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Abstract

In this paper we analyze a parabolic-elliptic chemo-repulsion system with superlinear pro-
duction term in two-dimensional domains. Under the injection/extract chemical substance
on a subdomain ω ⊂ Ω ⊂ R2, we prove the existence and uniqueness of global-in-time
strong solutions at finite time.
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1. Introduction
One very interesting feature of living organisms is their interaction with the environ-

ment in which they reside. Frequently, the form of interaction involves the movement of
living organisms generated by an external stimulus, the response to such stimulus is called
taxis. The process which leads to taxis it is divided into three steps [18]: first, the cell
detects the extracellular signal by specific receptors on its surface; then, the cell processes
the signal and, finally, the alters its motile behavior. Depending on the nature of the stim-
ulus or signal we have different kinds of taxis, namely: aerotaxis, chemotaxis, haptotaxis,
phototaxis, among others (see [18, 21]). In particular, the chemotaxis phenomenon is un-
derstood as the movement of living organisms induced by the presence of certain chemical
substances. In 1970, Keller and Segel [12] proposed a mathematical model that describes
the chemotactic aggregation of cellular slime molds which preferentially towards relatively
high concentrations of a chemical secreted by the amoebae themselves, such phenomenon
is called chemo-attraction. In contrast, the phenomenon is called chemo-repulsion, if a
region of high chemical concentration generate a repulsive effect on the organisms.
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We are interested in studying a chemo-repulsion model with nonlinear chemical signal
production term given by the following system of partial differential equations

∂tu − ∆u = ∇ · (u∇v) in (0, T ) × Ω =: Q,
αv∂tv − ∆v + v = up in (0, T ) × Ω =: Q,

u(0, x) = u0(x), v(0, x) = v0(x) in Ω,
∂u

∂n = 0,
∂v

∂n = 0 on (0, T ) × ∂Ω,

(1.1)

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, n denotes the outward
unit normal vector to ∂Ω, (0, T ) is a time interval, with 0 < T < ∞, and the parameter
αv is a nonnegative real number. The unknowns are cell density u := u(t, x) ≥ 0 and
chemical concentration v := v(t, x) ≥ 0. The term up, p > 1, represents the chemical
signal production term.

System (1.1) with αv = 1 and linear production term (i.e. in (1.1)2, p = 1) has been
studied by Ciéslak et al. [3] and Tao [23]. In [3], the authors proved the existence and
uniqueness of smooth classical solutions in 2D domains and the existence of weak solutions
in spaces of dimension 3 and 4. In [23], the author delimits his analysis to a convex domain
Ω ⊂ Rn, with n ≥ 3, and changes the chemotactic term ∇ · (u∇v) by ∇ · (χ(u)∇v), where
χ(u) is an adequate smooth function. With this modification, Tao proves the existence
of a unique global-in-time classical solution of system (1.1), and that the corresponding
solution (u, v) converges to (u0, u0) as t → ∞, where u0 := 1

|Ω|
∫

Ω u0 dx. As far as we
known, in the case of chemo-repulsion model with superlinear signal production term
(1.1), with αv = 1, the literature is scarce. Indeed, we known the studies developed by
Guillén-González et al. [9–11]. In [9, 10] the authors prove the existence of global-in-time
weak solutions in 3D domains with quadratic production term (p = 2) and global-in-time
strong solutions assuming a regularity criteria, which is satisfied in 1D and 2D domains.
They also analyze some numerical schemes to approximate weak solutions. In [11], the
authors prove the existence of weak solutions considering p ∈ (1, 2) and propose some fully
discrete finite element approximations of system (1.1).

In this work we are interested in studying the parabolic-elliptic system related to prob-
lem (1.1) considering a proliferation/degradation coefficient of a chemical substance which
acts on a subdomain ω ⊂ Ω. Specifically, we consider a bounded domain Ω ⊂ R2 with
smooth boundary of class C2,1 and a time interval (0, T ), with 0 < T < ∞. Then we
will analyze the following system of partial differential equations in the time-space region
Q := (0, T ) × Ω: {

∂tu − ∆u = ∇ · (u∇v),
−∆v + v = up + fv 1ω,

(1.2)

where ω ⊂ Ω is a subdomain, f denotes a proliferation/degradation coefficient which acts
on the subdomain ω and 1ω is the characteristic function of ω. The term up, p > 1, is the
nonlinear chemical signal production term.

We complete system (1.2) with initial condition for the cell density

u(0, x) = u0(x) ≥ 0 in Ω, (1.3)

and non-flux boundary conditions

∂u

∂n = 0,
∂v

∂n = 0 on (0, T ) × ∂Ω. (1.4)

For equation (1.2)2, notice that, in the subdomain ω, where f ≥ 0 then we inject
chemical substance and, where f ≤ 0, we extract chemical substance. Also, system (1.2)-
(1.4) with f ≡ 0 and p = 1 has been studied by Mock in [16,17]. In these works, the author
proved the existence and uniqueness of global-in-time classical solutions by using continuity
arguments, under the assumptions that the initial data u0 is strictly positive and twice
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continuously differentiable at x ∈ Ω. Furthermore, the author proved that the solutions are
uniformly bounded and converge with an exponential rate to the steady-state. However,
the theory employed by Mock cannot be applied here, because the coefficient f is only a
function belongs to the space Lq(ω), with 2 < q < ∞ (see Theorem 2.7, below). In order
to overcome this difficulty, we will apply the Leray-Schauder fixed-point arguments and
parabolic and elliptic regularity theorems to obtain our results. The parabolic-parabolic
system related to (1.2)-(1.4) has been studied by Guillén-González et al. [6–8]. In [6,7] the
authors consider the linear case (p = 1) and, under minimal assumptions, they achieved
their results by using energy estimates, fixed-point theorems and bootstrapping arguments
via Lp-regularity of the parabolic heat-Neumann problem (see Theorem 2.4, below). In
particular, in [6] the authors proved the existence and uniqueness of global-in-time strong
solutions in two-dimensional domains. In [7] is proved the existence of weak solutions
in 3D domains and establish a regularity criterion to get global-in-time strong solutions.
In [8], the authors consider the superlinear case with p ∈ (1, 2] and prove the existence
and uniqueness of global-in-time strong solutions. The stationary case have been consider
in [15]. In our case, due to the elliptic nature of equation (1.2)2, the analysis is more
complicated. Technically speaking, to obtain appropriate estimates for v, it requires us to
improve a smallness condition for the function f (see estimate (2.10) below). Moreover,
to improve the regularity of the solution (u, v) of system (1.2)-(1.4), we carefully combine
elliptic and parabolic results for the heat-Neumann problem. The key point in our analysis
is to control the integral (

