U) is also surjective on U, similarly we can get, for any f ∈ U,

‖f‖ ≤ ‖K+‖‖K∗f‖, (4.3)

‖K∗f‖ ≥ 1
‖K+‖

‖f‖. (4.4)

Since {Λj : j ∈ J} and {Γj : j ∈ J}, {Θj : j ∈ J} and {∆j : j ∈ J}, {Γj : j ∈ J} and
{Θj : j ∈ J} are K-g-woven on U, respectively with universal K-g-frame bounds A, B,
C, D, and A1, B1, for any partition {σi}2

i=1 of J and any f ∈ U, we have

A‖K∗f‖2 ≤
∑
j∈σ1

‖Λjf‖2 +
∑
j∈σ2

‖Γjf‖2 ≤ B‖f‖2, (4.5)

C‖K∗f‖2 ≤
∑
j∈σ1

‖Θjf‖2 +
∑
j∈σ2

‖∆jf‖2 ≤ D‖f‖2, (4.6)

A1‖K∗f‖2 ≤
∑
j∈σ1

‖Γjf‖2 +
∑
j∈σ2

‖Θjf‖2 ≤ B1‖f‖2. (4.7)

Combining with (4.2) and (4.5), and KQ = QK, it follows that, for any f ∈ U,

A

‖Q+‖2 ‖K∗f‖2 ≤ A‖Q∗K∗f‖2 = A‖K∗Q∗f‖2

≤
∑
j∈σ1

‖ΛjQ∗f‖2 +
∑
j∈σ2

‖ΓjQ∗f‖2

≤ B‖Q∗f‖2 ≤ B‖Q‖2‖f‖2. (4.8)

Similarly we get

C

‖Q+‖2 ‖K∗f‖2 ≤
∑
j∈σ1

‖ΘjQ∗f‖2 +
∑
j∈σ2

‖∆jQ∗f‖2 ≤ D‖Q‖2‖f‖2, (4.9)

A1
‖Q+‖2 ‖K∗f‖2 ≤

∑
j∈σ1

‖ΓjQ∗f‖2 +
∑
j∈σ2

‖ΘjQ∗f‖2 ≤ B1‖Q‖2‖f‖2. (4.10)

Next we prove that {ΛjQ∗ : j ∈ J} and {∆jQ∗ : j ∈ J} are K-g-woven on U. In fact,
for any f ∈ U and any partition {σi}2

i=1 of J , by (4.8), (4.9) and (4.10), we obtain∑
j∈σ1

‖ΛjQ∗f‖2 +
∑
j∈σ2

‖∆jQ∗f‖2

=
∑
j∈σ1

‖ΛjQ∗f‖2 +
∑
j∈σ2

‖ΓjQ∗f‖2 +
∑
j∈σ1

‖ΘjQ∗f‖2 +
∑
j∈σ2

‖∆jQ∗f‖2

−
( ∑

j∈σ2

‖ΓjQ∗f‖2 +
∑
j∈σ1

‖ΘjQ∗f‖2
)

(4.11)

≥ A

‖Q+‖2 ‖K∗f‖2 + C

‖Q+‖2 ‖K∗f‖2 − B1‖Q‖2‖f‖2

≥ A + C

‖Q+‖2 ‖K∗f‖2 − B1‖Q‖2‖K+‖2‖K∗f‖2

= A + C − B1‖Q‖2‖K+‖2‖Q+‖2

‖Q+‖2 ‖K∗f‖2,

where the last inequality is deduced by (4.2).
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On the other hand, from (4.4), (4.8), (4.9), (4.10) and (4.11) we have∑
j∈σ1

‖ΛjQ∗f‖2 +
∑
j∈σ2

‖∆jQ∗f‖2

≤ B‖Q‖2‖f‖2 + D‖Q‖2‖f‖2 − A1
‖Q+‖2 ‖K∗f‖2

≤ (B + D)‖Q‖2‖f‖2 − A1
‖Q+‖2

1
‖K+‖2 ‖f‖2

= (B + D)‖Q‖2‖Q+‖2‖K+‖2 − A1
‖Q+‖2‖K+‖2 ‖f‖2.

