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Abstract

This paper deals with the new classes &7, and 85, of starlike and convex functions,
respectively, associated with the cosine function. We give initial coefficient bounds for
the first seven coefficients of the functions that belong to these classes, and we evaluate
the upper bounds for the Hankel determinant of order three and four. We found the
upper bound of Zalcman functional for the above mentioned classes for the cases n = 3
and n = 4, showing that the Zalcman conjecture holds for these values. Moreover, we
determined lower and upper bounds for the difference |ay4| — |ag| of the coefficients for the

functions that belong to these classes.
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1. Introduction and preliminaries
Let denote by A the class of all analytic and normalized functions f of the form
f(z)=z+a? +a3z®+..., z€D, (1.1)

where D := {z € C : |z| < 1} is the open unit disc, and let § be the subclass of A consisting
in the univalent functions in D.

Let F' and G be the two analytic functions in ID. The function F'is said to be subordinated
to G, written symbolically as F'(z) < G(z), if there exists a function n analytic in D, with
n(0) =0 and |n(z)| < 1 for all z € D, such that F(z) = G(n(z)), z € D. In the case if G is
univalent in D the next equivalence holds:

F(2) < G(2) & F(0) = G(0) and F(D) ¢ G(D).
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Let us define by P the well-known Carathéodory class, that is the family of holomorphic
functions p in D that satisfies the condition Rep(z) > 0, z € D, and of the form

z) =1+ Z tn2", z € D. (1.2)
n=1
The subclass of § defined by
/
:{feA:Rer(Z) > 0, ze]D)}
f(2)

is called the class of starlike (univalent) functions in . Based on the geometric proper-
ties of the image of the open unit disc by some analytic functions, the functions can be
categorized into different families. Thus, in 1992 Ma and Minda [25] extended various
2f'(2)
f(z)
general function. They considered an analytic function ¢ with positive real part in the
unit disc D, with ¢(0) =1, ¢’(0) > 0, and ¢ maps D onto a starlike domain with respect
to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike functions

21'(2)
ey o)

Remark 1.1. By varying the function ¢ we can obtain several familiar subclasses as
follows:
1+ Az

N T _1+Az
(i) For () = 1.
studied in [17];

(ii) For ¢(z) = /1 + z we get the class 8} defined and studied in [40];
iii) For ¢(z) = z+ V1 + 22 we obtain the class 8} introduced and investigated in [34];
l

is subordinated to a more

subclasses of starlike functions for which the quantity

consists of functions f € A satisfying the subordination

—1 < B < A <1, we obtain the class 8*(A, B) defined and

1

(iv) For ¢(z) =1+ = (l 0g + §> we get the class defined and studied in [36];
Zweg *sh defined and investigated in [2];

(vi) For ¢(z) =1+ 37 + 3z we obtain the class 8} introduced and studied in [37];

(
(
(
(vii) For ¢(z) = e* we have the class 8 defined in [29];
(viii) For ¢(z) =1+ sinz we get the class 8%, (for details see [4,13,42]);
(
]

sin (

)
1)
)
(v) For ¢(z) = coshz we get the class 8
)
)
)
)

(ix we obtain the class 8% defined in [15] and extensively studied

1+e 2

Recently, in [7] the authors introduced and studied the class S

2f'(2)
f(2)

defined by

Srog 1= {fEA: < cosz =: ¢(2)}a

and let define the class

P f// ( 2)
f'(z)
It is noteworthy that the functions cosine and cosine hyperbolic functions have the same
image of the open unit disc D, hence 8}, = 8% and 8¢ = Sdﬁ), where ¢ = cosh.

COoS COS
In recent years, finding upper bounds for the modules of Hankel determinants for dif-
ferent subclasses of analytic functions become an active area of research in the Geometric
Function Theory. The Hankel determinant Hj(f) has been introduced by Pommerenke

SCCOS:—{fEA:1+

< cosz =: gb(z)} .
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[32] as follows

ay 41 -+ Aktj-1
ag+1 Qg2 - .- QAf+j
Hjr(f)=| . N A
Af4j—1 Qk4j -+ Qk425-2

where f € A and j,k € N.
By specializing the different values for j and k we can obtain different Hankel determi-
nants. Thus, for j =2 and k = 1 we get

Hyi(f) = Lo

az as

and note that Hy1(f) is the classical Fekete-Szegé functional. For different subclasses of
A, the maximum value of |Hs 1 (f)| has been obtained by different authors, like [16,22, 26,
27,38,41].

Furthermore, for j = 2 and k = 2 we have

Hyo(f) =

as as

2
= aga4 — Q
as ay 204 3

and the upper bound for |Hz2(f)| has been investigated by several authors (see also

[1,30,31]).
For the third order Hankel determinant
1 as as
H3,1(f) = |a a3 a4| = as <a3 — a%) — a4(a4 — a2a3) + as (a2a4 — a%) s (1.3)
az a4 Qs

Babalola [6] was the first that studied this determinant for subclasses of 8 (also refer to
the articles [12,19,21-23,41]).
Recently, the upper bound for |Hy 1(f)| has been studied by several authors like [3,5,
21,28]. The fourth order Hankel determinant is obtained as follows,
H471(f) = a7H3,1(f) — agd1 + asds — aq03. (1.4)

where H3 1(f) is given by (1.3) and

(51 = (a3a6 — a4a5) - ag(agaﬁ — a3a5) + a4 (a2a4 - a%) s (15)
b2 := (asas — ag) — az(azas — asas) + az(azas — %21)7 (1.6)
63 := as(asas — a?) — az(azag — asas) + as(azas — a?). (1.7)

Very recently, Khan et al. [20] obtained the upper bound for |Hs1(f)| for the class
8%(¢) of starlike functions with respect to symmetric points related with sine function
(see also [4]). Inspired by the above work we have determined the bound for the initial
seven coefficients, the upper bounds for the fourth order Hankel determinant and for the
Zalcman functional for the classes 8}, and 8§ associated with cosine function.

The proofs of our first main results will use the following lemmas.