∫
Ω up dx)2 = ∥u∥2p

Lp . We have managed to control it in terms
of ∥∇(up/2)∥2 using the Gagliardo-Nirenberg (Lemma 2.3) and Young inequalities, which
has only been possible in 2D domains and for p ∈ (1, 2) (see estimate (3.16), below); so
the case p ≥ 2 remains open.

The paper is organized as follows: In Section 2 we fix the notation, introduce the
functional spaces to be used, give the concept of strong solutions of problem (1.2)-(1.4)
and we establish two regularity (parabolic and elliptic) results for Neumann problems that
will be used throughout this work. In Section 3, we prove the existence and uniqueness of
strong solutions of system (1.2)-(1.4), applying the Leray-Schauder fixed-point theorem,
and establish that allows us deduce that the pair (u, v) does not blow-up at finite time.

2. Preliminaries
In this section we establish some notations. We will use the Lebesgue space Ls(Ω),

1 ≤ s ≤ ∞, with norm denoted by ∥ · ∥Ls . In particular, the L2-norm and its inner
product will be denoted by ∥ · ∥ and (·, ·), respectively. Also, we consider the usual
Sobolev spaces W m,s(Ω) = {u ∈ Ls(Ω) : ∥∂αu∥Ls < ∞}, with norm denoted by ∥ · ∥W m,s .
When s = 2, we denote Hm(Ω) := W m,2(Ω) and the respective norm by ∥ · ∥Hm . We
will use the space W m,s

n (Ω) := {u ∈ W m,s(Ω) : ∂u
∂n = 0 on ∂Ω}, m > 1 + 1

s , with norm
∥ · ∥W m,s

n
. Also, if X is a Banach space, we will denote by Lp(X) the space of valued

functions in X defined on the interval [0, T ] that are integrable in the Bochner sense, and
its norm will be denoted by ∥ · ∥Ls(X). For simplicity, we will denote Ls(Q) := Lp(Ls(Ω))
for s ̸= ∞ and its norm by ∥ · ∥Ls(Q). In the case s = ∞, L∞(Q) := L∞((0, T ) × Ω) and
its respective norm will be denoted by ∥ · ∥L∞(Q). Also, C(X) := C([0, T ]; X) denotes the
space of continuous functions from [0, T ] into a Banach space X, and its respective norm
by ∥ · ∥C(X). Moreover, as usual, the letters C, K, C1, K1,. . . , denote positive constants
independent of (u, v), but its value may change from line to line.

We will study the existence of strong solutions of system (1.2)-(1.4). The following def-
inition gives the concept of strong solutions of problem (1.2)-(1.4) in the case of nonlinear
production up, for p ∈ (1, 2).

Definition 2.1 (Strong Solutions). Assume that Ω ⊂ R2 is a bounded domain with
smooth boundary ∂Ω of class C2,1. Let f ∈ Lq(ω), for 2 < q < ∞, u0 ∈ H1(Ω) with
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u0 ≥ 0 a.e. in Ω. We say that a pair (u, v) is a strong solution of problem (1.2)-(1.4) in
the time interval (0, T ), if u ≥ 0, v ≥ 0 in Q

u ∈ Su := {u ∈ L∞(H1(Ω)) ∩ L2(H2(Ω)) : ∂tu ∈ L2(Q)}, (2.1)
v ∈ Sv := Lq(W 2,q(Ω)), (2.2)

(u, v) satisfies pointwisely a.e. (t, x) ∈ Q the system{
∂tu − ∆u = ∇ · (u∇v),
−∆v + v = up + fv 1ω,

(2.3)

and the initial and boundary conditions (1.3) and (1.4) are satisfied, respectively.

Remark 2.2. System (1.2)-(1.4) is conservative in u. Indeed, integrating (1.2)1 in Ω we
have

d

dt

(∫
Ω

u dx

)
= 0 ⇒

∫
Ω

u(t) dx =
∫

Ω
u0 dx := m0, ∀t > 0. (2.4)

Furthermore, integrating (1.2)2 in Ω we obtain∫
Ω

v dx =
∫

Ω
up dx +

∫
ω

fv dx. (2.5)

A key point in our analysis is to estimate the integral (
∫

Ω up dx)2, which is possible
under the constraint p ∈ (1, 2). The following Gagliardo-Nirenberg interpolation inequality
allows us to achieve this purpose.

Lemma 2.3. [20, p.125] Suppose that Ω ⊂ R2 is a bounded domain. Let u ∈ Lr(Ω) and
1 ≤ s1, s2 ≤ ∞ satisfying

1
r

= θ

( 1
s1

− 1
2

)
+ 1 − θ

s2
, θ ∈ [0, 1].

Then, the following estimate holds

∥u∥Lr ≤ C1∥∇u∥θ
Ls1 ∥u∥1−θ

Ls2 + C2∥u∥Ls∗ , (2.6)

where C1 and C2 are positive constants which depend on Ω, s1 and s2, and s∗ > 0 is
arbitrary.

