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ABSTRACT

In this paper, we use Hessian comparison and volume comparison theorems to investigate the
Mckean-type estimate theorem for the first eigenvalue of p-Laplacian and (p,q)-Laplacian operators
on Finsler manifolds.

Keywords: p-Laplacian operator; (p,q)-Laplacian operator; first eigenvalue.

AMS Subject Classification (2020): Primary: 53C60 ; Secondary: 53B40; 35P15.

1. Introduction

The study of the first eigenvalues of the Laplacian play an important role in global differential geometry
since they reveal important relations between geometry of the manifold and analysis. The first result on this
subject, due to Lichnerowicz [4], says that for an n-dimensional smooth compact manifold without boundary,

the first eigenvalue \; can be estimated below by LlK , provided that its Ric > K > 0. After a wile, it had
n—

been shown that the first eigenvalue is also related to the diameter of manifolds (see [15, 16]).

We could say that Lichnerowicz-Obata type estimate [15], Li-Yau-Zhong-Yang type estimate [16], and Mckean
type estimate [9, 10, 11] for both positive and negative Ricci curvature are the most well known work in this
subject.

In Riemannian geometry, Mckean proved that if (M, g) be a complete and simply connected Riemannian n-

V2,2
manifold with sectional curvature K < —a?, then \;(M) > (n ) (see [5]). Afterward, this result was

extended by Ding in [3], stated that for a complete noncompact and simply connected Cartan-Hadamard
2

manifold satisfying Ric < —a?, the first eigenvalue can be estimate below by az' These results were generalized

to the Finsler manifolds by Wu-Xin [11]. Recently, the p-Laplacian on a general Finsler manifold (M, F, du), was
discussed in [12] and [13]. It is defined as follows:

Apu = div(|Vu[P~2Vu), 1<p<oo,

where the gradient V is a nonlinear operator and equality holds in the weak W (M) sence. Lately, Yin and
He generalized Cheng type, Cheeger type, Faber-Krahn type and Mckean type inequalities for the Finsler
p-Laplacian operator (see [14]). Actually in [14], authors obtained lower bound for the first eigenvalue of p-
Laplacian operator considering nonpositive S-curvature and flag curvature K < —a?.

In this paper, we want to extend the Mckean type estimate results to the p-Laplacian and the special class of
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the (p, ¢)-Laplacian operators on Finsler manifolds. Here we study the first eigenvalue under the line integrate
curvature bounds.

2. Preliminaries

Let M be an n-dimensional smooth manifold and 7 : TM — M be the natural projection from the tangent
bundle TM. Let (z,y) be a point of TM with z € M, y € T, M, and let (z*,y") be the local coordinate on 7'M
with y = ¢ il A Finsler metric on M is a function F': TM — [0, oo) satisfying the following properties:

(i) Regularity: F'is C> in T'M \ {0},
(ii) Positive homogeneity: F'(z, A\y) = AF(z,y) for all A > 0,
(iii) Strong convexity: The fundamental quadratic form

(9i5) := <[;F2] yy7> :

is positively definite at every point of M \ {0}.

Let X =X "? be a vector field. Then the covariant derivative of X by v € T, M with reference vector
w e T, M\ {0} is

w OX! i ; 0

DY) = {5 @)+ Tl X4 o) b

where ', denote the coefficients of the Chern connection.

Given two linearly independent vectors V, W € T, M \ {0}, flag curvature K (V, W) is defined as follows:
gv(RY (V. W)W, V)

gv(V.V)gv (W, W) — gv(V, W)’

KV, W) =
where RV is the Chern curvature:
RY(X,Y)Z =VXVyZ - VyVXZ - Vi y 2.

