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 Ebstein's anomaly is an abnormality in the pediatric heart disease group. The anomaly is 
described as a structural defect by considering the whole heart. It can be manifested by typical 
symptoms in auscultation and can be detected with other diagnostic methods such as ECG. 
Systolic ejection click and murmur are the most important symptoms in the diagnosis of 
disease. In this study, heart sound signal recorded from a 13-year-old patient was analyzed with 
different numerical methods along with a normal heart sound signal. The signals were first 
examined in the time plane and findings in auscultation were observed. The frequency 
components of the signals were then obtained. Additional frequency components emerged in 
findings of disease in this plane compared to the normal one. Spectrograms enable to observe 
the differences in time frequency and amplitude components. Bispectral analysis was performed 
as a high order spectral analysis method by diversifying the analysis.   In bispectral analysis of 
the anomaly, click and murmurs are manifested by equiphase surfaces distributed at high 
frequencies.Lastly, the power spectrum density of the signals were examined. The decrease in 
the additional power peak and power rating of the diseased signal was remarkable.  
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1. INTRODUCTION 

 
BSTEIN’S anomaly is a quite rare anomaly which is 
seen in <1% of all congenital heart diseases. It was first 

described by Wilhelm Ebstein in 1866.  
Ebstein's anomaly is an anomaly in the tricuspid valve. The 
tricuspid valve separates the right atrium (the chamber where 
blood returns to the heart from the body) from the left 
ventricle (the chamber which pumps blood to the lungs). 
    In Ebstein's anomaly, two leaflets of the tricuspid valve 
were displaced towards the apex (end) of the right ventricle. 
Due to this displacement, the right ventricular cavity was 
narrowed and the right atrium was enlarged. The 
displacement of these cavities is called atrialization of the 
right ventricle. The third leaflet is elongated and may be 
tethered to the wall of the cardiac cavity. Rarely, the valve is 
so deformed that it will not allow blood to flow easily 
forward in the normal direction. 

More commonly, these anomalies cause the blood to 
escape backwards from the tricuspid valve to the right atrium 
when the right ventricle contracts.  As a result, the right 
atrium becomes enlarged (Figure 1). If the tricuspid 
regurgitation (leakage) is sufficiently serious, it may result in 
congestive heart failure and enlarged heart.  
Normally, there is a connection or hole between the right and 
left atrium in the fetus, which is also known as foramen 
ovale or PFO. The PFO usually closes after birth. 
    In Ebstein's anomaly, the high pressure in the right atrium 
keeps the PFO open. This connection provides the blood 
with low oxygen content to pass from the right atrium to the 
left atrium, bypass the lungs and disperse directly into the 
body. This results in low level of oxygen in the blood. That 

is why children with Ebstein's anomaly become blue 
(cyanotic) and have low level of oxygen saturation [1-5]. 
 

 
Fig. 1. Normal Heart (left) Heart with Ebstein's anomaly (right)  [6]. 

 
    The most obvious finding in auscultation is the mating of 
S1 due to a delay in the closure of the large anterior tricuspid 
leaflet. The delay in tricuspid valve closure depends on 
mechanical causes rather than the right bundle branch block. 
An opening sound may be also heard in the diastole 
depending on the large anterior leaflet. Atrial S4 and S3, if 
there is a heart failure, may be also heard. The pulmonary 
component of S2 may be delayed and soft due to the right 
bundle branch block or may not be heard due to the low level 
of PAP (pulmonary artery pressure). Pansystolic murmur 
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may be heard in the left sternal margin in 1/3 of the patients 
depending on the tricuspid valve insufficiency. Also, 
diastolic murmur may be heard due to the blood flow 
through the malformed tricuspid orifice [7]. 
    Heart sounds are first recorded with a digital stethoscope 
from proper points through the chest and in a quiet 
environment (Figure 2). The tricuspid focus is located on the 
margin of the left side sternum (breastbone), the fourth 
intercostal space on the left side of the sternum. Tricuspid 
and right heart sounds are the best heard in this region [8]. 
Then, the recorded sound signals are transferred to the 
computer via an infrared receiver and the digital data is 
converted to be analyzed (such as audio file format 
conversion, noise filtering). 
 

          
 

Fig. 2. Recording heart sounds with a digital stethoscope [8]. 
 