In particular, for r = 4 and s1 = s2 = 2; from Lemma 2.3, we have that θ = 1
2 and

∥u∥L4 ≤ C(∥∇u∥1/2∥u∥1/2 + ∥u∥), with C := max{C1, C2};

which is a generalized version of the classical interpolation inequality in 2D domains (see,
for instance, [2, p. 314])

∥u∥L4 ≤ C∥u∥1/2∥u∥1/2
H1 ∀u ∈ H1(Ω). (2.7)

Also, frequently we will use the following equivalent norms in the Sobolev spaces H1(Ω)
and H2(Ω) (see [19], for more details):

∥u∥H1 ≡
(

∥∇u∥2 +
(∫

Ω
u dx

)2
)1/2

∀u ∈ H1(Ω), (2.8)

∥u∥H2 ≡
(

∥∆u∥2 +
(∫

Ω
u dx

)2
)1/2

∀u ∈ H2
n(Ω). (2.9)

We will apply the following result concerning to parabolic regularity.
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Theorem 2.4. (Parabolic-Regularity) [4, Theorem 10.22, p. 344] Let Ω ∈ C2 be a bounded
domain in Rn (n = 2, 3), u0 ∈ W̃ 2−2/s,s(Ω) and g ∈ Ls(Q), with 1 < s < ∞ (s ̸= 3).
Then, there exists a unique solution u of problem

∂tu − ∆u = g in Q,
u(0, x) = u0(x) in Ω,

∂u

∂n
= 0 on (0, T ) × ∂Ω,

such that
u ∈ C(W̃ 2−2/s(Ω)) ∩ Ls(W 2,s(Ω)), ∂tu ∈ Ls(Q).

Moreover, there exists a positive constant C := C(Ω, T ) which satisfies the following esti-
mate

∥u∥
C(W̃ 2−2/s) + ∥u∥Ls(W 2,s) + ∥∂tu∥Ls(Q) ≤ C(∥u0∥

W̃ 2−2/s + ∥g∥Ls(Q)).

Here, the space W̃ 2−2/s,s(Ω) := W 2−2/s,s(Ω) if s < 3 and W̃ 2−2/s,s(Ω) := W
2−2/s,s
n (Ω) if

s > 3.

Remark 2.5. In Theorem 2.4, the case s = 3 implies that u ∈ C(X3,3)∩L3(W 2,3(Ω)) with
∂tu ∈ L3(Q), for a certain interpolation space X3,3 (see [4, Theorem 10.22], for details).
The description of the space X3,3 is not clear in terms of W̃ 2−2/s,s(Ω) or another Sobolev
spaces.

Furthermore, by adapting [5, Theorem 2.4.2.7] we deduce the following result on elliptic
regularity for a Neumann problem.

Theorem 2.6. (Elliptic-Regularity) Let Ω ∈ C1,1 be a bounded domain in Rn, n = 2, 3,
and h ∈ Ls(Ω) with 1 < s < ∞. Then the problem −∆u + u = h in Ω,

∂u

∂n = 0 on ∂Ω,

admits a unique solution u ∈ W 2,s(Ω). Moreover, there exists a positive constant C :=
C(Ω) such that

∥u∥W 2,s ≤ C∥h∥Ls .

Now we will enunciate the main result of this paper.

Theorem 2.7. (Strong Solutions) Assume that Ω ⊂ R2 is a bounded domain with smooth
boundary ∂Ω of class C2,1. Let u0 ∈ H1(Ω), with u0 ≥ 0 a.e. in Ω and f ∈ Lq(ω) for
2 < q < ∞. If ∥f∥Lq(ω) is small enough such that

∥f∥Lq(ω) < β := min
{

1
2[p(K2

1 + K2
2 )]1/2 ,

1
K3

}
, (2.10)

where K1 := K1(Ω), K2 := |Ω|
1
2 − 1

q and K3 := K3(Ω) are positive constants which depend
only on Ω and are given by the injections H1(Ω) ↪→ Ls(Ω), with 1 ≤ s < ∞, Lq(Ω) ↪→
L2(Ω) and W 2,q(Ω) ↪→ L∞(Ω), respectively. Then there exists a unique strong solution
(u, v) of system (1.2)-(1.4) in sense of Definition 2.1. Moreover, there exists a positive
constant K := K(m0, T, ∥f∥Lq , ∥u0∥H1 , K1, K2, K3) such that

∥u∥Su + ∥v∥Sv ≤ K. (2.11)

3. Proof of Theorem 2.7
In this section we will prove Theorem 2.7. For such effects we will apply the Leray-

Schauder fixed-point principle.
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3.1. Existence
Throughout this subsection we assume that Ω ⊂ R2 is a bounded domain with smooth

boundary ∂Ω of class C2,1. We consider the following auxiliary function spaces:

Wu := C(L2(Ω)) ∩ L
2q

q−2 (H1(Ω)), Wv := Lq(L∞(Ω)), (3.1)
with 2 < q < ∞.

Lemma 3.1. The product space Su × Sv (defined in (2.1)-(2.2)) is compactly embedded
in Wu × Wv.

Proof. The compact embedding of Sv in Wv is clear. Let u ∈ Su, then u ∈ L∞(H1(Ω))
and ∂tu ∈ L2(Q). Since the injection H1(Ω) ↪→ L2(Ω) is compact, then from [22, Corollary
4] we deduce that Su is compactly embedded in C(L2(Ω)). Now, from [14, Théorème 9.6]
we can deduce the following injection

L∞(H1(Ω)) ∩ L2(H2(Ω)) ↪→ L
2q

q−2 (H
2q−2

q (Ω)).

Also, from [1, p.144] we have the compact embedding H
2q−2

q (Ω) ↪→ H1(Ω); thus, using
this injection and that ∂tu ∈ L2(Q), from [13, Théorème 5.1] we have that Su is compactly
embedded in L

2q
q−2 (H1(Ω)). Consequently, the injection of Su in Wu is compact. □

In order to prove Theorem 2.7 we will use the Leray-Schauder fixed-point principle,
for which we consider the operator L : Wu × Wv → Su × Sv ↪→ Wu × Wv defined by
L(u, v) = (u, v) with (u, v) satisfying the following linear problem

∂tu − ∆u = ∇ · (u+∇v) in Q,
−∆v + v = up + fv+ 1ω in Q,

u(0, x) = u0(x) in Ω,
∂u

∂n = 0,
∂v

∂n = 0 on (0, T ) × ∂Ω,

(3.2)

where u+ := max{u, 0} and v+ := max{v, 0}, denote the respective positive parts of u
and v.