Then the Ricci curvature of V for (M, F) is:

n—1
Ric(V) =Y K(V,e;),
=1
\%
here eq,--- ,e,_1, —— form an orthonormal basis of T,M with respect to gy, namely, one has Ric(AV) =

FV)
Ric(V) for any A > 0.
For a given volume form dp = o(x)dx and a vector y € T, M \ {0}, the distortion of (M, F, dpu) is defined by

(V) =T Y det(gi; (y))

a

Considering the rate of changes of the distortion along geodesics, leads to the so-called S-curvature as follows

s(v) =4

= S (), Ao,

where 7(t) is the geodesic with 7(0) = z and 4(0) = V.
Now we can introduce the weighted Ricci curvature on the Finsler manifolds, which was defined by Ohta in

[6].

Definition 2.1. ([6]) Let (M, F, du) be a Finsler n-manifold with volume form du. Given a vector V € T,, M, let
v : (—¢,e) = M be a geodesic with v(0) = z, 4(0) = V. Define

d

S(V) 1= F2(V) S

S(v(8), 7 ()li=o-
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Then the weighted Ricci curvatures of M defined as follows

) = B0 Jr0
Rien(V) = Ric(V)+S(V)—UVf£L‘)/)F(V)2, VN € (n,00),
Ricoo(V) = Ric(V)+S(V).

For a smooth function v : M — R and any point = € M, the gradient vector of u at = is defined by

. ou 0
ij el
Vu(z) = 9" (x, Vu) Bz, Oz;’ du(z) # 0,

0, du(z) = 0.

So the gradient vector field of a differentiable function f on M by the Legendre transformation £ : T, M — Ty M
is defined as
Vu := L7 (du).

Let M = {z € M : Vu|, # 0}. We define the Hessian H(u) of v on 9t as follows:
Hu)(X,Y) = XY (u) - V¥V (u), VX,Y € I(TM|p).
Fix a volume form dy, the divergence div(X) of X is defined as:
d(X |dp) = div(X)dp.

For a given smooth function u : M — R, the Laplacian Au of u is defined by Au = div(Vu) = div(£™(du)).
The Finsler p-Laplacian of a smooth function « : M — R can be defined by

Apu = div(|Vu[P~2Vu).

Since the gradient operator V is not a linear operator in general, the Finsler p-Laplacian is greatly different
from the Riemannian p-Laplacian.

Given a vector field V such that V # 0 on M, = {x € M;du(z) # 0} the weighted gradient vector and the
weighted p-Laplacian on the weighted Riemannian manifold (), gv) are defined by

y ou 0
(V)L M
Vu=37 ( )8xﬂ agi O

AYu = div(|VYulP 2V V).
0, on M\ M,,

Here we note that VVu = Vu, AV u = Apu.

2.1. Eigenvalues of (p, q)-Laplacian

In this paper, we introduced a class of (p, ¢)-Laplacian on Finsler manifolds which had been defined in [10]
for RY and in [4] for the Riemannian case.

Apu+ Agu = div((|VulP =2 + [Vu|?"?) V), (2.1)

whereu € W = W, P(M) N Wy%(M),1 < g < p < co. We say that ) is an eigenvalue of (2.1) if there exists u € W,
u # 0 such that
—Apu — Agu = MulP~2u, (2.2)

or
/ |Vu|p_2|u.|vdu+/ |Vu|q_2Vu.Vvd,u:)\/ |ulP~2uvdp, (2.3)
M M M

for any v € WHP(M) n W4(M). The first positive eigenvalue \; , ,(M) of (2.1) is obtained as follows:

Mp (M) = inf { / [VulPdu + [Vul9du : lulPdu = 1}. (2.4)
M M M
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A volume form dp on Finsler manifold (M, F) in local coordinates (U, 1, ..., z,,) can express as du = op(z)dz* A
.. Adx™ and du = oy (z)dz' A ... A dz"™, where op(z) and oy are so-called Busemann-Hausdorff volume form
and Holmes-Thompson volume form respectively. We recall maximal and minimal volume forms for Finsler
manifolds from [7]. Let

AVinaw = Omazdst A ... A dz™

and
AVinin = OmindT* A .. A dz™.

