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Abstract 

 

Audio spoof detection gained the attention of the researchers recently, as it is vital to detect spoofed 
speech for automatic speaker recognition systems. Publicly available datasets also accelerated the studies 

in this area. Many different features and classifiers have been proposed to overcome the spoofed speech 

detection problem, and some of them achieved considerably high performances. However, under additive 

noise, the spoof detection performance drops rapidly. On the other hand, the number of studies about 

robust spoofed speech detection is very limited. The problem becomes more interesting as the 

conventional speech enhancement methods reportedly performed worse than no enhancement. In this 

work, i-vectors are used for spoof detection, and discriminative denoising autoencoder (DAE) network is 

used to obtain enhanced (clean) i-vectors from their noisy counterparts. Once the enhanced i-vectors are 

obtained, they can be treated as normal i-vectors and can be scored/classified without any modifications in 

the classifier part. Data from ASVspoof 2015 challenge is used with five different additive noise types, 

following a similar configuration of previous studies. The DAE is trained in a multicondition manner, 

using both clean and corrupted i-vectors. Three different noise types at various signal-to-noise ratios are 
used to create corrupted i-vectors, and two different noise types are used only in the test stage to simulate 

unknown noise conditions. Experimental results showed that the proposed DAE approach is more 

effective than the conventional speech enhancement methods. 

 

Keywords: Deep learning, denoising autoencoder, i-vector, spoofing detection 

 

1. Introduction 

 

Vulnerability of automatic speaker detection systems 

against spoofed speech is an important drawback for 

practical usage of these systems. Early studies showed 

that conventional features such as mel-frequency 
cepstral coefficients (MFCC) are not suitable for 

detection of synthetic speech signals [1]. Organizations 

such as the ASVspoof challenges provided a common 

database to the researches, which accelerates the 

awareness and number of studies on the spoof detection 

problem [2–4].  

 

Many different solutions to the aforementioned problem 

have been proposed. One of the most efficient features 

against synthetic speech is the constant-Q cepstral 

coefficients (CQCC) [5], which served as a baseline 
method with Gaussian Mixture Model (GMM) 

classifier. Phase-based features, which are usually  

 

neglected in speaker/speech recognition, were found to 

be beneficial for spoof detection [6], [7]. For 

modeling/classifying the extracted features traditional 

methods such as GMMs and i-vectors [3] could be 

preferred. However, recent studies include deep learning 

architectures such multilayer perceptron (MLP) [8], 
convolutional neural networks (CNN) [9], recurrent 

neural networks (RNN) [10].  

 

Compared to the baseline systems such as 

MFCC−GMM, most of the mentioned studies achieved 

superior performances for detecting synthetic and/or 

replayed speech data. On the other hand, under additive 

noise, the detection performance drops rapidly as shown 

in [11] using the ASVspoof 2015 database. Several 

different feature types were investigated with GMM and 

i-vector backends, and to reduce the noise effects, 
conventional speech enhancement methods such as 

spectral subtraction and Wiener filtering were 
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employed. However, speech enhancement methods 

further deteriorate the detection performance. Similar 

observations were made in [12] for additive noise and 

reverberation, using MLP classifier, and score level 

fusion of different features led to an improved 

performance. Complex deep learning architectures 

yielded to the most robust systems so far, considering 

the noisy ASVspoof 2015 database. In [13],  a CNN 

system was examined with different combinations of 
noise aware training, masking, and RNN. The most 

robust system was observed with CNN+Mask+RNN 

combination. In [14], gated recurrent convolutional 

networks were used with modified group delay features 

and spectrogram obtained via short-time Fourier 

Transform. A noise mask was also estimated with a 

CNN mask estimator, where the purpose is to mask the 

noise dominant time-frequency bins and use the speech 

dominant bins in further processes. Identity vectors 

were observed after stacking the network outputs, and a 

probabilistic linear discriminant analysis was used for 

classification. 
 