Lemma 1.2. If p € P has the form (1.2), then

ltn] <2, form >1, (1.8)
|tiv; — ptit;| < 2max{1;|1 —2ul|}, forp e C, (1.9)

and for any complex number { we have
|ty — Ct3] < 2max {1;|2¢ — 1]} . (1.10)

We mention that the first inequality is the well-known Carathéodory’s result (see [10,
11]), the second one was obtained in [14], and the third in [18] (see also [33]).
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Lemma 1.3 ([4, Lemma 2.2]). If p € P has the form (1.2), then
\ati’ — Btyts —i—")/tg‘ < 2‘04| + 2’5 — 204‘ + 2|a — B+ ’y‘. (1.11)

Lemma 1.4 ([35, Lemma 2.1]). Let ¢, j, k, and r be real numbers such that 0 < ¢ < 1,
0<r<1, and

8r(1—1) [(€5 = 26)* + (€(r + £) = j)*] + €1 = 0)(j = 2r0)? < AP (1 = 0)*r(1 = 7).
If p € P has the form (1.2), then

3
‘kti‘ + ot + 20t t3 — ijt%tg — 1] <2. (1.12)
2. Initial coefficients estimates for the classes 8}, and §S
In this section we analyse the coefficients of the functions of the class 8}, and 85, and
we find the upper bounds for the first seven coefficients.
Theorem 2.1. If f € 8}, has the form (1.1), then
1 1 11 4 179
a2 ) ’ag‘ —_ 47 ’a’4‘ 3 ’a’5‘ _ 24 ‘a6’ 5 ‘a7’ — 252

Proof. If f € 8}, then there exists a Schwartz function 7, that is 7 is analytic in D and
satisfy the conditions n(0) = 0 and |n(z)| < 1 for all z € D, such that

2f'(2)
= ¢ (n(z)) = cosn(z), z € D.
£ = 6 n(2) = cosn()
Since the function f has the form (1.1), it follows that
zf'(2) _ 2\ .2 3\ .3
) =14 agz + (Qag — az) 24+ (3@4 — 3agas + 0/2) z (2.1)

<4a5 — 243 + 4a3az — a3 — 4a2a4> 4

+ <5a6 — Bagas — bagayg + 5a§a4 + 5a2a§ — 5a3a% + ag) 2°

+ (6a7 — bagag — Gasas — 3a§ + 6a%a5 + 12a0a3a4 + 2ag — 6a%a4 — 9a%a§

+6a;‘a3—ag)26+..., z e D.

From the fact that n(0) = 0 and |n(z)| < 1 for all z € D, if we define the function p by

, 1+77( )

=14tiz+t2®+..., z€eD,

we obtain that p € P and
p(z) =1  tiz+ta2®+...

zZ) = =
n(z) p(z)+1  2+t12+t22%2 4
According to the above relation we get

, 2z €D.

t2 2 tity  t3 3 35t 13 3tot?  tit3) 4
=1- 2 == =1z R 2.2
cos7(z) 8~ +< TR T A S TV S 1 )” (2:2)
tsty  3tst?  3tit3  35tet3 11t0 it
+ (=32 i1, Stity  Solaly | 110 it s
4 8 8 96 192 4
N 3ttty N 3 1501t$  tits  tato N 3tqt?  t3 35tst3
4 8 46080 4 4 8 8 96

351517 | 551t} 6 seD
64 192 ’
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and equating the corresponding coefficients of (2.1) and (2.2) we obtain

as =0, (2.3)
L s
=——t 2.4
as 16 15 ( )
(58— 300 (2.5)
as =3 {3 RE
1/1, 1, 3, 1
_ 1 1 2.
as 3 (6 1+ 4t2 4t1t2+ 2t3t1>, (2.6)
117 . 65,5 3, .3 1 1 )
=— t —17t 11t t1t —t1t4 — —1at 2.7
ag 5(384 Toptitz T gt 3+812 it — hats ) (2.7)
L(_AT57 5 3955, 181, 177, 3, 1
=— —— ] — —= t tit i1t s — ~tit 2.8
o 6<921601 768112 T 3gg "1l gl T gh 4+82 41 (28)
3ttt — Lt 1t2>
o ftats — Jtata — 2t3 )
Using (2.4) we get
Lo
= |t
jas| = F5 1%,
and from (1.8) we have |t1]| < 2, hence
1
lag| < vh
The relation (2.5) leads to
0] = t1 t3
a [E——
4 12 2 9|
and according to (1.8) and (1.10), we obtain
lag| < 2 9 1
B R ¥

We can write the equality (2.6) like

and using triangle inequality this implies

las| < |t81 6t3—2t1t2+ St + 3%|t2|2'
. 1 3 1
From (1.8) and Lemma 1.3 for the appropriate values a = 6 B = 7 and v = 2’ the
above inequality implies that
11
9] < 35

t1t
If we add and subtract ;—04 from the righthand side of (2.7), and using then the triangle

inequality we have

1 17 65, 3 3, 1 1
\a6| = ’10751 (192t 96t 1ta + 4t1t3 + 4t2 t4> + ?Otlt4 — %tgtg
‘ tf— t 2ty + 3t1t3 + 3t2 ta| + ’1t1t4 + ’1152153 .