In the following lemmas we will prove that operator L satisfy the conditions of the
Leray-Schauder fixed-point theorem.

Lemma 3.2. The operator L : Wu × Wv → Wu × Wv is well-defined and completely
continuous (compact and continuous).

Proof. Let (u, v) ∈ Wu × Wv. Then, in particular, from Sobolev embeddings we deduce
that u(t, ·) ∈ L2q(Ω) for any t ∈ (0, T ); thus, taking into account that p ∈ (1, 2) we have
that up ∈ Lq(Ω). Furthermore, using that f ∈ Lq(ω), q > 2, and v ∈ Lq(L∞(ω)); then,
in particular, we have that up(t, ·) + fv(t, ·) 1ω belongs to Lq(Ω) for any time t ∈ (0, T ).
Thus applying Theorem 2.6 (for s = q > 2) we deduce that there exists a unique solution
v := v(t, ·) ∈ W 2,q(Ω) of elliptic problem −∆v + v = up + fv+ 1ω in Ω,

∂v

∂n = 0 on ∂Ω,

such that ∥v∥W 2,q ≤ C
(
∥up∥Lq + ∥f∥Lq(ω)∥v∥L∞

)
; which implies

∥v∥q
W 2,q ≤ C

(
∥up∥q

Lq + ∥f∥q
Lq(ω)∥v∥q

L∞

)
.

Then, integrating this last inequality in (0, T ) we deduce

∥v∥q
Lq(W 2,q) ≤ C

(
∥up∥q

Lq(Q) + ∥f∥q
Lq(ω)∥v∥q

Lq(L∞)

)
; (3.3)

hence, v ∈ Sv.
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Now, since v ∈ Sv = Lq(W 2,q(Ω)) (q > 2), we have that ∆v ∈ Lq(Q) and ∇v ∈
Lq(W 1,q(Ω)) ↪→ Lq(L∞(Ω)). Also, using that u ∈ Wu; then, in particular,
u+ ∈ L

2q
q−2 (L

2q
q−2 (Ω)) and ∇u+ ∈ L

2q
q−2 (L2(Ω)). Thus, we deduce that

∇ · (u+∇v) = u+∆v + ∇u+ · ∇v ∈ L2(Q).

Therefore, applying Theorem 2.4 (for s = 2) we conclude that there exists a unique solution
to (3.2)1 with u(x, 0) = u0(x) in Ω and ∂u

∂n = 0 on (0, T ) × ∂Ω such that the following
estimate holds

∥u∥Su ≤ C

(
∥u∥

L
2q

q−2 (L
2q

q−2 )
∥∆v∥Lq(Q) + ∥∇u∥

L
2q

q−2 (L2)
∥∇v∥Lq(L∞)

)
≤ C

(
∥u0∥H1 , ∥f∥Lq(ω)

)
. (3.4)

Therefore, operator L is well-defined from Wu × Wv to Su × Sv. The compactness of L
follows from inequalities (3.3) and (3.4).

Finally, in order to prove the continuity of operator L we consider {(um, vm)}m≥1 ⊂
Wu × Wv a sequence such that

(um, vm) → (u, v) in Wu × Wv, as m → ∞. (3.5)

In particular, the sequence {(um, vm)}m≥1 is bounded in Wu × Wv; thus, from (3.3) and
(3.4) we deduce that the sequence {(um, vm) =: L(um, vm)}m≥1 is bounded in the product
space Su × Sv. Then, from the compactness of Su × Sv in Wu × Wv, we deduce that there
exists a subsequence of {L(um, vm)}m≥1, still denoted by {L(um, vm)}m≥1, and a limit
element (û, v̂) ∈ Su × Sv such that, when m goes to ∞, the following convergence holds

L(um, vm) → (û, v̂) weak in Su × Sv and strong in Wu × Wv. (3.6)

Then, from (3.5) and (3.6) we can pass to the limit in (3.2) when m goes to ∞, with
(u, v) = L(um, vm) and (u, v) = (um, vm), which implies that L(u, v) = (û, v̂). Therefore,
by the uniqueness of the limit, the whole sequence {L(um, vm)}m≥1 converges to L(u, v)
strongly in Wu × Wv. Thus operator L : Wu × Wv → Wu × Wv is continuous. □

Lemma 3.3. Let u0 ∈ H1(Ω), with u0 ≥ 0 a.e. in Ω and f ∈ Lq(ω), with 2 < q < ∞. If
∥f∥Lq(ω) is small enough such that

∥f∥Lq(ω) < β, (3.7)

where β > 0 is the constant given in Theorem 2.7. Then the set

Lα := {(u, v) ∈ Wu × Wv : (u, v) = αL(u, v) for some α ∈ [0, 1]} (3.8)

is bounded in Wu × Wv, independently of the parameter α ∈ [0, 1]. Indeed, the set Lα is
also bounded in Su × Sv; that is, there exists a positive constant
K := K(m0, T, ∥u0∥H1 , ∥f∥Lq(ω), β) such that all pairs of functions (u, v) ∈ Lα, for α ∈
[0, 1], satisfy the estimate

∥(u, v)∥Su×Sv ≤ K. (3.9)

Proof. Let (u, v) ∈ Lα for α ∈ (0, 1] (the case α = 0 is trivial). Then, from Lemma 3.2
the pair (u, v) belongs to Su × Sv and satisfy pointwisely a.e. in Q the following system{

∂tu − ∆u = ∇ · (u+∇v) in Q,
−∆v + v = αup + αfv+ 1ω in Q,

(3.10)

endowed whit the corresponding initial and boundary conditions. Thus, it suffices to
bound (u, v) ∈ Su × Sv, independently of α ∈ (0, 1]. The proof is carry out in five steps.

