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Abstract 

In this study, the generalized 𝑘-order Fibonacci hybrid quaternions are defined. We give the recurrence relation, 

generating function, the summation formula and some properties for these quaternions. Furthermore, the matrix 

representation for the generalized 𝑘-order Fibonacci hybrid quaternions is determined. The 𝑄𝑘 matrix defined 

for 𝑘-order Fibonacci numbers is given for the generalized 𝑘-order Fibonacci hybrid quaternions. By the means 

of this matrix and other defined matrices, several identities of these quaternions are also obtained. 

Keywords: Fibonacci sequence, 𝑘-order Fibonacci sequence, hybrid numbers, quaternions. 

 

Genelleştirilmiş 𝒌 Mertebeden Fibonacci Hibrit Kuaterniyonlar 

Öz 

Bu çalışmada, genelleştirilmiş 𝑘 mertebeden Fibonacci hibrit kuaterniyonlar tanımlanmıştır. Bu kuaterniyonlar 

için yineleme bağıntısı, üreteç fonksiyonu, toplam formülü ve bazı özellikler verilmiştir. Ayrıca, genelleştirilmiş 

𝑘 mertebeden Fibonacci hibrit kuaterniyonlar için matris temsili oluşturulmuştur. 𝑘 mertebeden Fibonacci 

sayıları için tanımlanan 𝑄𝑘 matrisi, genelleştirilmiş 𝑘 mertebeden Fibonacci hibrit kuaterniyonlar için 

verilmiştir. Bu matris ve tanımlanmış diğer matrisler yardımıyla bu kuaterniyonların bazı özdeşlikleri de elde 

edilmiştir. 

Anahtar Kelimeler: Fibonacci dizisi, 𝑘-mertebeden Fibonacci dizisi, hibrit sayılar, kuaterniyonlar. 

1. Introduction 

Hybrid numbers are defined as a generalization of dual numbers, complex numbers and 

hyperbolic numbers [1]. The system of the hybrid numbers is a number system formed by three 

number systems together. With the help of these three sets of numbers, the set of hybrid 

numbers is defined as follow: 

𝕂 = {𝑧 = 𝑎 + 𝑏i + 𝑐𝜀 + 𝑑h: 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, i2 = −1, 𝜀2 = 0, h2 = 1, ih = −hi = 𝜀 + 1} (1) 

The multiplications of the units i, 𝜀 and h are given in the following table and the hybrid product 

is defined with the help of this table.  
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∙ 1 i ε h 

1 1 i ε h 

i i -1 1-h ε+i 

ε ε h+1 0 -ε 

h h -ε-i ε 1 

Table 1. Multiplication table of hybrid units 

From the Table 1, it is seen that the multiplication operation in the hybrid numbers is 

associativity and not commutative. The conjugate of 𝑧 is denoted by 𝑧, and it is given as 

𝑧 = 𝑎 − 𝑏i − 𝑐𝜀 − 𝑑h. 

The hybrid number character is defined by 

 𝐶(𝑧) = 𝑧𝑧 = 𝑧𝑧 = 𝑎2 + (𝑏 − 𝑐)2 − 𝑐2 − 𝑑2 = 𝑎2 + 𝑏2 − 2𝑏𝑐 − 𝑑2. 

The norm of any hybrid number 𝑧 is the root of 𝐶(𝑧), that is ‖𝑧‖ = √𝐶(𝑧). The readers can 

find more information about the hybrid number system in [1]. 

In recent years, special types of hybrid numbers have been studied by several authors. In [2], 

the authors introduced Fibonacci hybrid numbers and gave miscellaneous properties of these 

numbers. In [3, 4], the authors defined the generalizations of the Fibonacci and Lucas hybrid 

numbers and obtained some results for these numbers. They gave some number sequences for 

special values of 𝑘. In [5], the authors obtained the Euler’s and De Moivre’s formulas for 

the 4 × 4 matrix representation of hybrid numbers. Moreover, they gave the roots of the matrix 

representation of hybrid numbers and some results. In [6], the authors described Mersenne-

Lucas numbers. Also, they presented the Binet formula, the generating function, several 

identities. For more information, we refer to [7, 8] and closely related references. 

Quaternions were investigated by Hamilton [9] as an extension of the complex numbers. A 

quaternion is defined by 

𝑞 = 𝑎0 + 𝑎1𝒊 + 𝑎2𝒋 + 𝑎3𝒌                                       (2) 

where 𝑎0, 𝑎1, 𝑎2, 𝑎3 are real numbers and 𝒊, 𝒋, 𝒌 are quaternionic units that satisfy the following 

rules: 

 𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1 and 𝒊𝒋 = 𝒌 = −𝒋𝒊, 𝒋𝒌 = 𝒊 = −𝒌𝒋, 𝒌𝒊 = 𝒋 = −𝒊𝒌. (3) 

Many authors studied different quaternions and their generalizations, some of which can be 

found in [10-18]. Dağdeviren and Kürüz defined a new class of quaternions as called hybrid 

quaternions in [19]. Also, the authors described the hybrid quaternions with Horadam numbers 



Generalized 𝑘-Order Fibonacci Hybrid Quaternions 
 

672 

 

components and gave some properties. In [20], Uysal and Özkan defined Padovan hybrid 

quaternions.  

Hybrid quaternions are a generalization of complex, dual and hyperbolic quaternions. The set 

of hybrid quaternions is defined by 

            ℍ𝕂 = {𝑄 = 𝑧0 + 𝑧1𝒊 + 𝑧2𝒋 + 𝑧3𝒌: 𝑧0, 𝑧1, 𝑧2, 𝑧3 ∈ 𝕂} (4) 

where 𝒊, 𝒋, 𝒌 are quaternionic units satisfied the equations in (3). The hybrid quaternion 𝑄 can 

be written as 

𝑄 = 𝑞0 + 𝑞1i + 𝑞2𝜀 + 𝑞3h 

where 𝑞0, 𝑞1, 𝑞2, 𝑞3 are quaternions and i, 𝜀, h are hybrid units.  