1921 4 4 20 20
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From (1.8) and Lemma 1.4 for the values k = %, r = Z, = g, and j = %, from
the inequality (1.12) we conclude that
4 4 4 4
|ag] §E+270+20 =5
From (2.8) we have
1/ 1757 , 1185,, 131, 531 , 3, 1., 1
76 (_ 02160 1~ 2304'112 T 38418 T ggpqff2 T gt gl m gt

+3ttt 1tt 1t2)
4123 424 83:

and rearranging the terms of the above equality we get

6ar :é (tQ — t%) (1117552701511L + %t% + %tﬁg, — %t%tg — t4>
L2 (4084t4+32t2+ 0, g Moy )
12\7680 1 T4 2 T 32T gy 12T M
+t2(2199t4+1t2+48tt—ﬂt%—t>—t3<72t3—125tt+1t>
12 7680 1 " 42T 321 T 12T M) T o 192 T 192712 4
+m2(t—735tt>—tl(t—tt)—lttt—1t3+1tt
21 \P 7 7e8712) g VT T T gl Ty gie ot

and from the triangle inequality it follows that

1757 , 64, 59 110 ,
+ —t1t3 — —tita — 4

1 2
<Z _ 7 -
6laz| <3 ‘tQ tl‘ 115201 T g2 T 43 96

Ity] (4084 , 32, 56 115 ,

+ 15 |7egotl T 51l + gplifs — gy tite

+|t—2’ A9 L A e,y
12 7680 1 " 42 T3t e 12

el 72 s 125, +1t’+’t1”t2’t—735tt‘+‘t1|\t—tt’
2 (19271 192712 T 48 21 |2 768 AT 4 M

+ L ltalltalltal + =t + == ltalltal
21123 482 2424'

Now we will use the inequalities (1.8), (1.9), (1.10) of Lemma 1.2, together with the
inequality (1.11) of Lemma 1.3, and (1.12) of Lemma 1.4. Since it is easy to check that

the assumption of Lemma 1.4 holds in each of the four above cases, the previous inequality
leads to

1 2 2 2 4 2 1 1 1 179

< Z.9. = = 242, . — . — . Y

6|a7|_8 2 2—|—12 2+12 2+2+21 2+4 2+21 8+48 8+24 4 1
and all the estimations of the theorem are proved. ]

Remark 2.2. The upper bounds given by Theorem 2.1 are not the best possible, excepting
those for the first two coefficients. Thus, if we consider the function

z cos(et) — 1 5ot 41 )
(2) = SO = P qe) = 2= S84 & o5 ., z€D, with |¢| = 1,
f«(2) := zexp (/0 ; ) = F +24z 3610° + z with |¢]

it is easy to check that f, € 8. For this function we have

1<11 lag| =0, |az] = 47<179
24 ~ 1200 1T 19T gea0 < 252
hence the estimations given by Theorem 2.1 are not sharp.

|as| =0, as| =
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Theorem 2.3. If f € 8 has the form (1.1), then

179

= < — .
a2 07 |a3‘ — 1764

lag| < las| < lag| < laz| <

1 11 2
12’ =12 = 120 =15
Proof. From the definitions of the classes 87, and 8} it follows that

fes8s, o zf(z Z nanz" € 8.

Therefore, if f € 8
follows that

s> from the above equ1valence and the inequalities of Theorem 2.1 it

11 Tlar| < 11
=g 1= 950

and all our estimations are proved. O

1 1
2a2 = 0, 3]a3| S Z, 4‘&4’ S g, 5|a5\ 6‘&6’ S -

Remark 2.4. (i) Like it was shown in the Remark 2.2, the upper bounds given by Theorem
2.1 are not the best possible, therefore the estimations given in the above theorem not
sharp.

(ii) From the above equivalence, by using the relations (2.2)—(2.7) it follows that if
f € 8& has the form (1.1), then

az =0, (2.9)
L s
= 2.1
as 48t17 ( O)
1 (1, 1
== (<t} -t 2.11
a4 =15 <8t1 g 2>, (2.11)
1 (1, 1, 3, 1
=— ottt — S8ty + st 2.12
as 20(12 +82 812"‘!‘431)7 ( )
17 5 13 5 1 1 1 1
=t ot tsts + —tst tyt tyt 2.13
% 115300 115372 120" F g™t g2 T 1ttt (213)
251 ¢ 395 o, 59, 131 1
=- £~ 13t tot} — t3t] + —tstit 2.14
“7= " Bhaoc0’ 32256 2 T To7s2 2 Teizs i gl (214
R L S +1t
168" " Tes 2 T 112N T 336" T 336"

3. Hankel determinants upper bound for the classes 8§}, and 8¢

In this section we determine the upper bounds of the modules for the second, third, and
fourth order Hankel determinant for the functions that belong to the classes 8} and 8§
For Hy1(f), H22(f), and Hs1(f) the results are immediately, as follows, respectively:

Theorem 3.1. If f € 8}, has the form (1.1), then

(i) |Har(f) < %, (i) |[Ha2(f)| < 1i6’ (i17)  [H31(f)| < %

Proof. (i) If f € 8%, then from (2.3) and (2.4) we get

COos?

1
Haa(f) = a3 — a3 = — o8

and using (1.8) it follows that

1
(1) = oo = ] = gl < 1.
(ii) From (2.3), (2.4), and (2.5) we have
1
H2,2(f) = Q904 — ag —__— #
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and according to (1.8) we conclude that
|H22(f)| = ‘a2a4 - ag‘ = %ﬁlﬁ = %
(iii) From the relation (1.3) the third order Hankel determinant written as
H31(f) = as (as - a%) — as(as — azaz) + as (a2a4 - a§) :
which implies
|H31(f)| < as] ‘Gs - a%‘ + |as| lag — azas| + |as| ‘a2a4 - a%’ .
Since (2.3) shows that as = 0, then
|Hs,1(f)| < las| |as| + |aa| [aa] + |as|*,

and using the estimations obtained in Theorem 2.1 the above inequality implies

m 1 1 1 139
H. < 2 S e R Ry
[H31 (f)] < las| las| +laa]” +las[” < o7 - 7+ 5+ &7 = ¢

Theorem 3.2. If f € 85 has the form (1.1), then
1 1 131
] H < — % H < — H < —.
() [Hoa(< 5 () [HoalPl< oo (i) |Hya()] < oo
Proof. (i) If f € 8&, then from (2.9) and (2.10) we get

COos?
1
2 _ Lo
asz — ap 48t1a
and using (1.8) it follows that
1 1
2 2
_ - <
jas — a3| sl =1
(ii) From (2.9), (2.10), and (2.11) we have
1
2 1
4204 = 05 = o304

and (1.8) leads to

1 ] 4 1
2304 < 1447
(iii) Using the relation (1.3) the third order Hankel determinant has the form

H371(f) = a5 (ag — a%) — a4(a4 — a2a3) + as (a2a4 — a%) y

’a2a4 — a%’ =

hence
[Hs 1 (f)] < las| |as — a3| + |aa] |as — azas| + |as| |azas — a3 .
From (2.9) we have ay = 0, thus

|H31(f)] < las| |as| + |aa|* + |as],
and using the estimations given by Theorem 2.3 it follows
1 1 1 1 131

H < 2 3 o5 24— _ 9
[ Hs1(F] < las|las| + laal” + las|” < o5 75+ 730 + 7728 = 8640

0

To find the upper bound for |Hy 1 (f)| for the class 8}, we will use the following preparing
lemma.