Despite the various methods proposed so far for spoof 

detection, studies on robustness against the additive 

noise are very limited. Conventional speech 

enhancement methods are ineffective, and the proposed 

robust deep learning-based systems are computationally 

demanding. In this work, discriminative denoising 

autoencoder (DDAE) [15] with i-vector inputs are 

investigated to verify if it can provide a robust system, 

or fails as speech enhancement methods did. One of the 

advantages of the i-vectors is that variable length 
utterances can be expressed as fixed low dimensional 

vectors [16]. This property is also important for neural 

network systems as they require fixed length inputs. For 

instance, to use the CNN architecture, speech files are 

truncated or padded to a selected length [9]. Using the i-

vectors, the information loss or adding redundant 

information can be avoided. The DAE networks mainly 

used for restoring the noisy/corrupted features, and can 

be found in several speech related studies such as [17], 

[18]. The original (clean) version of the inputs is given 

as the DAE targets for training the system. In the 

discriminative DAE, class labels are also provided so 
that the network can also learn the differences between 

classes. Following the previous robustness studies 

mentioned before, the ASVspoof 2015 database is used 

in this work with five different noises from NOISEX-92 

[19] and QUT-Noise [20] databases. The experimental 

results proved that the proposed approach is more robust 

than the conventional speech enhancement methods. 

 

2. Denoising Autoencoders with I-vectors 

2.1. I-vector 

 
Text-independent speaker verification enjoyed the 

advantages of the i-vectors in the last decade. Some of 

the advantages that i-vector introduced are fixed 

dimensional representation, modeling both speaker and 

channel variabilities in the same space, channel 

compensation in the i-vector space, opportunity to use 

support vector machine and linear discriminant analysis 

based classifiers. The conventional i-vector extraction 

scheme consists of training a GMM with a high number 

of mixtures (named as universal background model 

(UBM)) and a low rank matrix called total variability 

matrix. Let M be a speaker and channel independent 

GMM supervector and expressed as, 
 

𝑀 = 𝑚 + 𝑇𝜔   (2.1) 

where m is the mean supervector from the UBM, and 𝜔 

is a random vector with normal distribution, and T is the 

total variability matrix (also known as i-vector 

extractor). For each utterance, maximum a posterior 

estimate of 𝜔 is the i-vector. 

 

Besides their high performances in speaker recognition, 
i-vectors were also used in spoofed speech detection 

[21], [22], however their performance is poor under 

additive noise [11]. Contrary, robust speaker recognition 

studies can be found in the literature [15], [18], [23]–

[27]. The main disadvantages of these methods are the 

increased computational demand, and poor performance 

for short duration utterances [27]. The average utterance 

length for the ASVspoof 2015 data is 3.5 seconds, 

which is very short even for the clean data. Although 

the results are not given in this work, preliminary 

experiments showed that using the MAP denoising 
methods of [25], [27] do not introduce any robustness to 

spoof detection system, and the main reason for this 

result may be the limited amount of training data and 

their short durations. Therefore, DDAE is used in this 

work to exploit the nonlinear relation between the noisy 

and clean i-vectors, and to avoid extreme computational 

load (as the conventional i-vector extraction framework 

is followed, and once the DDAE is trained, evaluation is 

fast as in the typical neural networks). The idea of using 

i-vectors as the inputs of a neural network was also 

applied in different speech related areas [17], [28], [29]. 

Hence, it may be worth exploring a similar approach for 
synthetic speech detection.  

 

For the classification of the i-vectors, several choices 

are possible but cosine distance scoring is used in this 

work due to their higher performances for short 

durations [16]. Equation 2 shows the cosine distance 

scoring where the i-vectors of two classes as human 

(𝜔ℎ𝑢𝑚) and spoof (𝜔𝑠𝑝𝑜) are compared against a test i-

vector (𝜔𝑡𝑒𝑠𝑡), and Equation 3 shows the cosine 

distance formula. 

 

𝑠𝑐𝑜𝑟𝑒 = cos(𝜔ℎ𝑢𝑚 , 𝜔𝑡𝑒𝑠𝑡 ) − cos (𝜔𝑠𝑝𝑜 , 𝜔𝑡𝑒𝑠𝑡)   (2.2) 

  

𝑐𝑜𝑠(𝜔𝑎 , 𝜔𝑏) =
〈𝜔𝑎 , 𝜔𝑏〉

‖𝜔𝑎‖‖𝜔𝑏‖
 (2.3) 
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2.2. Discriminative denoising autoencoder 

 

The DDAE used in this work follows the similar 

architecture of [15]. Different from the DAEs, DDAE 

network is trained to denoise and classify the inputs at 

the same time. Therefore, class-specific information will 

be added to the enhanced features. Another aspect of the 

DDAE is that there is no assumption on the noise’s 

distribution in the i-vector space [15]. 
 