In [21], the definition of order-𝑘 Fibonacci numbers is given as follows: 

𝑔𝑛
𝑖 = ∑

𝑘

𝑗=1

𝑔𝑛−𝑗
𝑖 , for 𝑛 > 0, 1 ≤ 𝑖 ≤ 𝑘 

with initial conditions 

 𝑔𝑛
𝑖 = {

1 if      𝑖 = 1 − 𝑛
0 otherwise

, for1 − 𝑘 ≤ 𝑛 ≤ 0 

where 𝑔𝑛
𝑖  is the 𝑛th term of the 𝑖th sequence. Many authors studied 𝑘-order Fibonacci numbers, 

see, for example, [22, 23, 24] . In [4], the generalized 𝑘-order Fibonacci numbers are defined 

as follows; 

 𝑉𝑛
(𝑘)

= 𝑑1𝑉𝑛−1
(𝑘)

+ 𝑑2𝑉𝑛−2
(𝑘)

+ 𝑑3𝑉𝑛−3
(𝑘)

+ ⋯+ 𝑑𝑘𝑉𝑛−𝑘
(𝑘)

 

for 𝑛 > 𝑘 ≥ 2, where 

 𝑉1
(𝑘)

= 𝑉2
(𝑘)

= 𝑉3
(𝑘)

= ⋯ = 𝑉𝑘−2
(𝑘)

= 0, 𝑉𝑘−1
(𝑘)

= 𝑞, 𝑉𝑘
(𝑘)

= 𝑑1. 

Also, they introduced hybrid numbers with generalized 𝑘-order Fibonacci numbers components 

and obtained several properties for some important number sequences. 

 

2. Main Results  

In this section, we introduce the generalized 𝑘-order Fibonacci hybrid quaternions, and present 

some results obtained from the definition. Then we give generating function, summation 

formula, matrix representation and Simson (Cassini) identity for these quaternions. Note that 

we present the following table to avoid confusion of notations. 
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Notation Sequence 

𝐻𝑄𝑛
(𝑘)

 generalized 𝑘-order Fibonacci hybrid quaternion 

𝐻𝑉𝑛
(𝑘)

 generalized 𝑘- order Fibonacci hybrid number 

𝑄𝑛
(𝑘)

 generalized 𝑘-order Fibonacci quaternion 

𝑉𝑛
(𝑘)

 generalized 𝑘-order Fibonacci number 

 Table 2: Notation table 

Definition 2.1 The generalized 𝑘-order Fibonacci hybrid quaternions {𝐻𝑄𝑛
(𝑘)

}, 𝑛 ∈ ℝ, is 

defined as 

 𝐻𝑄𝑛
(𝑘)

= 𝐻𝑉𝑛
(𝑘)

+ 𝒊𝐻𝑉𝑛+1
(𝑘)

+ 𝒋𝐻𝑉𝑛+2
(𝑘)

+ 𝒌𝐻𝑉𝑛+3
(𝑘)

 (5) 

where 𝒊, 𝒋, 𝒌 are quaternionic units and 𝐻𝑉𝑛
(𝑘)

 is 𝑛th generalized 𝑘-order hybrid Fibonacci 

numbers.  

Any generalized 𝑘-order Fibonacci hybrid quaternion can be given by 

 𝐻𝑄𝑛
(𝑘)

= 𝑄𝑛
(𝑘)

+ i𝑄𝑛+1
(𝑘)

+ ε𝑄𝑛+2
(𝑘)

+ h𝑄𝑛+3
(𝑘)

, (6) 

where i, 𝜀, h are hybrid units and 𝑄𝑛
(𝑘)

 is 𝑛th generalized 𝑘-order Fibonacci quaternion. 

 If we take as 𝑘 = 2 in the equation (5), we get generalized Fibonacci hybrid quaternion defined 

in [19]. Certain special cases are given as follows: 

   when 𝑑1 = 𝑑2 = 1, 𝑞 = 1, it is the Fibonacci hybrid quaternion , 

   when 𝑑1 = 𝑑2 = 1, 𝑞 = 2, it is the Lucas hybrid quaternion, 

   when 𝑑1 = 2, 𝑑2 = 1, 𝑞 = 1, it is the Pell hybrid quaternion, 

   when 𝑑1 = 2, 𝑑2 = 1, 𝑞 = 2, it is the Pell-Lucas hybrid quaternion, 

   when 𝑑1 = 1, 𝑑2 = 2, 𝑞 = 1, it is the Jacobsthal hybrid quaternion, 

   when 𝑑1 = 1, 𝑑2 = 2, 𝑞 = 2, it is the Jacobsthal-Lucas hybrid quaternion. 

If we take as 𝑘 = 3 in the equation (5), 

    when 𝑑1 = 0, 𝑑2 = 𝑑3 = 1, 𝑞 = 1, it is the Padovan hybrid quaternion, 

    when 𝑑1 = 0, 𝑑2 = 𝑑3 = 1, 𝑞 = 3, it is the Perrin hybrid quaternion. 

