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Abstract
In this paper, using the equivalence between the category of crossed modules of algebras
and the category of algebra-algebroids, we will explore the notions of ideality and factors
for these algebraic structures. We give the structure of a two sided ideal of an algebra-
algebroid and the notion of quotient algebra-algebroid. By considering a two sided ideal
of an algebra-algebroid, we show that the crossed module corresponding to this ideal is a
crossed ideal of the crossed module corresponding to the algebra-algebroid. Conversely, by
taking a crossed ideal of a crossed module, we also show that the corresponding algebra-
algebroid to this crossed ideal is an ideal of the algebra-algebroid corresponding to the
crossed module.
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1. Introduction
A crossed module, [10], in the category of associative algebras is a triple (C, R, ∂), where

R is an k-algebra, C is an R-algebra with the action of R on C, and ∂ : C → R is a map of
R-algebras satisfying the rules: ∂(c) · c′ = cc′ = c · ∂(c′) for all c, c′ ∈ C, where the action
of r ∈ R on c ∈ C is denoted by r · c. Crossed modules are generalisation of both modules
and ideals and any algebra is a crossed module, so it is of structures to crossed modules.
For example, if I is a two sided ideal of an algebra R, then (I, R, inc) is a crossed module,
where inc is the inclusion map from I to R. Furthermore, if ∂ : C → R is a crossed module
of algebras, then ∂(C) is a two sided ideal of R.

Recall from [4] that an R-category A is a category equipped with an R-module structure
on each hom set such that the composition is R-bilinear, where R is a commutative ring.
Using the enriched categories, we can say that an R-category is a category which is enriched
over closed category of R-modules. An R-algebroid, [7], A is a small R-category.

In [10], Porter defined the structure of R-algebroids in a bit different setting from [7].
In his definition, an R-algebroid A on a fixed set of objects A0, and the hom sets are
disjoint family of R-modules. Porter proved that in the category of R-algebroids over
a fixed set, any internal category is an internal groupoid. It is well known that groups
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are appropriately generalised to groupoids, and similarly Mosa in [7], explained that al-
gebras are appropriately generalised to R-algebroids. He also introduced the notion of
crossed modules of R-algebroids and gave some results using the well known properties of
crossed modules of groups. In [9] Norrie defined the notion of subcrossed module, normal
subcrossed module and quotient crossed module of groups. The categorical equivalence
between crossed modules of groups and G-groupoids which are called group-groupoids in
[1] or 2-groupoids, is well known by [2]. By this equivalence comparing the associated
objects, in the paper [8] the authors constructed the notions of normal subgroup-groupoid
and quotient group-groupoid. In this mentioned paper, [8], they have defined the notions of
normal subgroup-groupoid and quotient group-groupoid interpreting the group-groupoids
corresponding respectively to the normal subcrossed modules and quotient crossed mod-
ules. In [11], Porter introduced the notion of crossed module over groups with operations.
He also proved that the category of crossed modules of groups with operations is equiv-
alent to that of internal groupoids within groups with operations. Using these results,
Şahan and Mucuk [13], in the category of groups with operations, have defined the no-
tions subcrossed module and quotient crossed module of a crossed module over groups with
operations. Therefore they have eliminated a gap in the expositions of the equivalence
between crossed modules of groups and G-groupoids (or group-groupoids), and groups
with operations by discussing the notions of normality and quotient structures for these
algebraic settings.

In this paper, we have defined two sided ideal of algebra-algebroids and quotient algebra-
algebroids. We prove that if A′ is a two sided ideal of an algebra-algebroid A, then the
crossed module corresponding to A′ is a crossed ideal of the crossed module corresponding
to A. Conversely, we show that if C ′ is a crossed ideal of C, and B′ is the corresponding
algebra-algebroid to C ′, then B′ is an ideal of the algebra-algebroid B corresponding to
the crossed module C.

2. Preliminaries
In this chapter, we begin by recalling the notions of R-algebroids and crossed modules

over R-algebras. Mitchell [4–6] has given the category of R-algebroids, and proved some
important results on these materials. These algebraic structures have been studied in
several papers for examples [4–7,10]. The following definition has been given by Mitchell.
(cf [4]).

Suppose that R is a commutative ring. Recall from [7] that an R-category is a category
equipped with an R-module structure over hom sets such that the category composition
is R-bilinear. An R-algebroid is a small R-category.