Here 0,42 (2) 1= maxy,er, ar\ {0y v/det(gsj(2,y) and opin () := minger, an 10y /det(gij(z,y). We may use the
notation dV,,; (means extreme volume form) for both maximal and minimal volume forms dV,, ., and dV,,;,.
The uniformity function po: M — R is

pu(z) = max 9y (4 u)
y,2,u€T: M\{0} g~ (’LL, u)

The uniformity constant is pp = max,en p(z), so it is obvious that
P (u) < gy (uu) < pF?(u).
Fix z € M, the indicatrix at z is I, = {v € T, M : F(v) = 1}, then for v € I, the cut-value ¢(v) is defined by
c(v) :=sup{t > 0 : d(z, exp,(tv)) = t},
and the tangential cut locus C(z) is defined by
C(z) :={c(v)v: c(v) < co,v € I }.

Let the cut locus and injectivity radius of = denote by C(z) = exp,C(z) and i, = {c(v),v € I}, respectively.
we know for sure that C'(z) has zero Hausorff measure in M. As well we set D, = {tv:0 <t < ¢(v),v € I}
and D, = exp,D,. The largest star-shape domain with respect to the origin of T, M is D(z) and D, =
M \ C(z). Now considering polar coordinate on D, for any ¢ the polar coordinates are defined by (r,0) =
(r(q),0'(q),...,0" 1(q)), where r(q) = F(v) and is just the distance function with respect to z, 6%(g) = 6*(u), here

0
v =exp,(q) and u = % We take T' = d(ea:pm)(a—) as the unit radial coordinate vector which is orthogonal
v T
to coordinate vectors 9, respect to gr. These vectors defined as follows:
0
aa|eocp,(ru) = S(GSUPm) <89a>
expa (ru)

0 0
d(empm)ru (raea) = Td(expw)ru (890‘> 5

fora =1,..,n—1,s0T = Vr. Taking g = gv, as the singular Riemannian metric on D(x), we get
§=dr? + japdo*do”, Jap = gvr(9a, 0p).
Let h(r) = traceyy, H(r), from [8, 11], we have

Ooh h? 0
5 + — < —Ric(Vr), E(log &) =h.
where (r,0) = \/det(gap). Assume that o.(r) = s.(r)" "1, and h.(r) = (n — 1)ct.(r), where
sin(/cr
i/{)’ ¢>0, Veeot(y/er), c>0,
s(r) =4, c=0, et =41, c=0,
; r
sinh(v'—cr) V*CT), c<0, v —ccoth(~/—cr), c¢<O0.
Vv—c
Then

h2
¢ —=1(n—-1)c.
— (n )e

(IOg Uc), = he, h;: +

We may need the following theorems for distance function r(x,.) which was stated in [9].
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Theorem 2.1. Let (M, F') be a forward complete Finsler n-manifold admits non-positive flag curvature K. Suppose that
r = d(x,.) is smooth at y € M and ~ as an unique minimal normal geodesic from x to y. Then for any ¢ < 0,1 > 1, we
have

t’I“CngVT.H(’I“) (y) > \/TCCOth(\/jCT(y))
1

- {@l 1) [ (R () — .0 e | L.

Theorem 2.2. Let (M, F') be a forward complete Finsler n-manifold admits non-positive flag curvature K. Suppose that
r = d(x,.) is smooth at y € M, and ~ be the unique minimal normal geodesic from x to y. Then for any ¢ < 0,1 > 1, and
X € T,M with gv,(Vr,X) = 0and gv,(X,X) = 1, we have

H(r)(X,X) > +/—ccoth(v/—cr(y))
1
— 1 20—-1
- {(2[ -1) /(maX{K(Vr) —¢,0})'dt .
Y
Here H(r)(X,Y)=gv,(VX'Vr,Y) and K(Vr)=max, (vrp=oK(Vr;E), due to the local frame
Ei,...,E,_1,E, = Vrsuchthat E;, 1 <i <n— 1 are eigenvectors of H(r) with eigenvalues \,.