Note that, for 𝑛 ≥ 0, there is the following recurrence relation:  
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 𝐻𝑄𝑛
(𝑘)

= ∑𝑘
𝑚=1 𝑑𝑚𝐻𝑄𝑛−𝑚

(𝑘)
,          for     𝑘 ≥ 2. (7) 

Definition 2.2 The hybrid quaternions defined by both hybrid number 𝐻𝑉𝑛
(𝑘)

 and hybrid 

quaternion 𝑄𝑛
(𝑘)

 get three different conjugations as follows: 

quaternion conjugate: 

𝐻𝑄𝑛
(𝑘)

= 𝐻𝑉𝑛
(𝑘)

− 𝒊𝐻𝑉𝑛+1
(𝑘)

− 𝒋𝐻𝑉𝑛+2
(𝑘)

− 𝒌𝐻𝑉𝑛+3
(𝑘)

 

          or  

𝐻𝑄𝑛
(𝑘)

= 𝑄𝑛
(𝑘)

+i𝑄𝑛+1
(𝑘)

+ 𝜀𝑄𝑛+2
(𝑘)

+h𝑄𝑛+3
(𝑘)

, 

hybrid conjugate: 

𝐻𝑄𝑛
(𝑘)̂

= 𝑄𝑛
(𝑘)

−i𝑄𝑛+1
(𝑘)

− 𝜀𝑄𝑛+2
(𝑘)

−h𝑄𝑛+3
(𝑘)

, 

           or  

𝐻𝑄𝑛
(𝑘)̂

= 𝐻𝑉𝑛
(𝑘)̂

+ 𝒊𝐻𝑉𝑛+1
(𝑘)̂

+ 𝒋𝐻𝑉𝑛+2
(𝑘)̂

+ 𝒌𝐻𝑉𝑛+3
(𝑘)̂

, 

total conjugate: 

(𝐻𝑄𝑛
(𝑘)

)† = 𝑄𝑛
(𝑘)

−i𝑄𝑛+1
(𝑘)

− 𝜀𝑄𝑛+2
(𝑘)

−h𝑄𝑛+3
(𝑘)

 

               or 

(𝐻𝑄𝑛
(𝑘)

)† = 𝐻𝑉𝑛
(𝑘)̂

− 𝒊𝐻𝑉𝑛+1
(𝑘)̂

− 𝒋𝐻𝑉𝑛+2
(𝑘)̂

− 𝒌𝐻𝑉𝑛+3
(𝑘)̂

.  

Proposition 2.3 Let 𝐻𝑄𝑛
(𝑘)

, 𝐻𝑄𝑛
(𝑘)̂

, (𝐻𝑄𝑛
(𝑘)

)† be the quaternion conjugate, hybrid conjugate and 

total conjugate of 𝐻𝑄𝑛
(𝑘)

, respectively. For 𝑛 ≥ 0 and 𝑘 ≥ 2, we give the following relations: 

i. 𝐻𝑄𝑛
(𝑘)

+ 𝐻𝑄𝑛
(𝑘)

= 2𝐻𝑉𝑛
(𝑘)

, 

ii. 𝐻𝑄𝑛
(𝑘)

+ 𝐻𝑄𝑛
(𝑘)̂

= 2𝑄𝑛
(𝑘)

,     

iii. (𝐻𝑄𝑛
(𝑘)

)† − 𝐻𝑄𝑛
(𝑘)

= −2𝐻𝑉𝑛
(𝑘)

− 2𝑄𝑛
(𝑘)

+ 4𝑉𝑛
(𝑘)

,            

iv. 𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛
(𝑘)̂

= (𝑄𝑛
(𝑘)

)2 + (𝑄𝑛+1
(𝑘)

)2 − (𝑄𝑛+3
(𝑘)

)
2

− 𝑄𝑛+1
(𝑘)

𝑄𝑛+2
(𝑘)

− 𝑄𝑛+2
(𝑘)

𝑄𝑛+1
(𝑘)

. 

Theorem 2.4 The generating function for 𝐻𝑄𝑛
(𝑘)

 hybrid quaternion is given by 

 𝑔(𝑡) =
𝐻𝑄0

(𝑘)
+(𝐻𝑄1

(𝑘)
−𝑑1𝐻𝑄0

(𝑘)
)𝑡+(𝐻𝑄2

(𝑘)
−𝑑1𝐻𝑄1

(𝑘)
−𝑑2𝐻𝑄0

(𝑘)
)𝑡2+⋯+(𝐻𝑄k−1

(𝑘)
−∑𝑘−1

𝑚=1 𝑑𝑚𝐻𝑄𝑘−𝑚−1
(𝑘)

)𝑡𝑘−1

1−∑𝑘
𝑚=1 𝑑𝑚𝑡𝑚 . 

 Proof. Suppose that the generating function for 𝐻𝑄𝑛
(𝑘)

  is  

 𝑔(𝑡) = ∑∞
𝑛=0 𝐻𝑄𝑛

(𝑘)
𝑡𝑛 = 𝐻𝑄0

(𝑘)
+ 𝐻𝑄1

(𝑘)
𝑡 + 𝐻𝑄2

(𝑘)
𝑡2 + ⋯+ 𝐻𝑄𝑛

(𝑘)
𝑡𝑛 + ⋯. 

Multiplying 𝑔(𝑡) with −𝑑1𝑡, −𝑑2𝑡
2, −𝑑3𝑡

3, ⋯,−𝑑𝑘𝑡
𝑘 and then summing obtained equations, 

we have the following equation;  

 𝑔(𝑡) =
1

(1−𝑑1𝑡−𝑑2𝑡2−𝑑3𝑡3−⋯−𝑑𝑘𝑡𝑘)
(𝐻𝑄0

(𝑘)
+ (𝐻𝑄1

(𝑘)
− 𝑑1𝐻𝑄0

(𝑘)
)𝑡 
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 +(𝐻𝑄2
(𝑘)

− 𝑑1𝐻𝑄1
(𝑘)

− 𝑑2𝐻𝑄0
(𝑘)

)𝑡2 

 +(𝐻𝑄3
(𝑘)

− 𝑑1𝐻𝑄2
(𝑘)

− 𝑑2𝐻𝑄1
(𝑘)

− 𝑑3𝐻𝑄0
(𝑘)

)𝑡3 

 +⋯+ (𝐻𝑄𝑛
(𝑘)

− ∑𝑛−1
𝑚=1 𝑑𝑚𝐻𝑄𝑛−𝑚

(𝑘)
)𝑡𝑛 + ⋯). 