The DDAE consists of two MLPs. The first MLP 

represents the DAE part, and has two hidden layers with 

500 nodes each. Although the details will be given in 

the experimental setup section, the i-vectors used in this 

work are 100-dimensional, hence the input of the 

DDAE. Therefore, the output layer of the first MLP has 

100 nodes, as they represent the enhanced i-vectors. 

Then, those nodes act as the inputs of the second MLP, 

which also has hidden layer with 500 nodes, and an 

output layer with two nodes, representing the human 

and spoof classes. ReLU activation is used after each 
layer except the last output layer. Similarly, dropout 

with a 0.5 probability is applied to each layer except the 

last output.  

 

The first MLP (DAE part) has the mean square error as 

the cost function as given below, 

 

𝑚𝑖𝑛𝑀𝑆𝐸 =
1

𝑆
∑ ‖𝜔𝑖 − 𝜔�̂�‖

2𝑆
𝑖=1    (2.4) 

 

where  �̂� is the enhanced i-vector output, an 𝜔 d is the 

target i-vector. S is the total number of training data. It 

should be noted that the enhanced outputs are taken 

from the output of the first MLP, before applying 

dropout or ReLU for the next layer. The cost function of 

the second MLP is the cross-entropy error between the 

predicted class and the target class as given in Equation 

5, 
 

𝐶𝐸 =
1

𝑆
∑ ∑ 𝑙𝑖

𝑘 log(𝑜𝑖
𝑘)

𝐾

𝑘=1

𝑆

𝑖=1

 (2.5) 

 

where 𝑜𝑖
𝑘is the predicted probability and 𝑙𝑖

𝑘  is the 

ground truth probability of the ith training sample being 

a member of kth class, respectively. Combining these 

two cost functions with a suitable weight (i.e. 0 ≤ 𝛼 ≤
1), a multi-task training can be achieved by minimizing 

the total cost as shown in Equation 6. The complete 

architecture is illustrated in Figure 1. 
 

Total cost = min (1 − 𝛼)𝑀𝑆𝐸 + 𝛼𝐶𝐸   (2.6) 

 

3. Experiments 

3.1. Database description 
 

To examine the robustness of the proposed system, 
ASVspoof 2015 database is chosen, which consists of 

synthetic speech attacks. The number of utterances for 

each partition of the database is given in Table 1.  

For the spoofed speech, 10 different attacks are 

available. Five of those attacks (S1 – S5) are included in 

every subset, the other five (S6 – S10) are only 

presented in the evaluation set, hence called unknown 

attacks. S3, S4, and S10 attacks are based on speech 

synthesis methods. S3 and S4 share the same underlying 

algorithm but generated with different amounts of data. 

S10 is a unit selection-based algorithm and considered 

the hardest to detect for this database. The other attacks 
are voice conversion attacks, using different algorithms 

to enhance diversity. More detailed explanation for each 

attack type can be found in [4]. The detection 

performance of unknown attacks (evaluation set) can be 

related to the generalization capacity of the systems.  

 

For the additive noises, car, babble, and white noises are 

chosen from NOISEX-92 database, and street and café 

noises are selected from QUT-NOISE database, 

following the configurations of the previous robust 

spoofed speech detection studies [12], [30]. For all of 

the data, sampling rate is 16 kHz. Also, café and car 
noise are not included in the training to simulate unseen 

noise conditions. 
 

Table 1. Partitions of ASVspoof 2015 database 

Subset 
Number of utterances 

Human Spoof 

Train 3750 12625 

Development 3497 49875 

Evaluation 9404 184000 

 

To train the DDAE in a multi-condition manner, a 

random noise signal (white, babble, or street) is added 

to the utterances at random SNR levels in the range of 0 

dB to 20 dB, with 5 dB steps. While adding the noise, a 
random starting point is chosen, and a segment equal to 

the clean signal is extracted. Hence, each clean signal 

can be considered to be distorted with a unique (to some 

degree) noise signal. As seen in Table 1, the number of 

human utterances is less than the spoofed utterances. 

This may result in an imbalance while training the 

DDAE. A similar problem is solved by clustering the 

spoofed i-vectors in [21], where equal error rate (EER) 

was decreased to 10% from 30.71%. In this work, 

instead of decreasing the spoof data, human data is 

corrupted three times while the spoof data is corrupted 
only one time, following the mentioned process. In the 

end, a total of 11250 clean-noisy i-vector pairs are 

created for the human data, and 12625 clean-noisy i-

vector pairs are created for the spoof data.  
 