Theorem 2.3 (Volume comparison). Let (M, F) be a forward complete Finsler n-dimensional manifold with K > 0,
and ¢ < 0,1 > 1. Then
(i) Suppose that there is C' > 0 so that the radial flag curvature at v € M satisfies

/(max{F(Vr) —c,0h)ldt < C,
Y
for any minimal normal geodesic ~y issuing from x, then

n
UOlext(Baz(T» a5 UOlemt(B;v(R))
— 22 < max pu(x).————
VvaAJL(T) T z€By(R) M< ) ‘/C7A-,7L(R)

1
holds for any r < R < i,, where A = —(n — 1)[(2l — 1)C]2l =1 and

Vean(R) =vol(S"1(1)) /R M (1)Lt
0
(ii) Suppose that there is C' > 0 such that the radial Ricci curvature at x € M satisfies
/(maX{Ric(/\r) —c,0Pldt < C,
Y
for any minimal normal geodesic ~y issuing from x, then

volese(Bulr)) | volea(B(R))

< . ,
Voro(r) —aeeBom’ Vor2(R)
1

holds for any r < R < i,, where A = —[(21 — 1)C]2l — 1,

3. Main results

In this section we shall prove some Mckean type theorems for the first eigenvalue of p-Laplacian operator
under the line integrate curvature bounds and as a result with the same course we get Mckean type estimate
for the first eigenvalue of the (p, ¢)-Laplacian operator.
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Let (M, F,dp) be a Finsler n-manifold with volume form dy, Q@ C M a domain with compact closure and
nonempty boundary 9. The first Dirichlet eigenvalue A\; ,(£2) of 2 with respect to dy is defined by:

o S (F(df))dp 1
Q) =inf =———2 — Wy P (Q 1
ALp(2) m{ T Prdu fewg )\ {0}, G.1)
here F* is the dual Finsler metric on T*M, and WOI”’(Q) = {f € W'P|flsq = 0}, where W'P(Q) be the

completion of C*>(Q).

First we prepare the requirements for proving the main results. Set B,,(R) as the forward geodesic ball with
radius R centered at p and R < i,, where i, denotes the injectivity radius of p. With this notations we state the
following lemma:

B,(R

B, (e)
unit geodesic vector field on Q. (R), and we can consider the Riemannian metric § = gy on Q¢ (R). Then for dp = dVin,
we have

~—

Lemma3.1. Let Q. (R) = and r = dp(p, .) be smooth radial function on Q. (R). In addition consider V = Vrasa

1

Ap(Q:(R)) > o2

A p(Qo(R)). (3.2)

Here A1 ,(Q(R)) is the first eigenvalue of Q. (R) with respect to the § and © = max,cp, (g) H(T)-

Proof. The Legendre transformation [ : TM — T*M is norm preserving and also it preserves the uniformity
constant p(z), so for any f € C§°(Q:(R)), we obtain

p
(F(df)F(z) = ((F"(df))*(x))2
p
s o OF Of 5
= *t) —_— 2
p
1 . of of \5
> *7j 2 2
> (e V) 5T 5
p
1 4 of of \5
= — —_— 2
G? @ V)55 557)
1 p
= W(Ildfl\é(x)ﬂ
1
= alvlE. (33)
Using volume comparison 2.3, for du = dV,,,:,,, we get
oo F* P Wit Jo iy (F @YDy 1 oy i 10V
fQE(R) fPdViin - on/2 fQE(R) fpdVQ — Optn)/2 fQE(R) fpdVg
Due to the definition of the first eigenvalue of p-Laplacian operator, we get the result. O

Remark 3.1. Results also holds for dy = dV,,44, 80 it holds for du = dV,..
We also need following lemma proving our main results, which was stated in [14] as follows:

Lemma 3.2. Let (M, F,dyu) be a Finsler manifold, Q0 C M be a domain with compact closure and nonempty boundary
0. Suppose that f is the first Dirichlet eigenfunction of p-Laplacian operator in Q, and X is a vector field on 2 satisfying
info div(X) > 0. Then, we have:

(1) If there is a point xy € Q where f(zo) < 0, then

infq div(X) 1"
= [[Ea] .
(2) If there is a point xo € Q such that f(x¢) > 0, then
infq div(X) r
A1y (Q) > : (3.5)
Y Losupg F (X)
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Now we are able to prove:

Theorem 3.1. Let (M, F') be a forward complete noncompact and simply connected Finsler n-manifold with nonpositive
flag curvature and finite uniformity constant pp, x € M, and ¢ < 0,1 > 1. Suppose that there exists C > 0 with

1
(20 -1)C12 =1 <V,

such that the radial flag curvature and radial Ricci curvature satisfy in the following respectively:

/ (max{K(Vr) — ¢,0})!dt < C, (3.6)
and
/(max{Ric(Vr) —¢,0pldt < C, 3.7)

for any minimal normal geodesic y with beginning point x. Then we have

(p+n—3)P[vV=c—[(2l - )C]/CD
PP M;?er)/ 2

Proof. Since (M, F) is a forward complete noncompact and simply connected Finsler manifold with non-
positive flag curvature, by Cartan-Hadamard theorem r = dr(z,.) is smooth on M \ {z}. For a unit geodesic
vector field V = Vr, we have

Al,p(M) >

dr(X) = gv(V,X) = §(V, X) = §(Vr,X),
so Vr = Vr, furthermore for the Chern connection VV, we have
gv(VXV, Z2) = gv(VX, 2),
that means V%V = VxV and thus for any Y € TM, we get
H(r)(X,Y) = gv(VxV,Y) = gv(VXV,Y) = H(r)(X,Y).

Namely
Ayr = div(|Vr[P=2Vr) = div(|Vr|P72Vr) = Apr,

here H, A, div are Hessian, Laplacian and divergence with respect to §. Using Theorem 2.1 and Theorem 2.2,
we obtain

Ayr div(|Vr[P~2Vr)

= |VrP2Ar + (p — 2)Hess(Vr, Vr)|Vr|P™?

> (n—1)[V=c—[(2 =)V + (p—2)[V=c—[(2l = 1)C)/ =]
(p+n—3)[V—c—[(2t - 1)C]V/EV].

By applying Lemma 3.2 and equations (3.4) and (3.5) for V' = Vr, we conclude

1 - (p+n—3)P[y/—c— [(2l — 1)C]Y/@-D)p
o A (Qe(R)) = ~ .
H(FP+ )/2 pPu% YD

This completes the proof. O

ALp(Q:(R)) >

As an important result for the class of (p, ¢)-Laplacian operator (2.1), we prove:

Theorem 3.2. Let (M, F) be a forward complete noncompact and simply-connected Finsler n-manifold with nonpositive
flag curvature and finite uniformity constant yup. Suppose that there is C' > 0 with [(21 — 1)O]Y/ =Y < \/=¢, such that
radial flag curvature and radial Ricci curvature at x € M satisfy in (3.6) and (3.7) respectively. Then for (2.4) with p > q,
we have:

(p+n = 3PV~ [(2p ~ O]/ D)
ppugt—i-p)/?

a0 = 3)9V=e — [(2p — )]/ o)
q (7L+p)/2
'K

Al,p,q(M) >

: (3.8)

forze M,and c<0,1> 1.
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Proof. For any f € C§°(Q.(R)), we conclude from (3.3) that:
JoE AN DVmin 1 Jo,a 14f154V5
fQE(R) fPAVinin = O+n)/2 fQE(R) frdvy
and we have the same result for ¢ as follows

fQE(R) (F* (df))qdvmin < 1 fQE(R) ||df||ngg
fQE(R) f4dViin — O(g+n)/2 fQE(R) fqdvg ,