    When the signals of the filters, electronic systems such as 
amplifiers or biological systems such as EEG, EMG, ECG 
and PCG are examined, it is very important to know the 
Amplitude-Frequency and Phase-Frequency characteristics 
of these systems in order to familiar with it. 
As PCG signals are very complex, their strict properties can 
be only determined with appropriate signal processing 
techniques. When these signals were accepted as stationary 
signal and spectrum analyses were performed; they were 
accepted as non-stationary signals and time-frequency 
analyses were performed. 
    The simplest method in signal analysis is time-amplitude. 
However, it is a useful method to easily observe the 
harmonization of heart sounds with auscultation.   
    In the 19th century, the French mathematician J. Fourier 
showed that any periodic function could be expressed with 
the sum of unlimited number of complex exponential 
periodic functions. After the intervening years, it was found 
that the non-periodic functions could be also expressed in 
this way by generalizing Fourier's ideas [9]. 
The Fourier transform of the numerical signals obtained in 
the study also gives the frequency spectrum of the signal and 
it is determined which frequency components are intense in 
the signal. 
    In 1946, the Gabor Transform, which was proposed by 
Gabor, MD, working in the field of communication, allowed 
the regional frequency analysis to be performed by taking the 
Fourier Transform of any signal scanned with time 
translation of a constant function defined as the window 
function. In this case, the Fourier Transform of the 
windowed signal also includes time information as well as 
the frequency components of the signal. The window 
function used in the transformation is the Gaussian function, 
which is limited in time and frequency domains. With a new 

algorithm introduced in 1965, the Gabor Transform was also 
extended to the "Short-Time Fourier Transform" (STFT), 
which uses different window functions. This form of 
transformation is a very useful solution especially for 
computer applications [10].  
    In signal processing methods using the second-order 
statistics and/or power spectrum, the phase relations between 
the frequency components are not considered; therefore, 
these methods are blind to phase information. 
The higher order statistics are used to examine gauss, 
stationary and non-linear processes and obtain significant 
results. 

The high order spectral analysis (HOSA) can provide more 
information from these processes. The most effective use of 
HOSA is to reveal the characteristics of noise signals that do 
not show the Gaussian distribution as it resets the Gaussian 
distributed noise processes [11]. 
In this study, ebstein's anomaly was analyzed by using 
bispectral analysis as a HOSA method. 
 

2.    TIME-FREQUENCY-AMPLITUDE ANALYSES  

    The signal x(nT) obtained by sampling a continuous-time 
x(t) signal at t=nT is called a discrete-time signal. Where T is 
the sampling period and n is also an integer. Therefore, the 
discrete-time signals consist of a series of numbers. 
Any discrete-time signal can be written in form of the sum of 
the series of the multiplied and iterated unit impulses 
(equation 1) [6-10]. 
                                                                               

                   x(n)= ∑
∞

−∞=

−
k

knkx )()( δ                         (1) 

 
     Similarly, a continuous x(t) heart sound signal also can be 
saved to a recorder and transferred to a computer 
environment by making it discrete with a certain sampling 
frequency [8]. 

Such a x(t) heart sound signal that was recorded from a 
healthy heart and one cycle took approximately 0.8 seconds 
was sampled with a sampling frequency of 11025 Hz and 
one cycle was drawn with n = 8900 samples. This duration 
consisted of a systole (0.3 seconds) and diastole (0.5 
seconds); this graph was shown in Figure 3. S1 (at the 
beginning of the systole) and S2 (at the beginning of the 
diastole) represent two basic components of the normal heart 
sound signal.  

The graph in Figure 4 was taken from a 13-year-old 
patient with Ebstein's anomaly with severe tricuspid 
insufficiency. The record was made from the left lower 
margin of the sternum. When the graph is examined, there is 
a systolic murmur (SM) due to a systolic ejection click (EC) 
and tricuspid insufficiency. The pulmonary component (PC) 
of S2 is delayed and its severity is depressed; there is also a 
diastolic murmur (DM) due to tricuspid stenosis caused by 
an increase in the volume of blood flow from the tricuspid 
valve in the diastole. The second more important quantity is 
also "frequency" along with time. The signals are 
mathematically defined by Fourier in the form of frequency. 
According to this definition, the signals can be represented as 
a linear combination of a fundamental frequency and the 
harmonic frequencies of that fundamental frequency with 
different amplitudes. 
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Fig. 3.  Time-amplitude graph of a cycle of a healthy heart sound signal. 

 

 
Fig.4. Time-amplitude graph of heart sound signal in Ebstein's Anomaly 

 
 Time-frequency analysis is considered the most basic and 

necessary analysis. As there are many different methods for 
generating time-frequency distributions, it is necessary to 
classify them as Linear time-frequency distributions and 
Quadratic time-frequency distributions based on their 
structures and characteristics. The Short-Time Fourier 
Transform (STFT) and Wavelet Transform (WT) are 
examples of Linear time-frequency distributions. Examples 
of quadratic time-frequency distributions are spectrogram, 
scalogram (WT amplitude squared), Wigner Distribution 
(WD) and generally Cohen's class time-frequency 
distributions. The Fourier transform of a discrete-time signal 
gives its frequency spectrum and it is determined which 
frequency components are intense in the signal. 