Now we will give a detailed definition of an R-algebroid A on a set of objects A0 as
follows:

A directed graph A over a set A0 consists of the functions s, t : A → A0, ε : A0 → A
called the source, target and identity maps, respectively, such that the condition sε = tε =
idA0 is satisfied. We show a directed graph A over the set A0 as diagramatically

A
s //
t // A0.

ε

aa

For x, y ∈ A0, we can write the set

A(x, y) = {a ∈ A : s(a) = x, t(a) = y}

and show 1x for ε(x), where ε(x) is an arrow from x to x. Let a ∈ A(x, y). Then we can
write this arrow by a : x → y.

The following definition can be found in [7].
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Definition 2.1. An R-algebroid (A, A0, s, t, ε, +, ◦) is a directed graph

A
s //
t // A0

ε

aa

together with the following properties; (x, y ∈ A0)
(1) On each hom set A(x, y), there is an R-module structure,
(2) There is an R-bilinear function, called composition, denoted by

◦ : A(x, y) × A(y, z) −→ A(x, z)
(a, b) 7−→ a ◦ b.

Then, for a : x → y and b : y → z, we have s(a ◦ b) = s(a) and t(a ◦ b) = t(b).
This composition is associative and the elements 1x, x ∈ A0, act as identities for the
composition. Equivalently, we can explain this statements as follows:

If a ∈ A(x, y), that is, a : x → y, then we have 1x ◦ a = a ◦ 1y = a. Consequently, such a
composition in the directed graph (A, A0), makes into a small category. The zero elements
of A(x, y) are denoted 0xy or 0. From the bilinearity, we can write a ◦ 0 = 0 ◦ a = a.

Now suppose that (A, A0, s, t, ε, ◦) and (B, B0, s′, t′, ε′, ◦′) are R-algebroids. A morphism
f from A to B consists of the pairs of morphisms (f1, f0) such that the following diagram
is commutative

A
s //
t //

f1

��

A0

f0

��

ε

� �

B s′ //
t′ // B0

ε′

ZZ

that is, f0s = s′f1, f0t = t′f1, εf0 = f1ε and where f1 is an homomorphism of R-modules.

Definition 2.2. ([7]) For an R-algebroid A over the set A0, a two sided ideal I in A is a
family of submodules

{I(x, y) ⊆ A(x, y)}x,y∈A0

such that I satisfies the axiom: if a ∈ I(x, y), b ∈ A(z, x), c ∈ A(y, w), then b ◦ a ∈ I(z, y)
and a ◦ c ∈ I(x, w).

Let A be an R-algebroid over A0. A subalgebroid A′ is a disjoint family of R-submodules
{A′(x, y) ⊆ A(x, y)}x,y∈A0 with units and each R-bilinear function

A′(x, y) × A′(y, z) → A′(x, z)

is the restriction of the R-bilinear function of A.
We can give the definition of factor algebroid from [7].

Definition 2.3. Suppose that I is a two sided ideal in A. It can be defined the factor
R-module A(x, y)/I(x, y) for all x, y ∈ A0. Then there is an R-bilinear morphism

A(x, y)/I(x, y) × A(y, z)/I(y, z) → A(x, z)/I(x, z)

and associativity holds. Then one can get an R-algebroid A/I when is the family of factor
R-modules

{A(x, y)/I(x, y) : x, y ∈ A0}.
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3. Algebra-Algebroids and crossed modules of algebras
In this section, we explore an equivalence between the category of algebra-algebroids

and the category of crossed modules of algebras.

Definition 3.1. An internal category in the category of R-algebras is called an algebra-
algebroid. So an algebra-algebroid (A, A0) is an algebroid A in which the set of objects
A0 and the set of morphisms A are R-algebras, the source, target and unit maps are
homomorphisms of R-algebras.

For an algebra-algebroid (A, A0) for a, b ∈ A, the multiplication of A is denoted by a.b
while the algebroid composition is denoted by a ◦ b with t(a) = s(b), the additive inverse
of a is denoted by −a. In an algebra-algebroid, the interchange law is given by

(a ◦ b) · (c ◦ d) = (a · c ◦ b · d)
for a, b, c, d ∈ A.