Hence {ΛjQ∗ : j ∈ J} and {∆jQ∗ : j ∈ J} are K-g-woven on U. �

If K = IU or Q = IU in Theorem 4.1, we can respectively obtain the following corollaries.

Corollary 4.2. Let Q ∈ L(U) be a surjective operator on U, {Λj : j ∈ J}, {Γj : j ∈ J},
{Θj : j ∈ J} and {∆j : j ∈ J} be g-Bessel sequences in U w.r.t. {Vj : j ∈ J}. Suppose
that {Λj : j ∈ J} and {Γj : j ∈ J}, {Θj : j ∈ J} and {∆j : j ∈ J} are woven on U,
respectively with universal g-frames bounds A, B and C, D. If {Γj : j ∈ J} is woven with
{Θj : j ∈ J} with universal g-frame bounds A1, B1, and satisfies A + C > B1‖Q‖2‖Q+‖2

and (B + D)‖Q‖2‖Q+‖2 > A1, then {ΛjQ∗ : j ∈ J} and {∆jQ∗ : j ∈ J} are woven on U,
with universal g-frame bounds

A + C − B1‖Q‖2‖Q+‖2

‖Q+‖2 ,
(B + D)‖Q‖2‖Q+‖2 − A1

‖Q+‖2 .

Corollary 4.3. Let K ∈ L(U) be a surjective operator on U, {Λj : j ∈ J}, {Γj : j ∈ J},
{Θj : j ∈ J} and {∆j : j ∈ J} be g-Bessel sequences in U w.r.t. {Vj : j ∈ J}. Suppose
that {Λj : j ∈ J} and {Γj : j ∈ J}, {Θj : j ∈ J} and {∆j : j ∈ J} are K-g-woven
on U, respectively with universal K-g-frames bounds A, B and C, D. If {Γj : j ∈ J}
is K-g-woven with {Θj : j ∈ J} with universal K-g-frame bounds A1, B1, and satisfies
A + C > B1‖K+‖2 and (B + D)‖K+‖2 > A1, then {Λj : j ∈ J} and {∆j : j ∈ J} are
K-g-woven on U, with universal K-g-frame bounds

A + C − B1‖K+‖2,
(B + D)‖K+‖2 − A1

‖K+‖2 .

Moreover, in Corollary 4.3 if Γj = Θj , ∀j ∈ J , then we have the transitivity of weaving
for K-g-frames.

Corollary 4.4. Let K ∈ L(U) be a surjective operator on U, {Λj : j ∈ J}, {Γj : j ∈ J}
and {∆j : j ∈ J} be g-Bessel sequences in U w.r.t. {Vj : j ∈ J}. Suppose that {Λj : j ∈ J}
and {Γj : j ∈ J}, {Γj : j ∈ J} and {∆j : j ∈ J} are K-g-woven on U, respectively with
universal K-g-frames bounds A, B and C, D. If A+C > B‖K+‖2 and (B+D)‖K+‖2 > A,
then {Λj : j ∈ J} and {∆j : j ∈ J} are K-g-woven on U, with universal K-g-frame bounds

A + C − B‖K+‖2,
(B + D)‖K+‖2 − A

‖K+‖2 .

5. Weaving of a pair of dual of K-g-frames
In [8] the authors studied that a g-frame and its dual g-frame which are weaving.

Motivated by this, we will study the case of K-g-frames. Given a K-g-frame {Λj : j ∈ J}
on U and its dual K-g-Bessel sequence {Γj : j ∈ J} (see (2.4)), in general {Λj : j ∈ J} and
{Γj : j ∈ J} are not woven on U. In fact, in Example 3.4 (ii) we know that {Γj}∞

j=1 is a
dual K-g-Bessel sequence of {Λj}∞

j=1 on U, if we take σ = N\{1, 2, 3, 4}, σc = {1, 2, 3, 4},
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then we obtain a weaving {Λj : j ∈ σ} ∪ {Γj : j ∈ σc} = {Γj}4
j=1, which is obviously not

a g-frame for U.
Although in general a K-g-frame {Λj : j ∈ J} on U and its dual K-g-Bessel sequence

{Γj : j ∈ J} are not woven on U, next we construct a new pair based on {Λj : j ∈ J} and
{Γj : j ∈ J} so that they are woven on R(K).