From the recurrence relation (7), we obtain  

 𝑔(𝑡) =
𝐻𝑄0

(𝑘)
+(𝐻𝑄1

(𝑘)
−𝑑1𝐻𝑄0

(𝑘)
)𝑡+(𝐻𝑄2

(𝑘)
−𝑑1𝐻𝑄1

(𝑘)
−𝑑2𝐻𝑄0

(𝑘)
)𝑡2+⋯+(𝐻𝑄𝑘−1

(𝑘)
−∑𝑘−1

𝑚=1 𝑑𝑚𝐻𝑄𝑘−𝑚−1
(𝑘)

)𝑡𝑘−1

1−∑𝑘
𝑚=1 𝑑𝑚𝑡𝑚

. 

 So, the proof is completed.    

Corollary 2.5 If 𝑘 = 2, the generating function for the Horadam hybrid quaternions is given 

by 

 𝑔(𝑡) =
𝐻𝑄0+(𝐻𝑄1−𝑑1𝐻𝑄0)𝑡

1−𝑑1𝑡−𝑑2𝑡2 . 

The generating functions for special cases of (𝑑1, 𝑑2, 𝑞) is given as follows:  

  when 𝑑1 = 𝑑2 = 1, 𝑞 = 1, for the Fibonacci hybrid quaternion, it is 

 𝑔(𝑡) =
�̂�0+(�̂�1−�̂�0)𝑡

1−𝑡−𝑡2 , 

  when 𝑑1 = 𝑑2 = 1, 𝑞 = 2, for the Lucas hybrid quaternion, it is 

 𝑔(𝑡) =
�̂�0+(�̂�1−�̂�0)𝑡

1−𝑡−𝑡2 , 

  when 𝑑1 = 2, 𝑑2 = 1, 𝑞 = 1, for the Pell hybrid quaternion, it is 

 𝑔(𝑡) =
�̂�0+(�̂�1−�̂�0)𝑡

1−2𝑡−𝑡2 , 

  when 𝑑1 = 1, 𝑑2 = 2, 𝑞 = 1, for the Jacobsthal hybrid quaternion, it is 

                                                                𝑔(𝑡) =
𝐽0+(𝐽1−𝐽0)𝑡

1−𝑡−2𝑡2 . 

 If we take as 𝑘 = 3, we can derive the following generating functions: 

 when 𝑑1 = 𝑑2 = 𝑑3 = 1, 𝑞 = 1, for the Tribonacci hybrid quaternion, it is  

 𝑔(𝑡) =
�̂�0+(�̂�1−�̂�0)𝑡+(�̂�2−�̂�1−�̂�0)𝑡2

1−𝑡−𝑡2−𝑡3 , 

when 𝑑1 = 0, 𝑑2 = 𝑑3 = 1, 𝑞 = 1, for the Padovan hybrid quaternion, it is 

 𝑔(𝑡) =
𝐻�̂�0+𝐻�̂�1𝑡+(𝐻�̂�2−𝐻�̂�0)𝑡2

1−𝑡2−𝑡3
, 
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  when 𝑑1 = 0, 𝑑2 = 𝑑3 = 1, 𝑞 = 3, for the Perrin hybrid quaternion, it is 

 𝑔(𝑡) =
𝑅�̂�0+𝑅�̂�1𝑡+(𝑅�̂�2−𝑅�̂�0)𝑡2

1−𝑡2−𝑡3 . 

Theorem 2.6 The summation formula for the generalized 𝑘-order Fibonacci quaternions is 

given as follows:                                                  

 ∑𝑛
𝑚=1 𝐻𝑄𝑚

(𝑘)
= 

1

𝑑𝑘
(∑𝑙

𝑚=1 𝐻𝑄𝑘+𝑚
(𝑘)

− ∑𝑘−1
𝑚=1 ∑𝑚

𝑠=1 𝑑𝑠𝐻𝑄𝑘+𝑙−𝑚
(𝑘)

 

                       −∑𝑘−1
𝑚=1 ∑𝑚

𝑠=1 𝑑𝑘−𝑠𝐻𝑄𝑚+1
(𝑘)

− ∑𝑙−𝑘
𝑚=1 (𝑑1 + 𝑑2 + ⋯+ 𝑑𝑘−1)𝐻𝑄𝑘+𝑚

(𝑘)
). 

Proof. By the recurrence relation in the equation (7), for 𝑛 = 𝑘 + 1, . . . , 𝑘 + 𝑙, we have  

 𝐻𝑄𝑘+1
(𝑘)

= 𝑑1𝐻𝑄𝑘
(𝑘)

+ 𝑑2𝐻𝑄𝑘−1
(𝑘)

+ ⋯ + 𝑑𝑘−1𝐻𝑄2
(𝑘)

+ 𝑑𝑘𝐻𝑄1
(𝑘)

, 

 𝐻𝑄𝑘+2
(𝑘)

= 𝑑1𝐻𝑄𝑘+1
(𝑘)

+ 𝑑2𝐻𝑄𝑘
(𝑘)

+ ⋯ + 𝑑𝑘−1𝐻𝑄3
(𝑘)

+ 𝑑𝑘𝐻𝑄2
(𝑘)

, 

 𝐻𝑄𝑘+3
(𝑘)

= 𝑑1𝐻𝑄𝑘+2
(𝑘)

+ 𝑑2𝐻𝑄𝑘+1
(𝑘)

+ ⋯+ 𝑑𝑘−1𝐻𝑄4
(𝑘)

+ 𝑑𝑘𝐻𝑄3
(𝑘)

, 

               ⋮ 

 𝐻𝑄𝑘+𝑙−1
(𝑘)

= 𝑑1𝐻𝑄𝑘+𝑙−2
(𝑘)

+ 𝑑2𝐻𝑄𝑘+𝑙−3
(𝑘)

+ ⋯+ 𝑑𝑘−1𝐻𝑄𝑙
(𝑘)

+ 𝑑𝑘𝐻𝑄𝑙−1
(𝑘)

, 

 𝐻𝑄𝑘+𝑙
(𝑘)

= 𝑑1𝐻𝑄𝑘+𝑙−1
(𝑘)

+ 𝑑2𝐻𝑄𝑘+𝑙−2
(𝑘)

+ ⋯+ 𝑑𝑘−1𝐻𝑄𝑙+1
(𝑘)

+ 𝑑𝑘𝐻𝑄𝑙
(𝑘)

. 