A morphism of algebra-algebroid is a morphism of algebroids in which each morphism
is an homomorphism of R-algebras. We will denote the category of algebra-algebroids by
AlgAlgoid.

Recall that if M is R-algebra, the maps
R × M −→ M , M × R −→ M
(r, m) 7−→ r · m (m, r) 7−→ m · r

are left and right actions of R on M if and only if
1. k(r · m) = (kr) · m = r · (km) , k(m · r) = (km) · r = m · (kr)
2. r · (m + m′) = r · m + r · m′ , (m + m′) · r = m · r + m′ · r
3. (r + r′) · m = r · m + r′ · m , m · (r + r′) = m · r + m · r′

4. r · (mm′) = (r · m)m′ = m(r · m′) , (mm′) · r = m(m′ · r) = (m · r)m′

5. (rr′) · m = r · (r′ · m) , m · (rr′) = r(m · r) · r′

for all k ∈ k, m, m′ ∈ M, r, r′ ∈ R.

Definition 3.2. Let R be a k-algebra with identity. A precrossed module of commu-
tative algebras is an R-algebra C, together with the action of R on C and R-algebra
homomorphism ∂ : C → R, such that c ∈ C, r ∈ R

CM1. ∂(r · c) = r∂(c), ∂(c · r) = ∂(c)r
This is a crossed R-module if an addition, for all c, c′ ∈ C,
CM2. ∂(c) · c′ = cc′ = c · ∂(c′)
The last condition is called the Peiffer identity. We denote such a crossed module by

(C, R, ∂).

A morphism in the category of crossed module of R-algebras is a pair of morphisms
of R-algebras (f, g) : (C, R, ∂) → (C ′, R′, ∂′), where f : C → C ′ and g : R → R′ such
that f(r · c) = g(r)f(c) similarly f(c.r) = f(c)g(r) for all c ∈ C, r ∈ R and we have
∂′f(c) = g∂(c).

We can define the category of crossed modules denoting it by CM.
The following proposition is well-known, we give a sketch of proof to use it in the next

sections.

Proposition 3.3. The category of crossed modules of R-algebras is equivalent to that of
algebra-algebroids.

Proof. First we give a construction of the functor
δ : AlgAlgoid → CM

from the category of algebra-algebroids to the category of crossed modules. Let (A, A0)
be an algebra-algebroid. We define δ(A, A0) by a crossed module (C, R, ∂), where C =
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Kers, R = A0 and δ = ∂ |Kers is the restriction of the target map. Then clearly, C and R
are algebras and the target map is a morphism of algebras. The action of R on C can be
given by

c.r = cε(r), r.c = ε(r)c
for r ∈ R and c ∈ C, and then we obtain

t(r · c) = t(ε(r))t(c)
= rt(c)

similarly
t(c · r) = t(c)r

and
c · t(c′) = cc′ = t(c) · c′,

for all r ∈ R, c, c′ ∈ C. Then, (C, R, ∂) is a crossed module of R-algebras.
Now, we define the functor

η : CM → AlgAlgoid.

Suppose that (C, R, ∂) is a crossed module. We give η(C, R, ∂) as an algebra-algebroid
(A, A0), where A0 = R, A1 = C n R is the semidirect product of C and R with the
operations

(c, r) + (c′, r′) = (c + c′, r + r′)
(c, r) · k = (ck, rk)
k · (c, r) = (kc, kr)

(c, r) · (c′, r′) = (cc′ + r · c′ + c · r′, rr′)

for all r, r′ ∈ R, c, c′ ∈ C, k ∈ k. The structual maps of algebra-algebroid are given by
s(c, r) = r, t(c, r) = ∂(c) + r and the composition of algebroid can be defined by

(c, r) ◦ (c′, r′) = (c + c′, r′)

if r′ = ∂(c) + r. This composition can be denoted by the following way

r //
55

∂(c) + r r′ // ∂(c′) + r′.

Therefore we have

s((c, r) ◦ (c′, r′)) = r = s(c, r)
t((c, r) ◦ (c′, r′)) = ∂(c′) + ∂(c) + r

= ∂(c′) + r′

= t(c′, r′).

One can easily check the interchange law, using the conditions CM1. and CM2. �

3.1. Factor crossed modules and factor algebra-algebroids
In the section, we define the notions of subalgebra-algebroid and two sided ideal of an

algebra-algebroid by using the corresponding crossed modules cases discussed by Shammu
in his Ph.D. thesis [12].