Step 1: u, v ≥ 0 and u satisfy the mass conservation property (2.4).
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Testing (3.10)1 by u− := min{u, 0} ≤ 0, and taking into account that u− = 0 if u ≥ 0;
∇u− = ∇u if u ≤ 0 and ∇u− = 0 if u > 0, we have

1
2

d

dt
∥u−∥2 + ∥∇u−∥2 = −

∫
Ω

u+∇v · ∇u− dx = 0.

Then, using that u0 ≥ 0 a.e. in Ω, we deduce that u− ≡ 0. Hence, u ≥ 0 a.e. in Q.
Similarly, testing (3.10)2 by v− ≤ 0 we obtain

∥∇v−∥2 + ∥v−∥2 = α

∫
Ω

upv− dx + α

∫
ω

fv+v− dx ≤ 0;

which implies that v− ≡ 0; thus v ≥ 0 a.e. in Q. Finally, the mass conservation property
(2.4) follows integrating (3.10)1 in Ω.

Step 2: v is bounded in L2(H2(Ω)).

Testing (3.10)1 by α
p−1up−1 and (3.10)2 by −1

p∆v, for p ∈ (1, 2); then, integrating by
parts in Ω, adding the respective equations and considering that chemotaxis and produc-
tion terms cancel, we can obtain

α

p(p − 1)
d

dt
∥up/2∥2 + 4α

p2 ∥∇(up/2)∥2 + 1
p

∥∆v∥2 + 1
p

∥∇v∥2 = −α

p

∫
ω

fv∆v dx. (3.11)

Now, taking into account that H1(Ω) ↪→ Ls(Ω), we can fix a positive constant K1 := K1(Ω)
such that ∥v∥Ls ≤ K1∥v∥H1 , for s > 2. Moreover, from the Hölder and Young inequalities
and using that p ∈ (1, 2) and α ∈ (0, 1] we have

−α

p

∫
ω

fv∆v dx ≤
∫

ω
|fv∆v| dx ≤ ∥f∥Lq(ω)∥v∥Ls∥∆v∥ ≤ K1∥f∥Lq(ω)∥v∥H1∥∆v∥

≤ 3
4p

∥∆v∥2 + p

3
K2

1∥f∥2
Lq(ω)∥v∥2

H1

≤ 3
4p

∥∆v∥2 + K2
1∥f∥2

Lq(ω)∥v∥2
H1 , (3.12)

where 1
p + 1

s = 1
2 . Thus, from (3.11) and (3.12) we deduce that

α

p(p − 1)
d

dt
∥up/2∥2 + 4α

p2 ∥∇(up/2)∥2 + 1
4p

∥∆v∥2 + 1
p

∥∇v∥2 ≤ K2
1∥f∥2

Lq(ω)∥v∥2
H1 . (3.13)

On the other hand, integrating in Ω the second equation in (3.10); then, multiplying the
respective equality by

∫
Ω v dx and applying the Young inequality, we have(∫

Ω
v dx

)2
= α

(∫
Ω

up dx

)(∫
Ω

v dx

)
+ α

(∫
ω

fv dx

)(∫
Ω

v dx

)
≤ α2

(∫
Ω

up dx

)2
+ 1

2

(∫
Ω

v dx

)2
+ α2

(∫
ω

fv dx

)2
. (3.14)

Also, since 2 < q < ∞ and Lq(ω) ↪→ L2(ω), we have that ∥f∥L2(ω) ≤ K2∥f∥Lq(ω), with
K2 := |Ω|

1
2 − 1

q > 0. Thus, from (3.14) we obtain

1
4p

(∫
Ω

v dx

)2
<

1
2

(∫
Ω

v dx

)2
≤ α2

(∫
Ω

up dx

)2
+ α2

(∫
ω

fv dx

)2

≤ α2
(∫

Ω
up dx

)2
+ α2∥f∥2

L2(ω)∥v∥2

≤ α2∥u∥2p
Lp + α2K2

2∥f∥2
Lq(ω)∥v∥2

H2 . (3.15)
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In order to control the term ∥u∥2p
Lp we will use the Gagliardo-Nirenberg interpolation

inequality (2.6) (see Lemma 2.3 above). In fact, we observe that for p ∈ (1, 2), we have
that 4(p−1)

p < 2; thus, from inequality (2.6) we can obtain

α2∥u∥2p
Lp = α2∥up/2∥4 ≤ α2C∥∇(up/2)∥

4(p−1)
p ∥up/2∥4/p

L2/p + α2C∥up/2∥4
L2/p .

Moreover, applying the Young inequality and taking into account that ∥up/2∥4
L2/p =

∥u∥2p
L1 = m2p

0 and that α ∈ (0, 1]; from the last inequality we deduce the following es-
timate

α2∥u∥2p
Lp ≤ 2α

p2 ∥∇(up/2)∥2 + C∥up/2∥
4

2−p

L2/p + α2C∥u∥2p
L1

≤ 2α

p2 ∥∇(up/2)∥2 + C. (3.16)

Thus, from (3.15) and (3.16) we have

1
4p

(∫
Ω

v dx

)2
≤ 2α

p2 ∥∇(up/2)∥2 + α2K2
2∥f∥2

Lq(ω)∥v∥2
H2 + C. (3.17)

Then, adding (3.13) and (3.17), and using the equivalent norm provided in (2.9) we obtain
α

p(p − 1)
d

dt
∥up/2∥2 + 2α

p2 ∥∇(up/2)∥2 + 1
4p

∥v∥2
H2 + 1

p
∥∇v∥2

≤ K2
1∥f∥2

Lq(ω)∥v∥2
H1 + α2K2

2∥f∥2
Lq(ω)∥v∥2

H2 + C

≤ (K2
1 + K2

2 )∥f∥2
Lq(ω)∥v∥2

H2 + C,

which implies

α

p(p − 1)
d

dt
∥up/2∥2 +

(
1 − 4p(K2

1 + K2
2 )∥f∥2

Lq(ω)
4p

)
∥v∥2

H2 ≤ C. (3.18)

Now, from assumption (2.10) we deduce that 4p(K2
1 + K2

2 )∥f∥2
Lq(ω) < 1; thus, integrating

(3.18) in (0, T ) we conclude that there exists a positive constant

C := C(m0, T, ∥u0∥Lp , K1, K2, ∥f∥Lq(ω))

such that
∥v∥L2(H2) ≤ C.