Theorem 5.1. Suppose that K ∈ L(U) has a closed range and Λ := {Λj : j ∈ J} is a K-
g-frame for U w.r.t. {Vj : j ∈ J}, with K-g-frame bounds AΛ, BΛ. Γ := {Γj : j ∈ J} is a
dual K-g-Bessel sequence of {Λj}j∈J on U, with g-Bessel bound BΓ. Then {ΓjK∗ : j ∈ J}
and {Λj : j ∈ J} are woven on R(K), with universal g-frame bounds

1
2 max{BΛ‖K+‖2, BΓ}‖K+‖2 , BΓ‖K‖2 + BΛ.

Proof. Since K ∈ L(U) has a closed range, by Lemma 2.8 there exists a pseudo-inverse
operator K+ such that KK+ = PR(K), and consequently PR(K) = (PR(K))∗ = (KK+)∗ =
(K+)∗K∗. For any f ∈ R(K), we have

‖f‖ = ‖(K+)∗K∗f‖ ≤ ‖(K+)∗‖ · ‖K∗f‖ = ‖K+‖ · ‖K∗f‖. (5.1)

It follows from (5.1) that

‖K∗f‖ ≥ 1
‖K+‖

‖f‖, ∀f ∈ R(K). (5.2)

Since {Γj : j ∈ J} is a dual K-g-Bessel sequence of {Λj}j∈J on U, from (2.4) we get

Kf =
∑
j∈J

PR(K)Λ∗
jΓjf, ∀f ∈ U. (5.3)

For any f ∈ U and any σ ⊂ J , from (5.1) we have∣∣∣∣ ∑
j∈σ

〈ΓjK∗f, ΛjPR(K)f〉
∣∣∣∣ ≤

∑
j∈σ

‖ΓjK∗f‖ · ‖ΛjPR(K)f‖

≤
( ∑

j∈σ

‖ΓjK∗f‖2
) 1

2
·
( ∑

j∈σ

‖ΛjPR(K)f‖2
) 1

2

≤
√

BΛ‖PR(K)f‖
( ∑

j∈σ

‖ΓjK∗f‖2
) 1

2

≤
√

BΛ‖K+‖ · ‖K∗PR(K)f‖
( ∑

j∈σ

‖ΓjK∗f‖2
) 1

2
, (5.4)

and

∣∣∣∣ ∑
j∈J\σ

〈ΓjK∗f, ΛjPR(K)f〉
∣∣∣∣ ≤

( ∑
j∈J\σ

‖ΓjK∗f‖2
) 1

2
·
( ∑

j∈J\σ

‖ΛjPR(K)f‖2
) 1

2

≤
√

BΓ‖K∗f‖
( ∑

j∈J\σ

‖ΛjPR(K)f‖2
) 1

2
. (5.5)
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Combining (5.3), (5.4) and (5.5) we obtain, for any f ∈ R(K) and any σ ⊂ J ,

‖K∗f‖4 = |〈K∗f, K∗f〉|2

= |〈KK∗f, f〉|2

=
∣∣∣∣〈 ∑

j∈J

PR(K)Λ∗
jΓjK∗f, f

〉∣∣∣∣2

=
∣∣∣∣ ∑

j∈J

〈ΓjK∗f, ΛjPR(K)f〉
∣∣∣∣2

=
∣∣∣∣ ∑

j∈σ

〈ΓjK∗f, ΛjPR(K)f〉 +
∑

j∈J\σ

〈ΓjK∗f, ΛjPR(K)f〉
∣∣∣∣2

≤ 2
∣∣∣∣ ∑

j∈σ

〈ΓjK∗f, ΛjPR(K)f〉
∣∣∣∣2 + 2

∣∣∣∣ ∑
j∈J\σ

〈ΓjK∗f, ΛjPR(K)f〉
∣∣∣∣2

≤ 2BΛ‖K+‖2‖K∗f‖2 ∑
j∈σ

‖ΓjK∗f‖2 + 2BΓ‖K∗f‖2 ∑
j∈J\σ

‖Λjf‖2

≤ 2 max{BΛ‖K+‖2, BΓ}‖K∗f‖2
( ∑

j∈σ

‖ΓjK∗f‖2 +
∑

j∈J\σ

‖Λjf‖2
)