Definition 3.4. Suppose that (C, R, ∂) is a crossed module. A subcrossed module (C ′, R′, ∂′)
of (C, R, ∂) is a crossed module satisfying the following conditions

(1) C ′ is a subalgebra of C and R′ is a subring of R.
(2) The action of R′ on C ′ is the restriction of the action of R on C.
(3) ∂′ is the restriction of ∂ to C ′.
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Definition 3.5. A subcrossed module (C ′, R′, ∂′) of the crossed module (C, R, ∂) is called
a crossed ideal such that the following conditions hold.

CI1. For all c ∈ C and c′ ∈ C ′, cc′, c′c ∈ C ′ and for all r ∈ R, r′ ∈ R′, rr′, r′r ∈ R′.
CI2. For all c ∈ C and r′ ∈ R′, r′ · c, c · r′ ∈ C ′.
CI3. C ′ is closed under action of R, i.e. r · c′, c′ · r ∈ C ′ for all r ∈ R and c′ ∈ C ′.
The following diagram is commutative

C ′
� _

u

��

∂′
// R′

� _

v

��
C

∂
// R

where u and v are inclusion.

Theorem 3.6. Let (C ′, R′, ∂′) be a crossed ideal in (C, R, ∂). Then the morphism of factor
algebras η : C/C ′ → R/R′ is a crossed module structure.

Proof. Consider the following diagram

C

∂

��

q1 // C/C ′

η

��
R q2

// R/R′

in which q1 and q2 are canonical homomorphism. Then R acts on C/C ′ by r · (c + C ′) =
r · c + C ′ since r · c ∈ C and R′ acts on C/C ′ by trivially. Because we obtain r′ · (c + C ′) =
r′ · c + C ′ = 0 + C ′ since r′ · c ∈ C ′ for all r′ ∈ R′ and c ∈ C. Therefore R/R′ acts on C/C ′

by
(r + R′) · (c + C ′) = r · c + C ′

and then η : C/C ′ → R/R′ given by η(c+C ′) = ∂′(c)+R′ is a well defined homomorphism.
Indeed, if

c1 + C ′ = c2 + C ′ ⇒ c1 − c2 ∈ C ′

∂′(c1 − c2) ∈ R′ ⇒ ∂′(c1) + R′ = ∂′(c2) + R′

and we have η(c1 + C ′) = η(c2 + C ′).
We can show the crossed modules conditions as follows:
CM1. For all r ∈ R and c ∈ C,

η((r + R′) · (c + C ′)) = η(r · c + C ′)
= ∂′(r · c) + R′

= r∂′(c) + R′

= rη(c + C ′)

CM2. For all c1, c2 ∈ C,

η(c1 + C ′) · (c2 + C ′) = (∂′(c1 + C ′)) · (c2 + C ′)
= ∂′(c1) · c2 + C ′

= c1c2 + C ′

= (c1 + C ′)(c2 + C ′).

It is called that (C/C ′, R/R′, η) is a factor crossed module of (C, R, ∂) by (C ′, R′, ∂′). �
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Remark 3.7. For a crossed ideal (C ′, R′, ∂′) of the crossed module (C, R, ∂), the following
diagram

C ′
� _

u

��

∂′
// R′

� _

v

��
C

∂
// R

together with the h-map given by
h : R′ × C → C ′

(r′, c) 7→ r′ · c ∈ C ′

from CI3, is a crossed square in the sense of [3].

Proposition 3.8. Let

0 // C ′ //

∂′

��

C //

∂

��

P ′ //

w

��

0

0 // R′ // R // P // 0
be a short exact sequence of crossed modules of algebras. Then (C ′, R′, ∂′) is a crossed
ideal of (C, R, ∂) and we have the short exact sequence of algebras

0 // C ′ o R′ // C o R // P ′ o P // 0

and C ′ o R′ is an ideal of C o R.

The isomorphism theorem for crossed modules was given by [12] as follows:

Theorem 3.9. Let (f, g) : (M, N, δ) → (C, R, ∂) be a morphism of crossed modules and
Kerf = M ′, Kerg = N ′. Then

(M/M ′, N/N ′, η) ∼= (ImM, ImN, ∂)

By considering subcrossed module and crossed ideals, to obtain a neat definition of
subalgebra-algebroids and two sided ideal algebroid, we will give the following theorem.