Lemma 3.3. If f € 8%, has the form (1.1), then

Ccos

(2) |a3a6 — CL4(Z5‘ < s (“Z) ’a’4a6 - a§| < :

19
— 247

[

(i) |agas — a3 <
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Proof. (i) If f € 8%, using the relations (2.4)—(2.7) we get

29 th — 13 oty — 1 —tits + 17 — 32 + L — 3¢
asa asa
306 = 4495 = 99160 9216 1% 480 1 " 3840 12 320 4

1 2
t —17tat
T gggitf2 480 28

t3<294 17,5, 3,

13
2ty — ¢
61 \Taa0 T o2 Tl T g 4>
1ttt 1tt 1t4t+3tt
T 480 VB T 384 12 T 192 18 T g0 1Y
and from the triangle inequality it follows that
| | <—|t1)? 2 M 3, 13 —— 3t
asag — aqa
376 45—641 1440 602 15 13~ 144 2=

t11% |t ||t t1lta]? t1|*1t 113t
480| 1]?[t2]] 3‘+384’ 1[t2” + 192\ 1 4ts] + 160‘ 1)?[tal.

Using the inequality (1.8) of Lemma 1.2 together with the inequality (1.12) of Lemma
1.4, since the assumption of the Lemma 1.4 holds we obtain

| [P W N SN NS SR ) S AP S
4306 = A4a5] = oy 180 384 192 160~ 24
(ii) Using the relations (2.4)—(2.6) we have
1 23 5
2 6 3 4
—al=— — ¢ S . P
a305 = a3 = = 530,11~ Jg0s'12 T 9561113 T gogtit2
t3 (1t3 5., ) 13 (t 23 5 ) t3
T 256 \9 181275 T 192\ * T 241) T 192

From the above relation, using the triangle inequality, the inequalities (1.8) and (1.10)
1
of Lemma 1.2, combined with the inequality of (1.11) of Lemma 1.3 for the values a =

8= —, and v = —1, we deduce that

’aga < B T L PSPV U 1 PR 1 B LTy
> MM =956 |9 18172 3T 192 51|t 192 ¢
(iii) According to the relations (2.5)—(2.7) we get
1 1 1 61 1
2 8 6 5 4,2 4
—a?=— t 15¢ tBts — R
4406 = a5 15360 1 T 2880712 T 1920"1%8 T 16080172  1g0"1™
+13ttt 1t2t3+ 1ttt ! t3 1t2t+1t2tt
3840 11213 — gpgptifa + ggpptitals = g0 ts = ogetits + o ptitats
2 ) (1 4, 30326, 3 2, )
by —t ¢ tit 24y —t
480(2 1) 321+578882+413 612
2t <1t4+41180t2+3 . 12839 5 _t>
480 481 T 57888 2 T g1 T prggg 12T M
1tt<t tt< tt>+1t5<t 49tt>
t g0t " 956 13 2 ) 480"t \P 96 1
_l’_

b L, 3 L
5 \ 102071728 ~ 519 | T Ta0 1™
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and from the triangle inequality it follows that

|t1]2 o/ 1 4 30326 , 3 2 5
|a4a6 - CL5| =480 ‘t2 - t1’ 3721; + 57888t2 + 4t1t3 6t1t2 — 1y
1|2 [ta] | 1, 41180, 3 12839
480 47; 1 57888752 Tghits — prggglifz T
2 256
240‘t1| |t4] ’t2 —t ‘ + 256|t1| lts] |t — 384t1t2 + @\tﬂ t3 — %tltz
4 Lol e ls] + gl + 1o a1 ol

We will use now the inequalities (1.8), (1.9), (1.10) of Lemma 1.2, together with the
inequality (1.11) of Lemma 1.3, and (1.12) of Lemma 1.4. It is easy to check that the
assumption of Lemma 1.4 holds in each of the two above cases, hence the above inequality
implies

16 16 16 16 64 8 8 128 1261

lasas — 03] < 355+ 455 * 240 T 256 T 180 T 1920 T 512 T 1440 — 2880°

O
Theorem 3.4. If f € 8%, has the form (1.1), then
6533521
[Haa (] < 5ha0s0 = 1125289524,

Proof. 1f f € 8¢, from the relation (1.5) we have

Ccos?
101] < |asag — asas| + |as|lazas — asas| + |as|lazas — a3,

and using the estimations of the Lemma 3.3(i), Theorem 2.1 and Theorem 3.1(ii) we obtain

19 1 13

1
<L . = 1
=55 16 16 (3:1)
From (1.6) it follows
‘52| S |a4a6 — ag\ + ]a2| |a3a6 — a4a5\ + ’CL3| ‘agag, — ai‘
and making use of Theorem 2.1 and Lemma 3.3(i), (ii), (iii) we get
1261 1 95 5519
5 - =77 3.2
%21 = 5580 T3 576 — 11520 (3.2
Using the relation (1.7) it follows
183] < lasllasas — a3 + |as| |asas — asas| + |au| jazas — a3,
and from the results of the Theorem 2.1 and Lemma 3.3(i), (ii) we obtain
1 19 1 95 437
5 B 3.3
031 < 32373 576 ~ 1728 (3:3)