. (5.6)

For any f ∈ R(K) and any σ ⊂ J , it follows from (5.2) and (5.6) that∑
j∈σ

‖ΓjK∗f‖2 +
∑

j∈J\σ

‖Λjf‖2 ≥ 1
2 max{BΛ‖K+‖2, BΓ}

‖K∗f‖2

≥ 1
2 max{BΛ‖K+‖2, BΓ}‖K+‖2 ‖f‖2. (5.7)

On the other hand, it’s easy to check that∑
j∈σ

‖ΓjK∗f‖2 +
∑

j∈J\σ

‖Λjf‖2 ≤ (BΓ‖K‖2 + BΛ)‖f‖2. (5.8)

If we let σ = J and σ = ∅ in (5.7) and (5.8), we know that {ΓjK∗ : j ∈ J} and
{Λj : j ∈ J} are g-frames on R(K). Hence {ΓjK∗ : j ∈ J} and {Λj : j ∈ J} are woven on
R(K). �

If K = IU in Theorem 5.1, we can get Theorem 3.4 in [8] as a corollary as follows.

Corollary 5.2. Suppose that Λ := {Λj : j ∈ J} is a g-frame for U w.r.t. {Vj : j ∈ J},
with g-frame bounds AΛ, BΛ. Γ := {Γj : j ∈ J} is a dual g-frame of {Λj}j∈J on U, with
g-Bessel bound BΓ. Then {Γj : j ∈ J} and {Λj : j ∈ J} are woven on U, with universal
g-frame bounds

1
2 max{BΛ, BΓ}

, BΓ + BΛ.

6. A Characterization of Q-duals of g-frames
In this section we characterize a Q-dual pair of g-frames in terms of their induced

sequences.

Theorem 6.1. Suppose that Λ := {Λj : j ∈ J} and Γ := {Γj : j ∈ J} are g-Bessel
sequences in U w.r.t. {Vj : j ∈ J}, with upper bounds BΛ and BΓ, respectively. For
any j ∈ J , let {ϕjk}k∈Kj

and {φjk}k∈Kj
be frames on Vj, with frame bounds Cj

ϕ, Dj
ϕ and
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Cj
φ, Dj

φ, and satisfy infj∈J{Cj
φ, Cj

φ} = C > 0, supj∈J{Dj
ϕ, Dj

φ} = D < ∞. Define Q as
follows

Q : l2({Vj}j∈J) → l2({Vj}j∈J), Q({hj}j∈J) =
{ ∑

k∈Kj

〈hj , φjk〉ϕjk

}
j∈J

. (6.1)

Then the following conditions are equivalent.
(i) {Γj : j ∈ J} is a Q-dual of {Λj : j ∈ J} on U;

(ii) {Γ∗
jφjk}j∈J,k∈Kj

is an alternate dual of {Λ∗
jϕjk}j∈J,k∈Kj

on U.

Proof. We first show that Q is well defined and is bounded on l2({Vj}j∈J). In fact, for
any {hj}j∈J ∈ l2({Vj}j∈J), we have