The EER is used as the performance metric, as it is a 

widely used metric for speaker verification and spoof 

detection tasks. It defines the operating point where the 

false acceptance (verifying a spoofed speech) rate and 

the false rejection (rejecting a genuine speech) rate are 

equal to each other. 
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Figure.1: DDAE architecture for denoising the corrupted i-vectors. 

 

 
 

Figure.2: Block diagram of the proposed system. 

 

3.2. CQCC and i-vector extraction 

 
For the feature extraction, the recipe of [3] is followed. 

19 -dimensional CQCC features are extracted from 

utterances, then delta and acceleration coefficients are 

appended to the static coefficients. A UBM with 64 

mixtures is trained using the training partition of 

ASVspoof 2015 data. Total variability matrix with 100 

factors is trained with the same data. After the 

extraction of the i-vectors, mean normalization, 

whitening, and within class covariance normalization 

are applied. To represent human and spoof classes, 

single i-vectors are obtained by averaging the respective 
clean i-vectors of each class. Length normalization is 

also included, which also simplifies the cosine distance 

scoring to the numerator part of Equation 3.  

 

CQCC extraction is done using the baseline codes 

provided by the ASVspoof challenge organizers. All i-

vector related processes are implemented in MATLAB 

via MSR Identity Toolbox [31]. 

 

 

3.3. DDAE training 

 
Once the clean-noisy i-vector pairs are obtained, the 

DDAE can be trained using these pairs and class labels. 

It is also found that including clean-clean i-vector pairs 

in the training improved the performance on the clean 

test data. This may be due to the fact that if the network 

did not see any clean data while training, it assumes that 

every input is noisy, hence reduced performance for 

clean data. Learning rate is chosen as 1e-4, and Adam 

optimizer is used. The network is trained for 500 epochs 

with an early stop option if the training loss does not 

decrease for 10 epochs. The network related operations 
(creating the network, training, extracting enhanced i-

vectors, testing) are realized with PyTorch. Also, while 

training the network only two labels (human and spoof) 

is used, as more labels (indicating different spoof 

attacks S1 – S5) did not bring any improvements. 

Python programming language is used for the DDAE 

training and EER calculations. The DDAE is trained on 

a GTX 1070 TI GPU. 
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3.4. Results 
 

Table 2 shows the results for the development set. As 

expected, the EER increases while the SNR decreases. 

Besides, the proposed system achieved a good 

performance for the clean conditions. Similarly, Table 3 

shows the results for the evaluation set. Detection 

performance of the S2 attack was poor compared to the 

others in both development and evaluation sets. Another 

interesting result was observed for the S8 attack in clean 
condition, which produced more EER than the S10 

attack. In general S10 attack was considered to be the 

most detrimental, which is a unit selection-based speech 

synthesis method [4]. A similar result was also obtained 

with multi-condition trained CQCC – GMM in [30]. 

In Table 4, the results of the proposed system are 

compared with previous studies.  
 

Although it is not possible to make an exact comparison 

due to the randomness while adding the noise, and also 

at the training stages, at least a general idea can be 

developed. Also, instead of analyzing each noise type, 

SNR level, and spoof attack, only the average values 

were considered to an excessive table size. Methods 

selected for the comparison are multi-conditionally 

trained CQCC – GMM and FBANK – GMM systems of 

[30]. On average, the results indicated that the proposed 
DDAE system generally performed better than the 

multi-conditionally trained GMM systems with a few 

exceptions such as car noise at 20 dB and 10 dB SNR 

levels, and street noise at 10 dB and 0 dB SNRs. On the 

other hand, a more advanced network architecture is 

necessary to compete with the state-of-the-art system 

reported in [14]. 