Finally, the equality (1.4) leads to
[Ha1 ()| < lazl|[Hs i ()| + lael|01] + [as||d2] + |aal[0s],
according to the estimations given by the Theorem 3.1(iii), Lemma 3.3, and the inequalities
(3.1)-(3.3), we conclude that
179 139 4 13 11 5519 1 437 6533521

| Haa(f ”-252 576 75 16 724 11520 T3 1728 5806080°

0

The next lemma will be used to determine the upper bound for |Hy41(f)| for the class
SC

COS*



606 K. Marimuthu, J. Uma, T. Bulboacd

Lemma 3.5. If f € 8§ has the form (1.1), then

(1) |agag — agas| < (14) ’agag, - ai‘ < T (i41) |agas — a?| < ﬂ
= 480’ = 720’ = 20800
Proof. (i) If f € 8, using the relations (2.9)-(2.13) we get
T 13 = ——tlts3 + L e t5t
asag — aqas =
36 — 485 =060t T 5764807112 768071 T p120°12 T 576011
1 3 _ 2
L p—
7680 12 11520 12
_h (74+1t+1tt t2t )
T 2560 \ 216 ! 27T g T 08 T
1 13
- 2ot tts — — g + —— 3¢
11520 17283 ~ 7ggp11t2 3840 s + 9350114
and from the triangle inequality it follows that
lasag — asas| < P |7 4+1t + - By,
376 45—25602161 2 313 108 12
1|2t tllts]® + 1|2t t1P1¢
+ 11520| 1?[t2]]ts] + 7680| 1/[t2]” + 3840| 1 ] + 23040| 1% [ta].
Using (1.8) and the inequality (1.12) of Lemma 1.4 we obtain
8 1 1 1 13 13
- 2 164+ ——-16 .32 16 = —.
lasas — asas| < 5+ 2+ Ty 16+ Zeeg 10+ 3205 32+ Sa 480

(ii) From the relations (2.10)—(2.12) we have

1 6 — 7 242 + ! — 3tz + L —tlty
46080 1 23040 1?2 ' 3840 ! 23040 !

i <1t3 1t t t) itzﬂ
" 3840 6172 ) 23040 1%

asas — ai =—

Then, using the triangle inequality, the inequalities (1.8) and (1.10) of Lemma 1.2, com-

1
bined with the inequality of (1.11) of Lemma 1.3 for the values a = 12’ 8 = 5’ and
v = —1, we deduce that

’tl 3 2 7
‘“3% _a4 = 3840 775 - 7t1t2 ~ 13|+ 530001 1Pleaf® < 720°
(iii) Using the relations (2.10)—(2.12) we get
) 1, 1 L1 53 4p 1 EERS
asag — Qg — —
476~ %5 5529600 * ' 1382400 titz 38400 fits - 1382400 12 11520 1™
1 1 1
— 3toty — 243 tit2ts — t3 — R
5760071128 3820012 T 5760071%2% T 95600%2 ~ G400 103 T Hrg0ii2H
tﬂf(n 4+532+1tt 11” t)
5880 \ 19201 T 202 T 13t ~ gt 4
7 1 2,3 2 1 4 1 2,42 1 2
3tot 12 112ty — h_ 242 + — 24t
57600 12 7 33400712 T 576007172 T 2560072 ~ 6400 13 T 5760 12
79 1

t
* 129760013 T 23041
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and from the triangle inequality it follows that

t 11 53 1 11
LTS S S ity — oot — b

laaas — a5 < =9880 1920 LT R0 480
1 2 3 4
t |2t £t [
+ 57600| 12t [ts] + 38400| 1 [t2]” + 57600| 1[t2]?[ts] + 25600| 2|
+ It1]?[t3]* + It [t ta] + ——— ) It1]°[t3] + [t1]*[t4].
6400 5760 1497600 2304

We will use now the inequalities (1.8) and (1.12) of Lemma 1.4. It is easy to check that
the assumption of Lemma 1.4 holds in the above case, hence the above inequality implies
32 7-32 32 16 16

lasas = 31 < 5555+ 57600 * 38400 * 57600 * 23600

16 n 16 n 79 - 64 n 32 87
6400 5760 =~ 1497600 = 2304 20800

g
Theorem 3.6. If f € 8 has the form (1.1), then
90717383
H, ——————— ~ (0.009157244991.
a1 (1< Ggg66z4000 = 00915724499

Proof. If f € 8, from the relation (1.5) we have

CcOS?
01| < |agag — asas| + |az||azas — azas| + |as||azas — a3,

and using the estimations of the Lemma 3.5(i), Theorem 2.3, and Theorem 3.2(ii) we

obtain
13 1 239

0] < 180 T 12 144 86407

(3.4)
From (1.6) it follows

102] < lasas — a2 + [az| lagas — asas| + |as] |asas — a3

and making use of Lemma 3.5(i), (ii), (iii) we get
817 1 7 11257
1%21'= 50800 * 12 720 ~ 280800 (3:5)

Using the relation (1.7) it follows

03] < |ag||asas — aZ| + |as| |azas — asas| + |a4 ‘asas —ajl,

and from the results of the Theorem 2.3, Lemma 3.5(i), (ii) we obtain
1 13 1 7 53
) ——t = === .
03/ <0+ 5 4x0 T 12 70 T 17280 (3.6)

Finally, the equality (1.4) leads to
|Hy1(f)| < laz|[Hz1(f)] + lagl|01] + |as||d2] + |asl|d5],

according to the estimations given by the Theorem 2.3, Theorem 3.2(iii), and the inequal-
ities (3.4)—(3.6), we conclude that
(Hyr(f)] < 179 131 n 3 239 n £ 11257 n i 53 90717383
41 = 1764 8640 ' 15 8640 @ 120 280800 ' 12 17280 9906624000

O

Remark 3.7. From the proofs of Theorem 3.4 and Theorem 3.6 that use the estimations
of Theorem 2.1 and Theorem 2.3 which are not sharp, it follows that the upper bounds
given by these theorems are not the best possible. To find the best estimations of the
modules of these Hankel determinant remain an interesting open problem.
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4. The Zalcman functional estimate for the classes S}, and §S

In the 1960’s, Lawrence Zalcman conjectured that the coefficients of the functions f € §
having the form (1.1) satisfy the inequality

‘ai - a2n—1‘ <(n—1)% n>2,

and the equality holds only for the Koebe function k(z) = ﬁ and its rotations. Like
it was shown in [9,43] it implies the Bieberbach conjecture, that is |a,| < n, n > 2. Remark
that for n = 2 the above inequality is a well-known consequence of the Area Theorem, and
could be found in [33, Theorem 1.5]. In the literature the Zalcman functional has been
studied by many researchers (see, for example, [8], [24], [20]).