Therefore, v is bounded in L2(H2(Ω)).

Step 3: u
q+1

2 , is bounded in L∞(L2(Ω)) ∩ L2(H1(Ω)), for 2 < q < ∞.

Testing (3.10)1 by (q+1)uq, integrating with respect to spatial variable, using the Young
inequality, and considering the 2D interpolation inequality (2.7), we have

d

dt
∥u

q+1
2 ∥2 + 4q

q + 1
∥∇(u

q+1
2 )∥2 = q∥uq+1∆v∥L1 ≤ C∥u

q+1
2 ∥2

L4∥∆v∥

≤ C∥u
q+1

2 ∥∥u
q+1

2 ∥H1∥∆v∥

≤ ∥u
q+1

2 ∥2
H1 + C∥u

q+1
2 ∥2∥v∥2

H2 .

Then, adding 4q
q+1∥u

q+1
2 ∥2 to both sides of the previous inequality and using the equivalent

norm (2.8), we obtain
d

dt
∥u

q+1
2 ∥2 + 4q

q + 1
∥u

q+1
2 ∥2

H1 ≤ C
(
1 + ∥v∥2

H2

)
∥u

q+1
2 ∥2. (3.19)
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Therefore, applying the Gronwall lemma in (3.19) and using that v ∈ L2(W 2,q(Ω)), we
deduce that

∥u
q+1

2 ∥L∞(L2)∩L2(H1) ≤ C(q, ∥u0∥Lq , ∥f∥Lq(ω)).

Thus, u
q+1

2 is bounded in L∞(L2(Ω)) ∩ L2(H1(Ω)).

Step 4: v is bounded in Sv.

From previous step and interpolating, we deduce that u
q+1

2 ∈ L∞(L2(Ω))∩L2(H1(Ω)) ↪→
L4(Q); hence u2 ∈ Lq+1(Q). Then, using that p ∈ (1, 2), we deduce that up ∈ Lq+1(Q) ↪→
Lq(Q). Now, taking into account that f ∈ Lq(ω), up ∈ Lq(Ω) and v ∈ L2(H2(Ω)), we
obtain that u(t, ·) + fv(t, ·) 1ω ∈ Lq(Ω) for any t ∈ (0, T ). Then, applying Theorem 2.6
(for s = q > 2) to problem −∆v + v = αup + αfv 1ω in Ω,

∂v

∂n = 0 on ∂Ω,

we conclude that v(t, ·) ∈ W 2,q(Ω) for each t ∈ (0, T ) and

∥v∥W 2,q ≤ αC
(
∥up∥Lq + ∥f∥Lq(ω)∥v∥L∞

)
≤ C

(
∥up∥Lq + K3∥f∥Lq(ω)∥v∥W 2,q

)
;

thus, (
1 − K3∥f∥Lq(ω)

)
∥v∥W 2,q ≤ C∥up∥Lq , (3.20)

where K3 := K3(Ω) > 0 is a fixed constant given by the embedding W 2,q(Ω) ↪→ L∞(Ω).
Notice that from (2.10) we deduce that K3∥f∥Lq(ω) < 1; hence, using that up ∈ Lq(Ω),
from (3.20) we conclude that

∥v∥q
Lq(W 2,q) ≤ C(

1 − K3∥f∥Lq(ω)
)q ∥up∥q

Lq

≤ C
(
m0, T, ∥f∥Lq(ω), ∥u0∥H1 , β

)
. (3.21)

Consequently, v is bounded in the space Sv.

Step 5: u is bounded in Su.

Testing (3.10)1 by −∆u we have
1
2

d

dt
∥∇u∥2 + ∥∆u∥2 = −(u∆v + ∇u · ∇v, ∆u). (3.22)

Then, applying the Hölder and Young inequalities we obtain

−(u∆v, ∆u) ≤ ∥u∥Ls∥∆v∥Lq ∥∆u∥ ≤ K̂∥u∥H1∥∆v∥Lq ∥∆u∥

≤ K̂2∥u∥2
H1∥∆v∥2

Lq + 1
4

∥∆u∥2, (3.23)

where 1
s + 1

q = 1
2 and K̂ := K̂(Ω) > 0 is a constant given by the embedding Ls(Ω) ↪→

H1(Ω).
Now, using again the Hölder and Young inequalities we deduce

−(∇u · ∇v, ∆v) ≤ ∥∇u∥∥∇v∥L∞∥∆u∥ ≤ 1
4

∥∆u∥2 + ∥∇u∥2∥∇v∥2
L∞ . (3.24)

Then, from (3.22)-(3.24) we have
d

dt
∥∇u∥2 + ∥∆u∥2 ≤ K̂2∥u∥2

H1∥∆v∥2
Lq + ∥∇u∥2∥∇v∥2

L∞ ;
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which together with the fact that (
∫

Ω u(t) dx)2 = m2
0 and the equivalent norms (2.8) and

(2.9) imply that
d

dt
∥u∥2

H1 + ∥u∥2
H2 ≤ 2K̂2∥u∥2

H1∥∆v∥2
Lq + 2∥∇u∥2∥∇v∥2

L∞ + 2m2
0. (3.25)

Thus, considering that ∆v ∈ Lq(Ω), for 2 < q < ∞, and (∇u, ∇v) ∈ L2(Q) × Lq(L∞(Ω)),
from (3.25) and the Gronwall lemma we deduce that

∥u∥L∞(H1)∩L2(H2) ≤ C(m0, T, ∥f∥Lq(ω), ∥u0∥H1 , β)
≤ C. (3.26)