By adding the last terms of the above equations, we can write as follows: 

 ∑𝑙
𝑚=1 𝐻𝑄𝑚

(𝑘)
=

1

𝑑𝑘
(𝐻𝑄𝑘+𝑙

(𝑘)
+ (1 − 𝑑1)𝐻𝑄𝑘+𝑙−1

(𝑘)
+ (1 − 𝑑1 − 𝑑2)𝐻𝑄𝑘+𝑙−2

(𝑘)
 

 +(1 − 𝑑1 − 𝑑2 − 𝑑3)𝐻𝑄𝑘+𝑙−3
(𝑘)

+ ⋯ + (1 − 𝑑1 − 𝑑2 − ⋯− 𝑑𝑘−3)𝐻𝑄𝑙+3
(𝑘)

 

 +(1 − 𝑑1 − 𝑑2 − ⋯− 𝑑𝑘−2)𝐻𝑄𝑙+2
(𝑘)

+ (1 − 𝑑1 − 𝑑2 − ⋯− 𝑑𝑘−1)𝐻𝑄𝑙+1
(𝑘)

 

 +(1 − 𝑑1 − 𝑑2 − ⋯− 𝑑𝑘−1)𝐻𝑄𝑙
(𝑘)

+ ⋯+ (1 − 𝑑1 − 𝑑2 − ⋯− 𝑑𝑘−1)𝐻𝑄𝑘+1
(𝑘)

 

 +(−𝑑1 − 𝑑2 − ⋯− 𝑑𝑘−1)𝐻𝑄𝑘
(𝑘)

+ (−𝑑2 − 𝑑3 − ⋯− 𝑑𝑘−1)𝐻𝑄𝑘−1
(𝑘)

+ ⋯ 

 +(−𝑑𝑘−3 − 𝑑𝑘−2 − 𝑑𝑘−1)𝐻𝑄4
(𝑘)

+ (−𝑑𝑘−2 − 𝑑𝑘−1)𝐻𝑄3
(𝑘)

− 𝑑𝑘−1𝐻𝑄2
(𝑘)

 

 =
1

𝑑𝑘
(∑𝑙

𝑚=1 𝐻𝑄𝑘+𝑚
(𝑘)

− ∑𝑘−1
𝑚=1 ∑𝑚

𝑠=1 𝑑𝑠𝐻𝑄𝑘+𝑙−𝑚
(𝑘)

 

                         −∑𝑘−1
𝑚=1 ∑𝑚

𝑠=1 𝑑𝑘−𝑠𝐻𝑄𝑚+1
(𝑘)

− ∑𝑙−𝑘
𝑚=1 (𝑑1 + 𝑑2 + ⋯+ 𝑑𝑘−1)𝐻𝑄𝑘+𝑚

(𝑘)
). 

Corollary 2.7 For 𝑘 = 2 and 𝑑1 = 𝑑2 = 𝑞 = 1, the sum for the Fibonacci hybrid quaternions 
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 ∑𝑙
𝑚=1 �̂�𝑚 = �̂�𝑙+2 − �̂�2. 

Corollary 2.8 For 𝑘 = 3 and 𝑑1 = 𝑑2 = 𝑑3 = 𝑞 = 1, the sum for the Tribonacci hybrid 

quaternions 

                                                       ∑𝑙
𝑚=1 �̂�𝑚 =

1

2
(�̂�𝑙+3 − �̂�𝑙+1 − �̂�3 + �̂�1). 

 for 𝑑1 = 0, 𝑑2 = 𝑑3 = 1 and 𝑞 = 1, the sum for the Padovan hybrid quaternions 

 ∑𝑛
𝑚=1 𝐻�̂�𝑚 = 𝐻�̂�𝑙+3 + 𝐻�̂�𝑙+2 − 𝐻�̂�2 − 𝐻�̂�3. 

Based on the work of Asci and Aydinyuz [4], we now present the matrix representation for the 

generalized order 𝑘 Fibonacci hybrid quaternions. The 𝑄-matrix 𝑄𝑘 introduced in [4] is given 

as follow: 

 𝑄𝑘 =

[
 
 
 
 
 
𝑑1 𝑑2 𝑑3 ⋯ 𝑑𝑘−1 𝑑𝑘

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 0
0 0 0 ⋯ 1 0 ]

 
 
 
 
 

. 

For 𝑛 ≥ 1, the elements of the quaternion sequence { 𝐻𝑄𝑛
(𝑘)

} can be derived by the following 

matrix relation: 

 

[
 
 
 
 
 
𝑑1 𝑑2 𝑑3 ⋯ 𝑑𝑘−1 𝑑𝑘

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 0
0 0 0 ⋯ 1 0 ]

 
 
 
 
 
𝑛

⋅

[
 
 
 
 
 
 
 𝐻𝑄𝑘−1

(𝑘)

𝐻𝑄𝑘−2
(𝑘)

𝐻𝑄𝑘−3
(𝑘)

⋮

𝐻𝑄1
(𝑘)

𝐻𝑄0
(𝑘)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝐻𝑄𝑛+𝑘−1

(𝑘)

𝐻𝑄𝑛+𝑘−2
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

⋮

𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

]
 
 
 
 
 
 
 

. 