The Theorem 3.1(i) shows that the above conjecture holds for the classes 8 . and 8&
it n = 2. Our next four results prove that the Zalcman inequality holds for the class 87
and 8% if n = 3 and n = 4, respectively.

For n = 3, the Zalcman functional upper bounds are given in the next two theorems.

Theorem 4.1. If f € 8}, has the form (1.1), then

‘a% — a5‘ < ﬂ
96
Proof. For f € 8}, using the equalities (2.4) and (2.6) we obtain
9 19 , 1 3 5 1
az — as = 768t +32t 32t 1t2 + 16t3t1,
and from the triangle inequality
‘a% — a5’ < It %t?’ _ %tltg L3 3%|t2|2.

Using the inequalities (1.8) of Lemma 1.2, and (1.11) of Lemma 1.3, the above relation

leads to
2 58 4 41

w5 Er R e
O
Theorem 4.2. If f € 85 has the form (1.1), then
’a% - a5’ < ﬂ
— 1440
Proof. From the relations (2.10) and (2. 12) it follows
) 53
@ =05 = 5t g2 T qepite 80t‘3t1’
and using the triangle inequality we get
a3 — as| < ZB’ 288t3 - Ztltg + 24 %]tg\?
The inequalities (1.8) of Lemma 1.2, and (1.11) of Lemma 1.3, leads to
o< 2.0, 4T
40 72 160 1440
n

For n = 4, the Zalcman functional estimations are obtained in the next two results.

Theorem 4.3. If f € 8}, has the form (1.1), then

‘ai — a7‘ < %
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Proof. For f € 8}, using the equalities (2.5) and (2.8) we obtain

2 — ar :271775? 209 tits N 427 1212 toty ﬁ _ titaty
552960 4608 4608 24 48 8
131#3ts 3ty 13 tits

2304 16 & 48 ' 24

_t2( 2717, 2392+131 y 209t2t t)
=16 \ 34560 L " 288 f2+ Tgtts — oggtitz — 1t
13 toty  tits  t
L (- 188 2 A% 2
12(3 576 12)+48+ 91 T og 18’
and from the triangle inequality
‘ 9 ‘ \t1|2 2717 4, 239 5 N 131,209, "
a, — a
1707 =56 305607t Toss 2 T 1ag e T oggi12 T
188 tal? | |tolltal | |0allts] | [t2f?
Zitq|to] [ts — ==t yts .
+8’ illtal |ts = 2o l 18 T o 24

609

Using the inequalities (1.8) and (1.9) of Lemma 1.2, and (1.12) of Lemma 1.4, the above

relation leads to

4 4 4 4 8 25

Theorem 4.4. If f € 8 has the form (1.1), then
25
2 _ b
‘a4 a7‘ < R
Proof. If f € 85, from the relations (2.11) and (2.14) it follows

311¢% 191t‘11t2+409t%t§ toty 3 titats

aZ—a7:

552060 32256 = 32256 168 336 56
1313t5 2t 2 it
131tits _ tits | 3 hts

16128 112 ' 336 ' 168

_ 4 ( 832 222 L P, )

T112 \552960 1 T 2882 T 144 13T ogg 12 T M

1 187 3 oty  tits 3
ity (ts — ——t1t 3 24 s 2
5612(3 12>+336+168+168 336

and using the triangle inequality we have

‘aZ—a |t1|2 34832 4 222t N 131t o 1t2t .
4N =112 1552960 * T 2882 " 144 1P ogg 1 T M
187 ts|? | Jtallta] | [tallts] | [E2f?
Atttz — =ttty .
+56' illtal fts 576 ‘Jr 336 T 168 168 | 336

to

1 4 4 4 8 25
24— 2224 —

o — 0s| <

=112 56 336 T 168 168 | 336 84°

From here, the inequalities (1.8) and (1.9) of Lemma 1.2, and (1.12) of Lemma 1.4, leads
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5. Logarithmic coefficient bounds for the classes 85  and S},

It is well known that the logarithmic coefficients By, := Bn(f), n € N, for function f € 8
are defined by

log @ =2 i Brz", z € D. (5.1)
n=1

Since the function ®(z) := cos z has real positive part in I, and moreover (see Figure 1
made with MAPLE™ computer software)

1
Re®(2) > 50 2 € D,

it follows that the classes 8%, and 87 are subsets of the class of convex and starlike
(normalized) functions, respectively, therefore §$, C 8 and 8%, C 8.

Figure 1. The image of Re® (re'), r € [0,1], ¢ € [0, 27]

In this section we will give the upper bounds estimates for the first six coefficients of

the functions that belong to the classes §& . and 8}, respectively.

Theorem 5.1. If f € 85 is given by (1.1), then
1 1 259 ) 149
=0 < — < — < — < — < —.
/81 ’ |/82| = 9y |/83| = 947 ‘B4| = 5760’ |ﬂ5| = 48’ |/86| = 840
Proof. If f € 85 has the form (1.1), it follows that

2 3
log _f(z) =agz + (—% + a3> 22+ (—agag + a4 + %) 23
z

2 az®> a3\ 4
+ —a2a4+a5+a2a3—7—z z

5
2 3 2, %)\ 5
+ | —aga5 + ag + aja4 — agzayq — aya3 + aza3” + E z

2
2 3 9 ay
+ | — asae + a7 + ajas — asas — as”as + 2 azasza4 — 5

Ba%agz as® B a_g
2 3 6

—i—a%ag— >z6—|—--~,z€]D),
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and equating the first six coefficients of the relation (5.1) we get

o3}

|
<
)

(2@3 — ag)

3 — 3asasz + 3a4) ,

®
w
I
oo\»—t@\»aﬂk\HM
/\

B4 = ( aé + 4a%a3 — 4dasaq — 20% + 4&5) ,
1

05 =10 (ag — 5a§a3 =+ 5a%a4 =+ 5a2a§ — bagas — basay + 5a6) ,
1

Be =13 (—ag + 6asaz — 6a3as — 9a3a3 + 6a3as + 12aza3a4

+2a§ — bagag — bagas — 3(12 + 6&7) .