Theorem 3.10. We suppose that (C ′, R′, ∂′) is a subcrossed module of the crossed module
(C, R, ∂) and (A′, A′

0), (A, A0) are the algebra-algebroids corresponding to these crossed
modules respectively. Then A′ is a subalgebroid of A, A′

0 is a subalgebra of A0 and the
algebra of morphisms A′ is a subalgebra of A.

Theorem 3.11. Let (C ′, R′, ∂′) be a subcrossed ideal of (C, R, ∂) and let (B′, B′
0), (B, B0)

be the algebra-algebroids corresponding to these crossed modules respectively. Then (B′, B′
0)

is a subalgebroid of (B, B0), B′
0 is an ideal of B0 and B′ is an ideal of B.

Proof. Suppose that (C ′, R′, ∂′) is a crossed ideal of (C, R, ∂), B′ = (B′, B′
0) is a subal-

gebroid of B = (B, B0). We have that Ob(B′) = B′
0 is an ideal of Ob(B) = B0, from CI1.

of Definition 3.5. We only need to checks that B′ = C ′ oR is an ideal of B = C oR. This
is obtained by Proposition 3.8. Using definition of crossed ideal, we can this calculation
as follows: For (c, r) ∈ C o R and (c′, r′) ∈ C ′ o R′,

(c, r).(c′, r′) = (cc′ + c.r′ + r.c′, rr′).
Since (C ′, R′, ∂′) is a crossed ideal of (C, R, ∂), by the condition CI1, we have cc′ ∈ C and
by the condition CI2 and CI3, c · r′, r · c′ ∈ C ′, because R′ is an ideal of R it follows that
rr′ ∈ R′. Thus, we have (c, r).(c′, r′) ∈ C ′ o R′, and similarly (c′, r′).(c, r) ∈ C ′ o R′. So
B′ = C ′ o R is an ideal of B = C o R as required. �
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Now we can give the definitions of subalgebra-algebroid and two sided ideal of an alge-
broid as follows.

Definition 3.12. Let (A, A0) be an algebra-algebroid and (A′, A′
0) is an subalgebroid of

(A, A0). If A′
0 is a subalgebra of A0 and the algebra of morphisms of (A′, A′

0) is a subalgebra
of (A, A0), then we say that (A′, A′

0) is a subalgebra-algebroid of (A, A0).

Definition 3.13. Let (A, A0) be an algebra-algebroid and (A′, A′
0) is an subalgebra-

algebroid of (A, A0). Then (A′, A′
0) is called two sided ideal of (A, A0), if A′

0 is a two
sided ideal of A0 and the algebra of morphisms of (A′, A′

0) is a two sided ideal of (A, A0).

Proposition 3.14. Suppose that (A, A0) and (B, B0) are algebra-algebroids and f =
(f1, f0) is a algebra-algebroid morphism as shown in the following diagram

A

s

��

t

��

f1 // B

s′

��

t′

��
A0

ε

; ;

f0
// B0

ε′

cc

Then Kerf = (Kerf1, Kerf0) is a two sided ideal of A, A0.

Theorem 3.15. Assume that (A, A0) is a algebra-algebroid.
(1) If (A′, A′

0) is a subalgebra-algebroid of (A, A0), then the crossed module (C ′, R′, ∂′)
corresponding to (A′, A′

0) is a subrossed module of the crossed module (C, R, ∂)
corresponding to (A, A0).

(2) If (A′, A′
0) is a two sided ideal of the algebroid (A, A0), then the crossed module

(C ′, R′, ∂′) corresponding to (A′, A′
0) is a crossed ideal of (C, R, ∂) corresponding

to (A, A0).

Proof. 1. It is clear.
2. Suppose that (A′, A′

0) is a two sided ideal of the algebroid (A, A0) and (C ′, R′, ∂′), (C, R, ∂)
are the crossed modules corresponding to these structures. We know that (C ′, R′, ∂′) is
a subcrossed module of (C, R, ∂). Now, we prove for (C ′, R′, ∂′) that the conditions CI1,
CI2, CI3 are satisfied.