Lemma 2.9 Let  

𝐻𝑄𝑘,𝑛 =

[
 
 
 
 
 
 
 𝐻𝑄𝑛+𝑘−1

(𝑘)
𝐻𝑄𝑛+𝑘−2

(𝑘)
𝐻𝑄𝑛+𝑘−3

(𝑘)
⋯ 𝐻𝑄𝑛+1

(𝑘)
𝐻𝑄𝑛

(𝑘)

𝐻𝑄𝑛+𝑘−2
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

𝐻𝑄𝑛+𝑘−4
(𝑘)

⋯ 𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

𝐻𝑄𝑛+𝑘−4
(𝑘)

𝐻𝑄𝑛+𝑘−5
(𝑘)

⋯ 𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛−2
(𝑘)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

⋯ 𝐻𝑄𝑛+3−𝑘
(𝑘)

𝐻𝑄𝑛+2−𝑘
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛−2
(𝑘)

⋯ 𝐻𝑄𝑛+2−𝑘
(𝑘)

𝐻𝑄𝑛+1−𝑘
(𝑘)

]
 
 
 
 
 
 
 

 

be the matrix form of the generalized order-𝑘 Fibonacci quaternion. For 𝑛 ≥ 1, we have 

 𝐻𝑄𝑘,𝑛+1 = 𝑄𝑘. 𝐻𝑄𝑘,𝑛. (8) 

Theorem 2.10 Let 𝐻𝑄𝑘,𝑛 be the matrix form of 𝐻𝑄𝑛
(𝑘)

. For 𝑛 ≥ 1, then we have 
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 𝐻𝑄𝑘,𝑛 = 𝑄𝑘
𝑛. 𝐴𝑘 (9) 

 where 𝐴𝑘 is defined as a 𝑘 × 𝑘 matrix by  

 𝐴𝑘 =

[
 
 
 
 
 
 
 𝐻𝑄𝑘−1

(𝑘)
𝐻𝑄𝑘−2

(𝑘)
𝐻𝑄𝑘−3

(𝑘)
⋯ 𝐻𝑄1

(𝑘)
𝐻𝑄0

(𝑘)

𝐻𝑄𝑘−2
(𝑘)

𝐻𝑄𝑘−3
(𝑘)

𝐻𝑄𝑘−4
(𝑘)

⋯ 𝐻𝑄0
(𝑘)

𝐻𝑄−1
(𝑘)

𝐻𝑄𝑘−3
(𝑘)

𝐻𝑄𝑘−4
(𝑘)

𝐻𝑄𝑘−5
(𝑘)

⋯ 𝐻𝑄−1
(𝑘)

𝐻𝑄−2
(𝑘)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐻𝑄1
(𝑘)

𝐻𝑄0
(𝑘)

𝐻𝑄−1
(𝑘)

⋯ 𝐻𝑄−(𝑘−3)
(𝑘)

𝐻𝑄−(𝑘−2)
(𝑘)

𝐻𝑄0
(𝑘)

𝐻𝑄−1
(𝑘)

𝐻𝑄−1
(𝑘)

⋯ 𝐻𝑄−(𝑘−2)
(𝑘)

𝐻𝑄−(𝑘−1)
(𝑘)

]
 
 
 
 
 
 
 

. 

 Proof. The proof is seen by the principle of mathematical induction on 𝑛. For 𝑛 = 1, it is easy 

to see that 

𝑄𝑘𝐴𝑘 = 𝐻𝑄𝑘,1. 

Now, we assume that the formula (9) is true for 𝑛, that is 

 𝐻𝑄𝑘,𝑛 = 𝑄𝑘
𝑛. 𝐴𝑘 . 

Then by induction, using the equality (8), it is shown that it is valid for 𝑛 + 1, 

𝑄𝑘
𝑛+1𝐴𝑘 = 𝑄𝑘𝑄𝑘

𝑛. 𝐴𝑘 

               = 𝑄𝑘𝐻𝑄𝑘,𝑛 

               = 𝐻𝑄𝑘,𝑛+1. 

So, the proof is completed.    

Corollary 2.11 If 𝑘 = 2, the matrix representation of the Horadam hybrid quaternions is given 

by 

𝑄2
𝑛𝐴2 = [

𝑑1 𝑑2

1 0
]
𝑛

[
𝐻𝑄1 𝐻𝑄0

𝐻𝑄0 𝐻𝑄−1
] 

= [
𝐻𝑄𝑛+1 𝐻𝑄𝑛

𝐻𝑄𝑛 𝐻𝑄𝑛−1
] 

                                                           = 𝐻𝑄2,𝑛. 

The matrix representations for special cases of (𝑑1, 𝑑2, 𝑞) is obtained similarly. For example; 

for 𝑑1 = 𝑑2 = 1, 𝑞 = 1, the matrix representation of the Fibonacci hybrid quaternion is 

𝑄2
𝑛𝐴2 = [

1 1
1 0

]
𝑛

[
�̂�1 �̂�0

�̂�0 �̂�−1

] 

                                       = [
�̂�𝑛+1 �̂�𝑛

�̂�𝑛 �̂�𝑛−1

]. 
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If we take as 𝑘 = 3,  

for 𝑑1 = 𝑑2 = 𝑑3 = 1, 𝑞 = 1, the matrix representation of the Tribonacci hybrid quaternion 

is given by 

𝑄3
𝑛𝐴3 = [

1 1 1
1 0 0
0 1 0

]

𝑛

[

�̂�2 �̂�1 �̂�0

�̂�1 �̂�0 �̂�−1

�̂�0 �̂�−1 �̂�−2

] 

= [

�̂�𝑛+2 �̂�𝑛+1 �̂�𝑛

�̂�𝑛+1 �̂�𝑛 �̂�𝑛−1

�̂�𝑛 �̂�𝑛−1 �̂�𝑛−2

]. 