Substituting (2.9)—(2.14) into (5.2)—(5.7) it follows that

61 :07
L o
= —t¢
52 96 1
1, 1
=—t] — —t1t
Bs =155t ~ ggtites
01 , 1 3., 1
=— t tot] t1t
P1=~ fooso™ ~ 3307 T 3070 10"
5 = 138 3tat]  taty  tatf  tity®  tity
15360 012 240 160 160 240’
Be = — 3147 6T74r°t7 | 983tat]  16913t7  tstity
103680 107520 322560 40320 112
ittty BB 1P
336 336 ' 224 672 672
Using (5.8), since (1.8) shows that |t1] < 2, we get
|B2] < 24
The relation (5.9) leads to
2
’/83’ = lo — El 3
and according to (1.8) and (1.10), we obtain
1
From (5.10), by using triangle inequality it follows that
— | o=ot) — <ttt t — |t
il < Too |28t ~ gtz T is| + gggltal

and using (1.8) and Lemma 1.3 for the appropriate values o = 288 8=

the above inequality implies that

2 187 4 259

Bal < 160 72 + 320 = 560"

611

3
2’ an ,.Y )
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t1t
If we add and subtract % from the righthand side of (5.11), and using the triangle

inequality we have

|B|—t1(11t4 24Ott+1tt+1t t>+ 1t5+1tt Lt
b 19271 2 2T gt T2 M 76801 0 1 24023
114 24Ott + e L ty |t|5+ t1] [ta] + == |t||ty
= 80 109271~ g2t gt gty —hal gagp il og il al & o g2l fs
11 1 1 480
From (1.8) andLemma1.4forthevaluesk::@,r:E,Kzl,andjzﬁ,theabove

inequality implies that
32 4 4 5

|ﬁ5|*%+77680+m+%:@'

Rearranging the terms of (5.12) we have

_t} /31, 588, 169 983 , t3 89 ,
B = — ﬁ <648t1 + @7& + thﬂfg — 2016t1t2 — t4) + @ <t2 — 160tl)
—i—lttt 12 1tt 1tt 1tt
11211721~ G7a™h ~ 33Tt T g36h’s T pgpfiles
and from the triangle inequality it follows that
t1]? | 31 588 , 169 983 9 89
Bl S16|0 648 411+672 252 2016172t ‘+|67’2 f2 _ﬁt2

ttt—t“’—tt t1l|ts] + — |t1]2]t
112| 1|!2||3|+672|3| +336|2||4|+336| 1||5\+560| 11?84l

Now we will use the inequalities (1.8), (1.10) of Lemma 1.2, together with the inequality
(1.11) of Lemma 1.3, and (1.12) of Lemma 1.4. Since it is easy to check that the assumption
of Lemma 1.4 holds the above case, from the previous inequality we conclude that

|B| 4 -2+ 4 -2+ : 2222+ L -4+ L -4+ L -4+ 1 8—149
6l = 160 672 112 672 336 336 560 840’
and the theorem is completely proved. ]
Theorem 5.2. If f € SCOs is given by (1.1), then
1 85 2
-0 < Z < = <z
p1=0, |Ba < 8’ B3] < 5 |Ba] < 384’ |B5| < 3 Be| < 24
Proof. 1If f € 8}, has the form (1.1), by substituting (2.3)—(2.8) into (5.2)—(5.7), we get
ﬁl =0 5
By = 1, (5.13)
2T T3l '
1 1
=3 — — it 14
B3 st~ gtite (5.14)
35 4 1y 3, 5 1
= — — tot] t1t 5.15
b 50721 T a2 T g™ T gt (5.15)
1112 Ttotd  tgty  3tst?  3tite® it
By =l _ L2 I3tz L A (5.16)
1920 192 40 80 80 40
1501 ¢ 35 5, 55 ., 35 o 1
=— — 17 — —15¢ ——tot] — ——=t3t] + —t3t1t 5.17
Po 552060 1 768 21 93042 T qmp T ygtatit2 (5.17)
L 1tt+1tt2 1t+1t
48177 T 48 T3 968 g6 %

According to (5.13), since from (1.8) we have |t1| < 2, we get
1
|52| < g
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The relation (5.14) implies

|t t2
’/83’ - ﬂ 2 E )
and using (1.8) and (1.10) we obtain

1

9=

From (5.15) by using triangle inequality it follows that
ey — ¢ Sty + — |t
Aal < 5 192 ghtz+ gt + ggltal”

and using (1.8) and Lemma 1.3 for the appropriate values o = T2’ 8= T and v = —,

the above inequality implies that

122 4 85

‘/84‘—16 96 64 384

t1t
If we add and subtract ;—[)4 from the righthand side of (5.16), and using then the

triangle inequality we have

|Bs| (114 140t2t + 3t 4 282 t) TR
o 96° 1 192t T gty 4014 4023
LA 14Ot2t+3tt 432y —\t|]t\+—|t ||£3]
—20961 102712 T T gre T ATy PHIRATT g PRI
11 3 3 280
From (1.8) and Lemma 1.4 for the values k = 9w T = 3’ and j = E76) the above
inequality implies that
4 4 2
51 55+ 35+ 15 = 5

Rearranging the terms of (5.17) we have

Bs =— (15014+19 0t - D, t>+1tt<t 14tt>
6~ 732172801 36 13 721 AT 487172

+1t<t 2t2) 11&2 1tt 1tt
96 2 81) 963 48Pt 48t

and from the triangle inequality it follows that

\5\<L1’ ‘1501 4 19t +§tt—§tt—t i\th\t—%tt
61 ="39" 17280 1 27T 361" 72 2~ ta g ltalital|ts — Jatits
2 1
—t2t——t2 —tQ —to|lta] + —[t1|It5].
+96|2! 2 81+96|3’ +48|2H4|+48!1\|5’

Now we will use the inequalities (1.8), (1.9) and (1.10) of Lemma 1.2 and (1.12) of Lemma
1.4. Since it is easy to check that the assumption of Lemma 1.4 holds the above case, the
previous inequality leads to

1 1 1 1 25
4o g g by byl ®
’ﬂ(”’—sz T16 % 0 ° o T T a8 24’

and all the estimations are proved. ]
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6. Initial consecutive coefficients module difference estimates for the
classes 3’  and S

In this section we use the following lemma for finding the upper bounds of some initial
coeflicients module difference.