The Discrete-Time Fourier Transform (DTFT) of the 
discrete-time signals is given in Equation (2).    
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∞

−∞=

Ω−=Ω
n

njenxX )()(
                                  (2) 

 
The Amplitude and phase sections and fourier spectrum of 
the signal can be defined in Equation (3). The Discrete 
Fourier Transform of a signal is also shown in Equation (4). 
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   As the Discrete Fourier Transform (DFT) is defined as the 
calculation of the N number(s) of frequency value(s) from 
the Discrete-Time Fourier Transform (DTFT), it corresponds 
to the sampling of DTFT in the frequency domain. It is 
possible to calculate the DFT faster by the symmetry and 
periodicity properties of the phase factor (Equation 5) in the 
Discrete Fourier Transform. 

 

                            
)2( Nj

N eW π−=                                      (5) 
   
  The decimation in time and decimation in frequency 
methods are called the Fast Fourier Transform (FFT) and in 
practice, FFT is always used [12-14]. 
In Figure 5, the frequency distribution of 15 to 150 Hz is 
observed in the healthy heart sound signal. It appears to be a 
peak up to max. 3000 units of amplitude at 45 Hz and then 
down to 150 Hz.  
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Fig. 5. Healthy heart sound signal amplitude spectrum. 

 

 
 

Fig.6. Frequency-amplitude graph of heart sound signal in Ebstein's 
Anomaly. 

 
    In Figure 6, there is the cluster of components peaking at 
(30,705), (40,730) points and (60,450) (75, 90) points at 
approximately the range of 20-80 Hz, and then components 
with smaller amplitude at the range of 90-110 Hz and 120-
140 Hz [respectively peaking at (100,192) and (125,148) 
points].  
 The Short-Time Fourier Transform (STFT) is obtained by 
taking the classical fourier transform of the signal divided by 
a sliding window in time. Spectrum estimation can be 
performed by assuming that the the portion of the examined 
signal taken with the window remains stationary. 



4 
 

 
Copyright © The Journal of Cognitive Systems (JCS)                            ISSN: 2548-0650                                                            http://dergipark.gov.tr/jcs 

AKGUN; ANALYSIS OF HEART SOUND SIGNALS IN EBSTEIN`S ANOMALY 

dtetwtxfSTFT ftj∫
∞

∞−

−∗ −= πττ 2)].().([),(

Once the signal is passed through a window defined in the 
time domain, FT is applied. The window function is shifted 
along the time axis to include the whole signal so that the 
frequency responses (frequency spectra) of the signal are 
obtained at the time intervals in the width of the window 
function. In this way, it may be obtained the the frequency 
response of the signal changed over time. The formula that 
provides the STFT transformation is given in Equation (6).  

                                                                        
(6) 

 
 

Where x(t) is the basic signal, w(t) is the window function 
* complex conjugate notation, time translation. The STFT 
consists of the FT of the signal multiplied by a window 
function. A new STFT coefficient set is calculated for each t 
and f. As it is, FT is only a function of frequency but STFT is 
a function of both frequency and time, and is thus three-
dimensional (the third dimension is amplitude) [15, 16]. 

The normal signal is behind 0.1 sec, with an energy 
density reaching its highest value around 50 Hz and down to 
150 Hz, and with maximum amplitude around 45 Hz and 
energy zones down to 200 Hz at the both sides of 0.4 sec (S1 
and S2 energy zones). S1 lasts for 0.1 sec and S2 is up to 0.08 
sec (Figure 7). 

 
 

Fig.7. 3-Dimensional spectrogram of the normal heart sound signal. 
 

 
 

Fig. 8. Heart sound signal spectrogram in Ebstein's Anomaly 
 
There is a systolic ejection click right next to the basic 

component of S1 in Figure 8. It is seen in a region around 60 
Hz as a frequency. Also, systolic murmur is a pathological 
finding in this region. The pulmonary sound, which forms 
the basic component of S2 extends to 100 Hz for about 0.4 
sec. This is followed by diastolic murmur peaks. 