Theorem 2.12 For all integers 𝑚, 𝑛 such that 0 < 𝑚 < 𝑛, we have the following relations : 

𝐻𝑄𝑛
(𝑘)

= 𝑉𝑚+1
(𝑘)

𝐻𝑄𝑛−𝑚
(𝑘)

+ (𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

+ ⋯+ 𝑉𝑚+2−𝑘
(𝑘)

)𝐻𝑄𝑛−𝑚−1
(𝑘)

+ ⋯  

           +(𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

+ 𝑉𝑚−2
(𝑘)

)𝐻𝑄𝑛−𝑚−𝑘+3
(𝑘)

+ (𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

)𝐻𝑄𝑛−𝑚−𝑘+2
(𝑘)

+ 𝑉𝑚
(𝑘)

𝐻𝑄𝑛−𝑚−𝑘+1
(𝑘)

. 

 Proof. In [21], it is seen that 

𝑄𝑘
𝑛 =

[
 
 
 
 
 
 𝑉𝑛+1

(𝑘)
⋯ 𝑉𝑛

(𝑘)
+ 𝑉𝑛−1

(𝑘)
+ 𝑉𝑛−2

(𝑘)
𝑉𝑛

(𝑘)
+ 𝑉𝑛−1

(𝑘)
𝑉𝑛

(𝑘)

𝑉𝑛
(𝑘)

⋯ 𝑉𝑛−1
(𝑘)

+ 𝑉𝑛−2
(𝑘)

+ 𝑉𝑛−3
(𝑘)

𝑉𝑛+1
(𝑘)

+ 𝑉𝑛
(𝑘)

𝑉𝑛−1
(𝑘)

⋮ ⋱ ⋮ ⋮ ⋮

𝑉𝑛−𝑘+3
(𝑘)

⋯ 𝑉𝑛−𝑘+2
(𝑘)

+ 𝑉𝑛−𝑘+1
(𝑘)

+ 𝑉𝑛−𝑘
(𝑘)

𝑉𝑛−𝑘+2
(𝑘)

+ 𝑉𝑛−𝑘+1
(𝑘)

𝑉𝑛−𝑘+2
(𝑘)

𝑉𝑛−𝑘+2
(𝑘)

⋯ 𝑉𝑛−𝑘+1
(𝑘)

+ 𝑉𝑛−𝑘
(𝑘)

+ 𝑉𝑛−𝑘−1
(𝑘)

𝑉𝑛−𝑘+3
(𝑘)

+ 𝑉𝑛−𝑘+2
(𝑘)

𝑉𝑛−𝑘+1
(𝑘)

]
 
 
 
 
 
 

. 

 From definitions of the 𝑄𝑘-matrix and the equality (9), we have 

      𝑄𝑘
𝑛 = 𝑄𝑘

𝑚𝑄𝑘
𝑛−𝑚 

 𝑄𝑘
𝑛𝐴𝑘 = 𝑄𝑘

𝑚(𝑄𝑘
𝑛−𝑚𝐴𝑘) 

            = 𝑄𝑘
𝑚𝐻𝑄𝑘,𝑛−𝑚. 

Considering the matrix equality and the product of matrices, the result is obtained as follows: 

𝐻𝑄𝑛
(𝑘)

= 𝑉𝑚+1
(𝑘)

𝐻𝑄𝑛−𝑚
(𝑘)

+ (𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

+ ⋯+ 𝑉𝑚+2−𝑘
(𝑘)

)𝐻𝑄𝑛−𝑚−1
(𝑘)

+ ⋯ 

           +(𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

+ 𝑉𝑚−2
(𝑘)

)𝐻𝑄𝑛−𝑚−𝑘+3
(𝑘)

+ (𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

)𝐻𝑄𝑛−𝑚−𝑘+2
(𝑘)

+ 𝑉𝑚
(𝑘)

𝐻𝑄𝑛−𝑚−𝑘+1
(𝑘)

. 

Theorem 2.13 Let 𝑚 and 𝑛 be positive. Then we have  

𝐻𝑄𝑚+𝑛
(𝑘)

= 𝑉𝑚+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

+ (𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

+ ⋯+ 𝑉𝑚+2−𝑘
(𝑘)

)𝐻𝑄𝑛−1
(𝑘)

+ ⋯  

               +(𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

+ 𝑉𝑚−2
(𝑘)

)𝐻𝑄𝑛−𝑘+3
(𝑘)

+ (𝑉𝑚
(𝑘)

+ 𝑉𝑚−1
(𝑘)

)𝐻𝑄𝑛−𝑘+2
(𝑘)

+ 𝑉𝑚
(𝑘)

𝐻𝑄𝑛−𝑘+1
(𝑘)

.  

Simson identity ( formula) called also as Cassini identity (formula) was found by R. Simson in 
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1753. This formula is determined by  

 𝐹𝑛+1𝐹𝑛−1 − 𝐹𝑛
2 = (−1)𝑛                  

which is also denoted by the following form 

 |
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
| = (−1)𝑛. 

In [25], the author gave a generalization of Simson identity and presented Simson’s identities 

of some number sequences by certain special cases. Now, we derive Simson identity for the 

generalized order-𝑘 Fibonacci hybrid quaternions and also obtain Simson identity for well-

known hybrid quaternions in some special cases. 