‖Q({hj}j∈J)‖ =
∥∥∥∥{ ∑

k∈Kj

〈hj , φjk〉ϕjk

}
j∈J

∥∥∥∥
= sup

g={gj}j∈J ∈l2({Vj}j∈J ),‖g‖=1

∣∣∣∣〈{ ∑
k∈Kj

〈hj , φjk〉ϕjk

}
j∈J

, {gj}j∈J

〉∣∣∣∣
= sup

g∈l2({Vj}j∈J ),‖g‖=1

∣∣∣∣ ∑
j∈J

∑
k∈Kj

〈hj , φjk〉〈ϕjk, gj〉
∣∣∣∣

≤ sup
g∈l2({Vj}j∈J ),‖g‖=1

∑
j∈J

∑
k∈Kj

|〈hj , φjk〉| · |〈ϕjk, gj〉|

≤ sup
g∈l2({Vj}j∈J ),‖g‖=1

∑
j∈J

( ∑
k∈Kj

|〈hj , φjk〉|2
) 1

2
·
( ∑

k∈Kj

|〈ϕjk, gj〉|2
) 1

2

≤ sup
g∈l2({Vj}j∈J ),‖g‖=1

∑
j∈J

√
Dj

φ‖hj‖
√

Dj
ϕ‖gj‖

≤ sup
g∈l2({Vj}j∈J ),‖g‖=1

D
∑
j∈J

‖hj‖ · ‖gj‖

≤ sup
g∈l2({Vj}j∈J ),‖g‖=1

D

( ∑
j∈J

‖hj‖2
) 1

2
·
( ∑

j∈J

‖gj‖2
) 1

2

= D‖{hj}j∈J‖.

It follows that Q is well defined on l2({Vj}j∈J) and ‖Q‖ ≤ D since {hj}j∈J ∈ l2({Vj}j∈J)
is arbitrary.

It is easy to check that {Γ∗
jφjk}j∈J,k∈Kj

and {Λ∗
jϕjk}j∈J,k∈Kj

are Bessel sequences in U,
under the conditions {Λj : j ∈ J} and {Γj : j ∈ J} being g-Bessel sequences in U.

For any f ∈ U, we obtain

TΛQT ∗
Γf = TΛQ({Γjf}j∈J)

= TΛ

({ ∑
k∈Kj

〈Γjf, φjk〉ϕjk

}
j∈J

)

= TΛ

({ ∑
k∈Kj

〈f, Γ∗
jφjk〉ϕjk

}
j∈J

)
=

∑
j∈J

Λ∗
j

∑
k∈Kj

〈f, Γ∗
jφjk〉ϕjk

=
∑
j∈J

∑
k∈Kj

〈f, Γ∗
jφjk〉Λ∗

jϕjk.
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Therefore {Γj : j ∈ J} is a Q-dual of {Λj : j ∈ J} on U, iff {Γ∗
jφjk}j∈J,k∈Kj

is an alternate
dual of {Λ∗

jϕjk}j∈J,k∈Kj
on U. �

If for any j ∈ J , {ϕjk}k∈Kj
and {φjk}k∈Kj

are a pair of alternate dual frames on Vj ,
then Q defined in (6.1) is an identity operator on l2({Vj}j∈J). We can get a corollary from
Theorem 6.1 as follows.
Corollary 6.2. Suppose that {Λj : j ∈ J} and {Γj : j ∈ J} are g-Bessel sequences in U

w.r.t. {Vj : j ∈ J}. Suppose that for any j ∈ J , {ϕjk}k∈Kj
and {φjk}k∈Kj

are a pair of
alternate dual frames on Vj. Then the following statements are equivalent.

(i) {Γj : j ∈ J} is an alternate dual of {Λj : j ∈ J} on U;
(ii) {Γ∗

jφjk}j∈J,k∈Kj
is an alternate dual of {Λ∗

jϕjk}j∈J,k∈Kj
on U.

Moreover, if {ejk}k∈Kj
is an orthonormal basis on Vj , j ∈ J , then {ejk}k∈Kj

and itself
are a pair of alternate dual frames. We can get Theorem 2.5 (i) in [13] as follows.
Corollary 6.3. Suppose that {Λj : j ∈ J} and {Γj : j ∈ J} are g-Bessel sequences in U

w.r.t. {Vj : j ∈ J}. Suppose that for any j ∈ J , {ejk}k∈Kj
is an orthonormal basis on Vj.

Then the following statements are equivalent.
(i) {Γj : j ∈ J} is an alternate dual of {Λj : j ∈ J} on U;

(ii) {Γ∗
jejk}j∈J,k∈Kj

is an alternate dual of {Λ∗
jejk}j∈J,k∈Kj

on U.
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