Table 2. EER (%) results for the development set 

Noise Type SNR (dB) S1 S2 S3 S4 S5 Average 

Clean  0.05 0.36 0.23 0.18 0.28 0.22 

Seen Conditions  

Babble 

20 11.94 18.82 10.16 10.23 8.67 11.94 

10 24.43 31.55 16.06 16.6 45.64 20.86 

0 37.56 42.66 28.02 28.63 27.39 32.85 

White 

20 18.68 32.14 16.94 17.34 23.17 21.65 

10 24.26 36.63 21.99 21.64 27.99 26.50 

0 37.12 48.16 26.6 25.95 43.38 36.24 

Street 

20 12.48 19.54 9.61 9.33 10.41 12.27 

10 23.15 29.57 14.31 14.9 18.58 20.10 

0 35.21 40.4 23.57 23.35 28.01 30.11 

Unseen Conditions  

Car 

20 0.59 2.42 1.53 1.46 1.03 1.41 

10 2.67 7.11 3.88 3.85 2.44 3.99 

0 8.1 16.06 7.58 7.57 5.83 9.03 

Cafe 

20 16.88 24.3 14.08 14.31 16.25 17.16 

10 26.35 33.45 21.18 21.56 24.03 25.31 

0 38.24 42.89 34.31 34.11 35.05 36.92 

 

Table 3. EER (%) results for the evaluation set under different noise configurations. 

Noise Type SNR (dB) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average 

Clean  0.09 0.53 0.23 0.18 0.21 0.26 0.13 7.97 0.09 5.12 1,48 

Seen Conditions 

Babble 

20 13.02 19.99 9.55 9.61 9.12 13.99 9.95 17.27 12.01 23.01 13.75 

10 24.92 31.32 14.48 14.69 15.96 22.42 20.01 20.62 22.89 30.77 21.81 

0 37.45 40.93 26.07 26.19 26.3 32.2 35.37 30.34 36.03 38.45 32.93 

White 

20 18.26 30.57 15.21 14.93 21.64 27.25 19.81 21.94 19.16 21.74 21.05 

10 24.04 34.38 19.83 19.47 26.21 32.86 24.25 25.89 24.1 25.86 25.67 

0 35.62 44.31 24.7 24.24 40 43.18 37.74 33.63 38.94 31.07 35.34 

Street 

20 12.84 20.32 9.05 8.77 10.47 14.31 10.46 20.14 14.47 20.63 14.15 

10 23.57 30.12 14.62 14.67 19.12 24.43 18.8 23.53 25.09 27.24 22.12 

0 34.38 39.56 21.48 21.5 27.1 32.88 29.19 28.52 32.82 35.32 30.27 

Unseen Conditions 

Car 

20 0.57 2.53 1.31 1.18 0.65 0.93 0.33 8.35 0.74 8.01 2.46 

10 2.79 7.79 3.78 3.45 2.08 3.67 2 12.58 3.66 11.94 5.37 

0 9.31 17.72 7.34 7.29 6.08 10.44 7.35 14.99 10.97 19.32 11.08 

Cafe 

20 16.89 24.63 13.2 13.19 15.72 20.62 13.94 21.96 18.16 24.19 18.25 

10 25.86 32.89 19.9 19.74 23.56 28.76 21.35 25.62 26.4 31.47 25.55 

0 37.68 41.58 32.07 32.46 33.8 37.74 34.12 34.9 36.98 40.45 36.18 
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Table 4. Comparison of different systems for the evaluation data based on average EER (%) for K=Known, 

U=Unknown, A=All data. 

 Proposed System CQCC-GMM[30] FBANK-GMM[30] 