Then, u is bounded in L∞(H1(Ω)) ∩ L2(H2(Ω)).
Now, from (3.10)1, (3.21) and (3.26) we obtain the following estimate

∥∂tu∥L2(Q) ≤ ∥u∥L2(Q) + ∥u∥L2(Ls̃)∥∆v∥L2(Lq) + ∥∇u∥Ls̃(L2)∥∇v∥Lq(L2)

≤ C(m0, T, ∥f∥Lq(ω), ∥u0∥H1 , β), (3.27)

where 1
s̃ + 1

q = 1. Therefore, from (3.26) and (3.27) we conclude that u ∈ Su.
Finally, from (3.21), (3.26) and (3.27) we deduce that all elements of the set Lα are

bounded in Su × Sv. Moreover, the estimate (3.9) follows from (3.21) and (3.26)-(3.27).
□

Consequently, in virtue of Lemmas 3.2 and 3.3 we deduce that the operator L and the
set Lα satisfy the conditions of the Leray-Schauder fixed-point theorem. Therefore, we
deduce that L(·, ·) has a fixed-point (u, v) ∈ Su × Sv; namely, L(u, v) = (u, v). This fixed-
point is a strong solution of system (1.2)-(1.4). Furthermore, the estimate (2.11) follows
from (3.21) and (3.26)-(3.27).

3.2. Uniqueness
Following a classical comparison argument, let (u1, v1), (u2, v2) ∈ Su × Sv two possible

solutions of system (1.2)-(1.4). Then, subtracting equations (1.2)-(1.4) for (u1, v1) and
(u2, v2), and then denoting u := u1 − u2 and v := v1 − v2, we can obtain the following
system: 

∂tu − ∆u = ∇ · (u1∇v + u∇v2) in Q,
−∆v + v = up

1 − up
2 + fv 1ω in Q,

u(0, x) = 0 in Ω,
∂u

∂n = ∂v

∂n = 0 on (0, T ) × ∂Ω.

(3.28)

Testing (3.28)1 by u and (3.28)2 by −∆v, then integrating by parts in Ω we have
d

dt
∥u∥2 + ∥∇u∥2 + ∥∆v∥2 + ∥∇v∥2 = (u1∆v, u) + (∇u1 · ∇v, u) − (u∇v2, ∇u)

−(up
1, ∆v) + (up

2, ∆v) − (fv 1ω, ∆v). (3.29)
Applying the Hölder and Young inequalities and taking into account the 2D interpolation
inequality (2.7) we obtain

(u1∆v, u) ≤ ∥u1∥L4∥∆v∥∥u∥L4 ≤ 1
12

∥∆v∥2 + C∥u1∥2
L4∥u∥∥u∥H1

≤ 1
12

∥∆v∥2 + 1
10

∥u∥2
H1 + C∥u1∥4

L4∥u∥2, (3.30)

(∇u1 · ∇v, u) ≤ ∥∇u1∥∥∇v∥L4∥u∥L4 ≤ C∥∇u1∥∥v∥H2∥u∥1/2∥u∥1/2
H1

≤ 1
12

∥v∥2
H2 + 1

10
∥u∥2

H1 + C∥∇u1∥4
L4∥u∥2, (3.31)

−(u∇v2, ∇u) ≤ ∥u∥∥∇v2∥L∞∥∇u∥ ≤ 1
10

∥u∥2
H1 + C∥u∥2∥∇v2∥2

L∞ , (3.32)



2D Chemo-repulsion model with nonlinear production 1611

−(fv 1ω, ∆v) ≤ ∥f∥Lq(ω)∥v∥Ls∥∆v∥ ≤ K1∥f∥Lq(ω)∥v∥H1∥∆v∥

≤ 1
4

∥∆v∥2 + K2
1 ∥f∥2

Lq(ω)∥v∥2
H2 , (3.33)

where 1
q + 1

s = 1
2 and K1 := K1(Ω) is the constant given by the embedding H1(Ω) ↪→

Ls(Ω).
Moreover, using again the Hölder and Young inequalities, considering the 2D inter-

polation inequality (2.7) and taking into account the pointwise inequality |ap − bp| ≤
C|a − b|(|a|p−1 + |b|p−1), we can obtain

−(up
1, ∆v) + (up

2, ∆v) = −(up
1 − up

2, ∆v)
≤ C∥u∥L4∥up−1

1 ∥L4∥∆v∥ + C∥u∥L4∥up−1
2 ∥L4∥∆v∥

≤ 1
12

∥∆v∥2 + C∥u∥∥u∥H1∥up−1
1 ∥2

L4 + C∥u∥∥u∥H1∥up−1
2 ∥2

L4

≤ 1
12

∥∆v∥2 + 1
10

∥u∥2
H1

+C
(
∥u1∥4(p−1)

L4(p−1) + ∥u2∥4(p−1)
L4(p−1)

)
∥u∥2. (3.34)

On the other hand, integrating (3.28)2 in Ω we have∫
Ω

v dx =
∫

Ω
(up

1 − up
2) dx +

∫
ω

fv dx;

then, (∫
Ω

v dx

)2
=
(∫

Ω
(up

1 − up
2) dx

)(∫
Ω

v dx

)
+
(∫

ω
fv dx

)(∫
Ω

v dx

)
. (3.35)

Thus, from (3.35) and arguing as in estimates (3.15) and (3.34) we can obtain

7
12

(∫
Ω

v dx

)2

≤ 1
10

∥u∥2
H1 + C

(
∥u1∥4(p−1)

L4(p−1) + ∥u2∥4(p−1)
L4(p−1)

)
∥u∥2 + K2

2 ∥f∥2
Lq(ω)∥v∥2

H2 , (3.36)

where K2 := |Ω|
1
2 − 1

q > 0.
Therefore, from (3.29) and estimates (3.30)-(3.36) we arrive at

d

dt
∥u∥2 + ∥∇u∥2 + 7

12
∥∆v∥2

≤ 2
5

∥u∥2
H1 + 1

12
∥v∥2

H2 + C
(
∥u1∥4(p−1)