CI1. From Definition 3.13, we have that R′ is a two sided ideal of R.
CI2. For y ∈ A′

0 = R′ and a ∈ Kers = C. We have

s(y.a) = s(ε(y)).s(a)
= s(ε(y))0
= 0

so y.a ∈ Kers. Since a ∈ A, ε(y) ∈ A′ and (A′, A′
0) is a two sided ideal of (A, A0), it follows

that ε(y).a ∈ A′. Therefore, y.a = ε(y)a ∈ Kers ∩ A′ = Kers′ = C ′.
CI3. For x ∈ A0 = R and a ∈ C ′ = Kers ∩ A′. x.a = ε(x).a where ε(x) ∈ (A, A0). Since

(A′, A′
0) is a two sided ideal of (A, A0), we have ε(x).a ∈ A′. Further

s(x.a) = s(ε(x).a)
= s(ε(x)).s(a)
= 0x0
= 0x

so x.a ∈ C ′.
Thus we obtain that (C ′, R′, ∂′) is a crossed ideal of (C, R, ∂). �
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Corollary 3.16. Let (A, A0) be an algebra-algebroid and (C, R, ∂) is corresponding crossed
module. Then the category of two sided ideal of the algebroid (A, A0) is equivalent to the
category of crossed ideal of the crossed module (C, R, ∂).

Proposition 3.17. Let (C, R, ∂) be a crossed module of algebras and (C ′, R′, ∂′) a crossed
ideal of (C, R, ∂). Then we have

C/C ′ o R/R′ ∼= (C o R)/(C ′ o R′).

Proof. It can be easily checked that
ϕ : C/C ′ o R/R′ → (C o R)/(C ′ o R′)
(a + C ′, b + R′) 7→ (a, b) + (C ′ o R′)

is an isomorphism of algebras. �

Definition 3.18. Let (A, A0) be an algebra-algebroid and (A′, A′
0) is a two sided ideal of

(A, A0). Let (C, R, ∂) and (C ′, R′, ∂′) be the crossed modules corresponding respectively
(A, A0) and (A′, A′

0). Then the algebra-algebroid corresponding to the factor crossed mod-
ule (C/C ′, R/R′, δ) is called factor algebra-algebroid and denoted by A/A′.

So the set of objects A/A′ is the factor algebra R/R′; and the set of morphisms is the
factor algebra A0/A′

0. For a ∈ A/A′, the source of a is s(a+R′) = s(a)+R′ and the target
of a is t(a + R′) = t(a) + R′, where

(b + R′) ◦ (a + R′) = (b ◦ a) + R′

in the case of t(b) = s(a). The identity morphism for x ∈ R′ is ε(x + R′) = ε(x) + R′.

Theorem 3.19. Let (A, A0) be an algebra-algebroid and (A′, A′
0) is a two sided ideal of

(A, A0). Then, there is an algebra-algebroid morphism f = (f1, f0) : (A, A0) → (B, B0)
such that Kerf = (A′, A′

0).

Proof. Assume that (A, A0) be an algebra-algebroid and (A′, A′
0) is a two sided ideal of

(A, A0). Let (C, R, ∂) and (C ′, R′, ∂′) be the crossed modules corresponding respectively
(A, A0) and (A′, A′

0). We can construct the following short exact sequence of crossed mod-
ules:

0 // C ′ //

∂′

��

C //

∂

��

C/C ′ //

δ

��

0

0 // R′ // R // R/R′ // 0
By proposition 3.8, we have the short exact sequence of algebras

0 // C ′ o R′ // C o R // C/C ′ o R/R′ // 0

We have that Kerq = C/C ′ o R/R′. Evaluating this is terms of corresponding algebra-
algebroids, we obtain that (A′, A′

0) is the kernel of f : (A, A0) → (A/A′, A0, A′
0). �

Theorem 3.20. Let (A, A0) and (B, B0) be algebra-algebroid and f = (f1, f0) : (A, A0) →
(B, B0) a morphism of algebra-algebroids. Then the image f(A, A0) is a subalgebra-
algebroid and isomorph to the factor algebra-algebroid A/A′, where Kerf = A′.

Corollary 3.21. If f = (f1, f0) : (A, A0) → (B, B0) a morphism of algebra-algebroids
which is surjective on morphisms and Kerf = A′. Then the factor algebra-algebroid A/A′

is isomorph to the algebra-algebroid (B, B0).
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