Theorem 2.14 For 𝑘 ≥ 2,  

 |𝐻𝑄𝑘,𝑛| = (−1)(𝑘−1)𝑛(𝑑𝑘)
𝑛|𝐴𝑘|. (10) 

 Proof. We prove by the principle of mathematical induction on 𝑛. For 𝑛 = 0, it is clear that 

the formula is true. Now, we assume that the formula (10) is true for 𝑛. Therefore, we have to 

show that it is true for 𝑛 + 1. 

Taking into account the recurrence relation 𝐻𝑄𝑛
(𝑘)

= ∑𝑘
𝑚=1 𝑑𝑚𝐻𝑄𝑛−𝑚

(𝑘)
, we write the elements 

of the first column as follows: 

 𝐻𝑄𝑛+𝑘
(𝑘)

= 𝑑1𝐻𝑄𝑛+𝑘−1
(𝑘)

+ 𝑑2𝐻𝑄𝑛+𝑘−2
(𝑘)

+ ⋯+ 𝑑𝑘𝐻𝑄𝑛
(𝑘)

, 

 𝐻𝑄𝑛+𝑘−1
(𝑘)

= 𝑑1𝐻𝑄𝑛+𝑘−2
(𝑘)

+ 𝑑2𝐻𝑄𝑛+𝑘−3
(𝑘)

+ ⋯+ 𝑑𝑘𝐻𝑄𝑛−1
(𝑘)

, 

 𝐻𝑄𝑛+𝑘−2
(𝑘)

= 𝑑1𝐻𝑄𝑛+𝑘−3
(𝑘)

+ 𝑑2𝐻𝑄𝑛+𝑘−4
(𝑘)

+ ⋯+ 𝑑𝑘𝐻𝑄𝑛−2
(𝑘)

, 

⋮ 

 𝐻𝑄𝑛+1
(𝑘)

= 𝑑1𝐻𝑄𝑛
(𝑘)

+ 𝑑2𝐻𝑄𝑛−1
(𝑘)

+ ⋯+ 𝑑𝑘𝐻𝑄𝑛−𝑘+1
(𝑘)

. 

When the first column of the determinant is subtracted with all terms except the last term in the 

sum on the right-hand side of the above equations, and the determinant is rearranged, using 

proportionality, switching and sum properties of determinant, we have 

|𝐻𝑄𝑘,𝑛+1| = 𝑑𝑘

|

|

|

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛+𝑘−1
(𝑘)

𝐻𝑄𝑛+𝑘−2
(𝑘)

⋯ 𝐻𝑄𝑛+2
(𝑘)

𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛+𝑘−2
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

⋯ 𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−2
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

𝐻𝑄𝑛+𝑘−4
(𝑘)

⋯ 𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐻𝑄𝑛−𝑘+2
(𝑘)

𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

⋯ 𝐻𝑄𝑛+4−𝑘
(𝑘)

𝐻𝑄𝑛+3−𝑘
(𝑘)

𝐻𝑄𝑛−𝑘+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

⋯ 𝐻𝑄𝑛+3−𝑘
(𝑘)

𝐻𝑄𝑛+2−𝑘
(𝑘)

|

|

|
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 = (−1)𝑘−1𝑑𝑘

|

|

|

𝐻𝑄𝑛+𝑘−1
(𝑘)

𝐻𝑄𝑛+𝑘−2
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

⋯ 𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛+𝑘−2
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

𝐻𝑄𝑛+𝑘−4
(𝑘)

⋯ 𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛+𝑘−3
(𝑘)

𝐻𝑄𝑛+𝑘−4
(𝑘)

𝐻𝑄𝑛+𝑘−5
(𝑘)

⋯ 𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛−2
(𝑘)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐻𝑄𝑛+1
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

⋯ 𝐻𝑄𝑛+3−𝑘
(𝑘)

𝐻𝑄𝑛+2−𝑘
(𝑘)

𝐻𝑄𝑛
(𝑘)

𝐻𝑄𝑛−1
(𝑘)

𝐻𝑄𝑛−2
(𝑘)

⋯ 𝐻𝑄𝑛+2−𝑘
(𝑘)

𝐻𝑄𝑛+1−𝑘
(𝑘)

|

|

|

 

                        = (−1)(𝑘−1)𝑛+1(𝑑𝑘)
𝑛+1|𝐴𝑘|. 

So, the proof is completed.    

Corollary 2.15 Simson Formula of Horadam hybrid quaternions is  

|
𝐻𝑄𝑛+1 𝐻𝑄𝑛

𝐻𝑄𝑛 𝐻𝑄𝑛−1
| = (−1)𝑛(𝑑2)

𝑛 |
𝐻𝑄1 𝐻𝑄0

𝐻𝑄0 𝐻𝑄−1
|. 

Corollary 2.16 Simson Formula of Jacobsthal hybrid quaternions is  

|
𝐽n+1 𝐽n
𝐽n 𝐽n−1

| = (−1)𝑛(2)𝑛 |
𝐽1 𝐽0
𝐽0 𝐽−1

|. 

Corollary 2.17 Simson Formula of Tribonacci hybrid quaternions is 

|

�̂�𝑛+1 �̂�𝑛 �̂�𝑛−1

�̂�𝑛 �̂�𝑛−1 �̂�𝑛−2

�̂�𝑛−1 �̂�𝑛−2 �̂�𝑛−3

| = |

�̂�1 �̂�0 �̂�−1

�̂�0 �̂�−1 �̂�−2

�̂�−1 �̂�−2 �̂�−3

|. 

3. Conclusion  

In this paper, we extend the Fibonacci hybrid quaternions to the generalized 𝑘-order Fibonacci 

hybrid quaternions. We investigated the recurrence relation, generating function, the 

summation formula for these quaternions. Then, we gave the matrix representation for the 

generalized 𝑘-order Fibonacci hybrid quaternions. With the help of the 𝑄𝑘 matrix defined for 

the generalized k-order Fibonacci hybrid quaternions and other defined matrices, we also obtain 

some identities of these quaternions. 
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