L4(p−1) + ∥u2∥4(p−1)
L4(p−1)

)
∥u∥2

+C
(
∥u1∥4

L4 + ∥∇u1∥4
L4 + ∥∇v2∥2

L∞

)
∥u∥2 + K2

1∥f∥2
Lq(ω)∥v∥2

H2 . (3.37)

Now, using that
∫

Ω u(t) dx = 0 and then adding (3.36) and (3.37), and considering the
equivalent norms (2.8) and (2.9), we deduce that

d

dt
∥u∥2 + 1

2
∥u∥2

H1 + 1
2

∥v∥2
H2 ≤ C

(
∥u1∥4(p−1)

L4(p−1) + ∥u2∥4(p−1)
L4(p−1)

)
∥u∥2

+(K2
1 + K2

2 )∥f∥2
Lq(ω)∥v∥2

H2

+C
(
∥u1∥4

L4 + ∥∇u1∥4
L4 + ∥∇v2∥2

L∞

)
∥u∥2,

which implies that

d

dt
∥u∥2 + 1

2
∥u∥2

H1 +
(

1 − 2(K2
1 + K2

2 )∥f∥2
Lq(ω)

2

)
∥v∥2

H2

≤ C
(
∥u1∥4(p−1)

L4(p−1) + ∥u2∥4(p−1)
L4(p−1)

)
∥u∥2

+C
(
∥u1∥4

L4 + ∥∇u1∥4
L4 + ∥∇v2∥2

L∞

)
∥u∥2. (3.38)
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Since p ∈ (1, 2), we deduce that 1
2[p(K2

1 +K2
2 )]1/2 < 1

[2(K2
1 +K2

2 )]1/2 ; thus, if ∥f∥Lq(ω) is small
enough such that ∥f∥Lq(ω) < 1

2[p(K2
1 +K2

2 )]1/2 ; from (2.10) we deduce that 1 − 2(K2
1 +

K2
2 )∥f∥2

Lq(ω) > 0. Therefore, considering that (u1, ∇u1) ∈ L4(Q)×L4(Q), ∇v2 ∈ L2(L∞(Ω)),
(u1, u2) ∈ L4(p−1)(Q) × L4(p−1)(Q) for p ∈ (1, 2) and u0 = 0; then, from (3.38) and Gron-
wall lemma we deduce that u = v = 0. Consequently, u1 = u2 and v1 = v2, and the
uniqueness follows.

Remark 3.4. If the initial data u0 belongs to W 3/2,4(Ω) we can obtain more regularity
for (u, v) and conclude that (u, v) does not blow-up at finite time. Indeed, arguing as
in the proof of Theorem 2.7 we can obtain that (u, v) ∈ Su × Sv. Moreover, since u ∈
L∞(H1(Ω)) ∩ L2(H2(Ω)); hence, in particular, up ∈ L∞(Lq(Ω)), for 2 < q < ∞. Thus,
using that f ∈ Lq(ω) from (3.20) we have

∥v∥W 2,q ≤ C

1 − K3∥f∥Lq(ω)
∥up∥Lq . (3.39)

Then, considering (2.10), from (3.39) we deduce that

∥v∥L∞(W 2,q) ≤ C(m0, T, ∥f∥Lq(ω), β, ∥u0∥H1)∥u∥L∞(Lq)

≤ C.

Consequently, v ∈ L∞(W 2,q(Ω)) ↪→ L∞(Q).
Now, using again that u ∈ L∞(H1(Ω)) ∩ L2(H2(Ω)), in particular, u ∈ L

4q
4+q (Q), for

2 < q < ∞. Then, taking into account that ∇u ∈ L∞(L2(Ω)) ∩ L2(H1(Ω)) ↪→ L4(Q),
∇v ∈ L∞(W 1,q(Ω)) ↪→ L∞(Q) and ∆v ∈ L∞(Lq(Ω)), we have ∇ · (u∇v) = u∆v + ∇u ·
∇v ∈ L4(Q). Therefore, applying Theorem 2.4 to (1.2)1 (for s = 4) we deduce that
u ∈ L∞(W 3/2,4(Ω)) ∩ L4(W 2,4(Ω)) and ∂tu ∈ L4(Q). Then, from Sobolev embeddings we
have W 3/2,4(Ω) ↪→ L∞(Ω). Consequently, u ∈ L∞(Q) and we deduce that the pair (u, v)
does not blow-up at finite time.

Remark 3.5. The case p = 2 is not clear. Indeed, integrating (3.10)2 in space; then mul-
tiplying the respective equality by

∫
Ω v dx and applying the Hölder and Young inequalities,

we can obtain
1
2

(∫
Ω

v dx

)2
≤ εα2∥u∥4 + C

ε

(∫
Ω

v dx

)2
+ α2K2

2∥f∥2
Lq(ω)∥v∥2

H2 , (3.40)

where ε > 0 is arbitrary and K2 := |Ω|
1
2 − 1

q .
Now, from the Gagliardo-Nirenberg inequality (see Lemma 2.3), using that ∥u∥L1 = m0

and considering ε small enough we have

εα2∥u∥4 ≤ ε∥∇u∥2∥u∥2
L1 + εC∥u∥4

L1 ≤ α

2
∥∇u∥2 + C. (3.41)

Thus, arguing as in (3.18) and taking into account (3.40) and (3.41) we can deduce the
following estimate

α

2
d

dt
∥u∥2 +

(
1 − 8(K2

1 + K2
2 )∥f∥2

Lq(w)
8

)
∥v∥2

H2 ≤ C + C

ε

(∫
Ω

v dx

)2
.

The main difficulty here is to control the integral C
ε (
∫

Ω v dx)2, since in (3.40) was consid-
ered ε small enough, which makes C

ε very large and difficult to control. For this reason,
the case that considers the quadratic chemical signal production term u2 (p = 2) is not
clear.
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