Noise Type 
SNR 

(dB) 
K U A K U A K U A 

Clean  0.24 2.71 1.48 0.1 0.9 0.5 3.2 8.6 5.6 

Seen 

Conditions 

Babble 

20 12.25 15.24 13.75 18.2 18.3 18.3 14.5 17.4 16.0 

10 20.27 23.34 21.81 33.9 33.6 33.8 18.1 20.5 19.3 

0 31.38 34.47 32.93 44.6 44.0 44.3 29.6 31.1 30.3 

White 

20 20.12 21.98 21.05 46.8 44.6 45.7 17.0 19.1 18.0 

10 24.78 26.59 25.67 48.9 48.1 48.5 23.7 24.5 24.1 

0 33.77 36.91 35.34 49.3 48.9 49.1 30.8 31.6 31.2 

Street 

20 12.29 16.00 14.15 22.7 22.3 22.5 14.5 17.9 16.2 

10 20.42 23.81 22.12 37.5 36.3 36.9 18.7 21.0 19.8 

0 28.80 31.74 30.27 46.1 45.4 45.8 29.1 28.3 28.7 

Unseen 

Conditions 

Car 

20 1.24 3.67 2.46 0.9 2.7 1.8 10.2 18.1 14.2 

10 3.97 6.77 5.37 4.3 5.6 4.9 14.3 19.7 17.0 

0 9.54 12.61 11.08 13.0 13.0 13.0 21.6 23.8 22.7 

Cafe 

20 16.72 19.77 18.25 30.7 30.1 30.4 17.9 20.5 19.2 

10 24.39 26.72 25.55 42.1 41.3 41.7 21.9 23.4 22.6 

0 35.51 36.83 36.18 47.5 47.1 47.3 40.8 38.5 39.6 
 

4. Discussion 
 

The results given in the previous subsection verify that 

the proposed approach effectively reduced the noise 

effects. Compared to the multi-conditionally trained 

systems and conventional speech enhancement methods 

(which were reported to be even more harmful than no 

enhancement at all), the DDAE system performed better 

except for a few cases. On the other hand, a more 
complex deep learning architecture delivered state-of-

the-art performance for the ASVspoof 2015 data and the 

given noise types.  
 

Analyzing the results, there may be some possible 

modifications to further increase the performance of the 

proposed systems. As stated previously, data imbalance 
can affect the i-vector performance. Although the 

number of i-vectors for the DDAE training was some 

sort of balanced due to the augmented human data, the 

imbalance may have already altered the i-vector 

extraction process. Therefore, using more balanced data 

for i-vector extraction could lead to more accurate i-

vectors, which may eventually lead to a better trained 

DDAE system. 
 

Another issue is the short length utterances. As 

discussed previously, i-vectors are known to be less 

effective for short durations [18]. Solving this problem 

may increase the DDAE performance, and also may 

give the opportunity to use other robust i-vectors 

frameworks such as [25]. 
 

A masking strategy could be developed for the i-

vectors. Inspired by the state-of-the-art system, a mask 

for separating the noise and speech parts may boost the 

detection performance.  

 

 

 
Although the complex gated recurrent convolutional 

network achieved impressive results, the masking 

features almost halved the EER [14]. This verifies the 

importance of masking the noise before the 

classification occurs. Although the DDAE approach 

tries to compensate for the corrupted features, including 

a mask during the training process will likely to increase 
the performance. Two possible applications of the 

masking will be investigated in the future works. One of 

them is using the mask before the i-vector extraction, 

hence obtaining cleaner i-vectors and use the DDAE for 

both enhancing and classifying them. The other is 

applying the mask in the i-vector space, which will 

require some knowledge or assumption of how the noise 

signal can be interpreted in the i-vector space (such as 

the normal distribution assumption in [27]. 

 

As the i-vectors deliver state-of-the-art performances for 

speaker recognition, using them for spoof detection 
could be beneficial. Instead of using different systems 

for spoof detection, speaker recognition, and noise 

robustness, i-vectors could be used at each stage. At 

least, i-vectors could be a common part to create a more 

straight-forward system (combinations of i-vectors – 

PLDA, i-vectors – DDAE, etc.). As a final note, robust 

PLDA classifiers can also be achieved with multi-

condition training or SNR aware training, whose 

robustness will be higher than the simple cosine scoring 

used in this paper. So, investigating those modifications 

in future studies is expected to be beneficial for both 
research and practical purposes. 
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5. Conclusion 

 

In this work, robust synthetic speech detection was 

achieved with DDAE network and i-vector inputs. The 

network consists of two MLPs, where the first MLP acts 

as a DAE. ASVspoof 2015 data were used in the 

experiments with human and spoof classes. Five 

different noise types at three different SNR levels were 

used at the test stage. The experimental results showed 
that the proposed DDAE system can deliver a better 

performance than multi-conditionally trained GMMs, 

with CQCC and filterbank features. Also, for clean test 

signals, the proposed network achieved sufficient 

performance (especially for the development set where 

the average EER was 0.22%). On the other hand, there 

was a performance gap between the state-of-the-art 

system and the proposed one. The possible reasons for 

the limited performance and opportunities for further 

improvements were discussed. Considering this work 

and previous literature, robust spoofed speech detection 

requires more complex systems, and masking noise 
dominant features are highly effective. Although the 

conventional speech enhancement methods were found 

to be ineffective, enhancing the noisy i-vectors with 

DDAE can offer alternative solutions.  
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