Considering p > ¢ as stated in theorem, we obtain

Jo(y FPdVinin Jo iy 7 Vimin
o 1 (fQE(R) I4F1l54Vs Ja.(r) ”df”gdvé) (3.9)
IENCRAR fQE(R) frdvy fQE(R) frdvy
So, due to the definition of first eigenvalue of (p, ¢)-Laplacian (2.4), we gain
Mg (M) > Wﬂl,m. (3.10)
Using the same method as in Theorem 3.1, we have
Apr+Agr = Apr + Aqr
= (0 B)Ve— (21— O]/
+g+n—3)[V=c— (20 - 1O/,
substituting this in (3.10) completes the proof. O

Acknowledgements
We thank the anonymous referees for their valuable comments, which improved the paper.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

References

[1] Azami, S.:The first eigenvalue of some (p, q)-Laplacian and geometric estimates. Commun. Korean Math. Soc. 33(1), 317-323 (2018).
[2] Benouhiba, N. Belyacine, Z.:A class of eigenvalue problems for the (p, q)-Laplacian in RN . Int.]J. Pure Appl. Math. 80 (5), 727-737 (2012).
[3] Ding, Q.:A new Laplacian comparison theorem and the estimate of eigenvalues. Chin. Ann. Math. 15 (1), 35-42 (1994).
[4] Lichnerowicz, A.:Geometric des groups de transformations. Truvaux et Recherches Mathemtiques. vol. ITI, Dunod, Paris, (1985).
[5] Mckean, H. P.:An upper bound for spectrum of A on a manifold of negative curvature. J. Differ. Geom. 4, 359-366 (1970).
[6] Ohta, S.:Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211-249 (2009).
[7]1 Wu, B. Y.:Volume form and its applications in Finsler geometry. Publ. Math. Debrecen. 78(3-4), 723-741 (2011).
[8] Wu, B. Y.:Comparison theorems and submanifolds in Finsler geometry. Sience Press Beijing, (2015).
[9]1 Wu, B. Y.:Comparison theorems in Riemann-Finsler geometry with line radial integral curvature bounds and related results. ]. Korean Math. Soc.
56(2), 421-437 (2019).
[10] Wu, B. Y.:Global Finsler geometry(Chinese). Tongji University Press, Shanghai, (2008).
[11] Wu, B. Xin, Y. L.:Comparison theorems in Finsler geometry and their applications. Math. Ann., 337, 177-196 (2007).
[12] Yin, S. T. He, Q.:The first eigenvalue of Finsler p-Laplacian.Diff. Geom. Appl. 35, 30-49 (2014).
[13] Yin, S. T. He, Q.:The first eigenfunctions and eigenvalue of the p-Laplacian on Finsler manifolds. Sci. China Math, 59, 1769-1794 (2016).
[14] Yin, S. T. He, Q.:Some eigenvalue comparison theorems of Finsler p-Laplacian. Int. ]. Math. (2018).
[15] Yin, S. T. He, Q. Shen, Y. B.:On lower bounds of the first eigenvalue of Finsler-Laplacian. Publ. Math. Debrecen, 83, 385-405 (2013).
[16] Yin, S. T. He, Q. Shen, Y. B.:On the first eigenvalue of Finsler-Laplacian in a Finsler manifold with nonnegative weighted Ricci curvature. Science
in China Math. 56, (2013).

365 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

Mckean-Type Estimate for p-Laplacian and (p, ¢)-Laplacian

Affiliations

SAKINEH HAJIAGHASI

ADDRESS: Imam Khomeini International University, Dept. of Mathematics, Qazvin-Iran.
E-MAIL: s.hajiaghasi@edu.ikiu.ac.ir

ORCID ID:0000-0002-0139-8642

SHAHROUD AZAMI

ADDRESS: Imam Khomeini International University, Dept. of Mathematics, Qazvin-Iran.
E-MAIL: azami@sci.ikiu.ac.ir

ORCID ID:0000-0002-8976-2014

dergipark.org.tr/en/pub/iejg

366


https://dergipark.org.tr/en/pub/iejg

	1 Introduction
	2 Preliminaries
	2.1 Eigenvalues of (p,q)-Laplacian

	3 Main results