3. BISPECTRAL ANALYSIS 

   The bispectrum reveals the signals of the non-linear 
process, as well as the suppression of the Gaussian 
probability distribution activity. The bispectral analysis is 
used to detect low-level but diagnostically important signals 
which are masked by background FKG. 
    If the power spectrum of random signals is defined with 
DFT as like in Equation (7), the 3rd order population 
spectrum is also called bispectrum. The bispectrum is shown 
in Equation (8). If the signal is a reel value and stationary 
random, it is shown as like in Equation (9) [17-20].  
 

       
mfjxx emCDFTfP π2

22 ).(()( −=                            (7)    
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       )().().(),( 21
*

2121 wwXwXwXwwB +=                   (9) 
 
    In Figure 9, there are the rings with low power density (the 
1st order) at high frequencies for a normal heart, and the 
nested power density rings (the 1st, 2nd, 3rd and 4th order) 
ascending from low to high at lower frequencies. 
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Fig. 9.Normal heart sound signal bispectrum 
 

 
Fig. 10. Bispectral Analysis 

 
    In Figure 10, the bispectrum is surfaces with high 
amplitude, which occurs in the second power density rings 
that characterize the anomaly in the equiphase surface (light 
blue inner rings). Moreover, we also monitor the murmurs 
specific to anomaly in the ring group with low amplitude. 
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4. POWER SPECTRUM DENSITY (PSD) 

   The purpose of Spectral estimation in signal analysis is to 
determine the distribution of a signal strength based on 
frequency. The methods of PSD estimated directly from the 
signal itself are called non-parametric; the methods that the 
input is obtained from the output of a linear system driven by 
a white noise are called parametric. Subspace methods are 
also known as high resolution methods. This method 
provides to make the frequency component estimates based 
on the Eigen analysis for the correlation matrix of a signal. 
Subspace methods are also known as high resolution 
methods. This method provides to make the frequency 
component estimates based on the Eigen analysis for the 
correlation matrix of a signal [21]. Multiple signal 
classification (MUSIC) and Eigen-Vector (EV) methods are 
among the methods included in this category. These methods 
are particularly suitable for the generation of the spectra of 
sinusoidal signals and are particularly effective in identifying 
low signal-to-noise ratio, noise-embedded sinusoids [22]. 
MUSIC (multiple signal classification) method is a subspace 
frequency estimator proposed by Schmidt, and eliminates the 
effect of spurious zeros by using the averaged spectrum of all 
the eigenvectors corresponding to the noise subspace.   
The power spectrum density (PSD) is obtained from the 
statement in equation 10. 

             
∑
−

=

= 1K

0i

2
i

MUSIC

)f(AK/1

1)f(P

                     (10) 
 
Where K is the dimension of the noise subspace, Ai means all 
the eigenvectors of the noise subspace. 
The eigenvector method allows the calculation of a desired 
noise subspace vector from noise or signal subspace 
eigenvectors by forcing spurious zeros into the unit circle in 
order to differentiate spurious zeros from real zeros. 
The power spectral density is obtained from the statement in 
Equation 11 with the eigenvector method [23, 24].    
 

                                                       (11) 
 
 
 
    

 
Fig. 11. The PSD of normal heart sound signal. 

 

There was a curve peaking at approximately 0.001 units at 
45 Hz and descending to zero at 125 Hz at the normal signal 
PSD in Figure 11. 
 

 
Fig. 12.  Power Spectrum Density of Ebstein's Anomaly 

     
There was a very high power decrease in the ebstein power 
spectrum compared to the normal in Figure 12 (0.00028 
units). A small power zone was formed in the 125-225 Hz 
region (max. 0.000025).  
 

5.  CONCLUSIONS 

    The The pulmonary component and diastolic murmur 
were observed to be significantly reduced and delayed in 
terms of the systolic ejection click in the time-dependent 
change of Ebstein's anomaly and the amplitude in the 
holosystolic murmur diastole. 
The anomaly varies between approximately 0-250 Hz in the 
time-frequency graph. The anomaly showed itself with the 
cluster of components peaking at the points of (60,490), 
(75,90), (100,192) and (125,148).   

There was an ejection click extending to 60 Hz for about 
0.18 sec at the spectrogram. There is also a holosystolic 
murmur extending to 100 Hz. The pulmonary component 
which was prominently separated from the aortic component 
and decreased its amplitude extends to 80 Hz for about 0.4 
sec. Subsequently, diastolic murmurs were observed. 
When the bispectrum was examined, the low-amplitude 
peaks were seen in the second rings. Moreover, additional 
two groups of low-peak rings were formed on the equiphase 
surfaces in ebstein's anomaly. 

There was a huge decrease in power components in the 
PSD graph. The peaks with maximum amplitude of 2.8,10-4 
were formed around 50 Hz. Also, the peak is remarkable at 
the 125-225 Hz region as another finding showing the 
anomaly. 
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