Lemma 6.1 ([39, Proposition 1]). Let p € P be given by (1.2). Let By, By and B3 be
numbers such that By > 0, Bg € C, and Bz € R. Define 4 (t1,t2) and _ (t1,t2) by

Uy (1, 12) = | Bat? + Bats| — Bt
and Y (t1,t2) = =y (t1,t2). Then
(t1,t2) < [4B2 +2B3| — 2By, when  [2B2 + B3| = |Bs| + By,
(f1,12) 2|Bs|, otherwise,

and
2B1 — By, when By >By+2 "Bg‘

2|B3| 2
_ (t1,t2) B4+2|33| when By < 2(Bs| (By +2|B3),

2 |Bs| + otherwise,

2|B |’
where By = [4By + 2B3|. All the mequahtzes are sharp.

Theorem 6.2. If f € 8¢ has the form (1.1), then
"~ < Jaa] — fas| < 3
—— <la4| —|a .
g =TI

Proof. 1f f € 8}, from (2.4) and (2.5) we have

1

COoSs?

ol ~ o) = | 3588 = 15taa| — |63 = Il (1), (61)
where
1, 1 1
t e ==
Y (b1,82) 2= ‘24 12 " |16
Using the inequality (1.8) we have |t1| < 2, and the relation (6.1) leads to
lag| — las| < 24 (t1,t2) - (6.2)
1 1 1
Letting B, = e By = 0 and B3 = I then |2By 4+ B3| # |Bs| + B1. Hence, from
Lemma 6.1 we have
Yy (t1,12) < 2|Bsf = <
consequently, the inequality (6.2) leads to
1
sl — Jos] < 3.
From (6.1) we have
|as| — las| = —[t1] ¥y (t1,t2) = [t1| Y- (t1, t2) - (6.3)
1 1 1
Letting B; = e By = 21 and Bz = 13’ then By = [4Bs +2B3| = 0, and B? <

2|Bs| (B4 + 2|Bs|). Hence, from Lemma 6.1 we have

2B, 1
_(t1,t2) < 2B _— = —,
¢ (1 2)_ ! 344—2"33’ 8
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Therefore, using the inequality (1.8) we have |t1] < 2, and according to (6.3) the above
inequality implies that

las| — |aq| = [t1] P (t1,t2) <
which completes our proof. ]

Theorem 6.3. If f € SE has the form (1.1), then

Ccos

i

e

1
—— < |a4\ — ]a3| <

12 = 12
Proof. If f € 85, from (2.10) and (2.11) we have
1, 1 1,
— = |—=t] — ——=lite| — |-=t{| = |t t1,t 6.4
o] ~ sl = [ — tita| = [ 2584] = s 11,2, (6.4
where
1, 1 1
t1,te) = |t — —to| — | —t
Y (1, 2) ‘961 487 Ja8!
Using the inequality (1.8) we have |t1| < 2, and the relation (6.4) leads to
|aa| — las| < 294 (1, t2) - (6.5)
1 1 1
Letting By = YRy By = % and Bs = TS then |2Bo + B3| # |Bs| + By. Therefore,
according to Lemma 6.1 we get
1
t1,t2) < 2|B3| = —
e (1, 12) < 2[Bs| = o,
and using the inequality (6.2) we conclude that
jas] — Jas] <
as| — la —.
HII= T
From (6.4) it follows
|ag| — [as] = —[ta] y (tr, t2) = [ta| Y= (L1, 22).- (6.6)
1 1 1
Letting B = —, By = 96 and Bz = Ty then By = |4By +2B3| = 0, and B? <

2|Bs| (B4 + 2|B3|), therefore, from Lemma 6.1 we obtain that

[ 2B 1
_ < OBy —128
V- (1, t2) < 2B By +2|Bs| 24

Finally, from the inequality (1.8) we have |t;| < 2, and according to (6.6) the above
inequality implies that

|~

lag| — laa| = [t1] - (t1,t2) <
and the proof is complete. O
Remark 6.4. For the functions

~ z t—1 1 1
f(z)zzexp(/o Costdt>:z—423+2425+..., z €U,

and

N [ *cost—1 _ 1 3 1 5
f(Z)—/O {GXP</O : dtﬂdx—z 157 +12OZ +...,2z€0,

the left hand side of the inequalities of the Theorem 6.2 and Theorem 6.3 are attained,
respectively, hence these are the best possible in both cases. To find the right hand side

sharp bounds of |ay4|—|ag| for the classes 8} and S& ; remains an interesting open question.
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7. Conclusion

This paper mainly focuses on finding the upper bounds of the third and fourth-order
Hankel determinant for the classes 87 . and 8 & of starlike and convex functions connected
with cosine function. Also, we obtained the estimate for Fekete-Szegé and Zalcman func-
tionals for these classes for the cases n = 3 and n = 4. Moreover, we gave an upper bound
for the fourth Hankel determinant for the functions of 8}, and §&.. In addition, by using
a recent result, we determined lower and upper bounds for the difference |a4| — |ag| of the

coeflicients for the functions that belong to these classes.

Acknowledgment. The authors are grateful to the reviewer for the valuable remarks,
comments, and advice, that help us to improve the quality of the manuscript.
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