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Abstract

In this paper an almost paracomplex structures on the coframe bundle with Cheeger-
Gromoll metric are defined and later we obtained the integrability conditions of these
structures. Also we proved that para-Norden structures which exists on coframe bundle
are non-Kahler-Norden.
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1. Introduction

Almost paracomplex and para-Hermitian structures on a differentiable manifold were
initially introduced by Rashevskii in 1948 [14] and later by Libermann in 1952 [10]. These
type structures have been studied and used by many mathematicians and physicists, for
example Kaneyuki-Kozai [9] and Gadea-Anilibia [6] (see [4] for a wide range of references).
In [1] Bejan has extended these notions to an arbitrary vector bundles and call them para-
complex and para-Hermitian vector bundles. The book by Vishnevskii, Shirokov and
Shurygin [21] is a monography in which the authors study differential geometry on mani-
folds over general algebras. In particular, in this book the authors studied the paracomplex
structures with additional properties, that is a para-Kahler manifolds. Many authors con-
sidered almost complex structures on the tangent, cotangent and tensor bundles (see, for
example [5], [13], [15]),

The coframe bundle is widely used not only in mathematics, but also in theoretical
physics in the sense that gravity can be mathematically defined as a coframe bundle
Cy = (GL(d, R), M), where M is a d—dimensional spacetime manifold ([2], [12], [20]).
The present paper is devoted to the study of paracomplex structure on the coframe bundle
with the Cheeger-Gromoll metric. In 2 we briefly describe the definitions and results that
a needed later, after which the Cheeger-Gromoll metric ““g on coframe bundle F*(M)
introduced in 3. In 4 we define an almost paracomplex structures ““F,, o = 1,...,n, on
F*(M). The integrability conditions of ““F,,a = 1, ...,n are investigated in 5. In 6 we
calculate the covariant derivatives of paracomplex structures “CF,,a =1, ..., n.
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2. Peliminaries

Let F*(M) be the linear coframe bundle of n—dimensional smooth manifold M. We
denote by 7 the natural projection of F*(M) to M defined by 7(x,u*) = x, where © € M
and u* is a basis (coframe) for the cotangent space 1M of M at x (see, [16]). If
(U;2t,22,...,2™) is a system of local coordinates in M, then a coframe u* = (X?) =
(X1, X2, ..., X") for Tf M can be expressed uniquely in the form X® = X&(dz*),. There-
fore,

(=Y U); 2t . 2 X, X
is a system of local coordinates in F*(M), that is F*(M) is a C°°—manifold of dimension
n+n?. We note that indices 7, 5, k, ..., a, 3,7, ... have range in {1, 2, ..., n}, indices 4, B, C, ...
have range in {1,...,n,n+1,...,n+n?}. We put i, = o -n + i. Obviously that indices
iy J8s Ky, ... have range in {n+1,n+ 2, ...,n+n2}. The set of all tensor fields of type
(p,q) on M we denote by I7(M). Summation over repeated indices is always implied.

Let X = Xiaii and w = w;dz’ be the local expressions in U of X € $3(M) and

w € SY(M). Then the horizontal lift X of X and the a—th vertical lift Yow of w to
F*(M) are given, in the induced coordinates (27, X ]ﬁ ) by

UX =X19; + X[ T X0, (2.1)
Vay = 6g‘wj8j5, (2.2)

where Ffj are the coefficients of the Levi-Civita connections V of g and o = 1,2, ..., n (for
more details see [16]). In U C M, we put

Xy = ;ﬂ, 00 = da' i =1,2,...,n.
Taking into account of (2.1) and (2.2), we see that
Hy _p. — !
Xy =Di= < Xﬁlf?} ) , (2.3)
Vagl) — p, — ( soni ) (2.4)
B~

with respect to the natural frame {aj,ajﬂ}. This n + n? vector fields are linearly inde-

pendent and generate, respectively the horizontal distribution of linear connection V and
the vertical distribution of coframe bundle F*(M). The set {D;} = {D;, D;,} is called
the frame adapted to linear connection V. From (2.1)-(2.4) it follows that

Hy — ( )gj ) (2.5)

Vo — ( 552% ) (2.6)

with respect to the adapted frame {D;} . The bracket operation of vertical and horizontal
vector fields is given by the formulas

[Vew,V80] = 0,
(X, V0] = "2(V x0),

n (2.7)
X, 7y =X, Y]+ 3 V(X7 0 R(X,Y))
o=1
for all X,Y € (M) and w, 8 € SV(M), where R is the Riemanian curvature of g defined
by
R(X,Y)=[Vx,Vy] = Vixy)
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If f is a differentiable function on M, V' f = f o w denotes its canonical vertical lift to the
coframe bundle F*(M).

3. The Cheeger-Gromoll metric on the coframe bundle

Let (M, g) be a Riemannian manifold. A Riemannian metric § on the coframe bundle
F*(M) is said to be natural with respect to g on M if

g(HXa HY) = g(X7Y)a
g("X,"26) =0

for all vector fields X, Y € S§(M) and 1-form 6 € IY(M). A natural metric § is constructed
in such a way that the horizontal and vertical distributions are orthogonal. The well-known

example of natural metric is Sasaki metric g (or diagonal lift of g) introduced in [18].
The Sasaki metric °¢ in coframe bundle F*(M) is defined by

Sg(HX’ HY) = g(X, Y)’
Sg(HX7 Vﬁg) =0,
Sg(Y2w,Y50) = 0597 (w,0)

for all X,Y € S{(M) and w, 8 € SV (M).

Another well-known natural Riemannian metric ““g on tangent bundle T'(M) was con-
sidered by Musso and Tricerri [11] who inspired by the paper [3] of Cheeger and Gromoll
called it the Cheeger-Gromoll metric. The Levi-Civita connection of ““g and its Riemann-
ian curvature tensor were studied by Sekizawa [19]. The geometries of Cheeger-Gromoll
type metrics on tangent and cotangent bundles has been intensively studied by many
geometers (see, for example [7]).

The Cheeger-Gromoll metric ““g is a positive defined metric on coframe bundle F* (M)
which is described in terms of lifted vector fields as follows.

Definition 3.1. Let g be a Riemannian metric on a manifold M. Then a Cheeger-Gromoll
metric is a Riemannian metric ““g on the coframe bundle F*(M) such that

CGQ(HX7 HY) = g(X, Y)’
“Cg("X,V50) =0, 21
CCy(Vew,Y20) =0, a B, 3.)

“Cg(Vow,"0) = 1z (g7 (w, 0) + g7 (w, XN)g71 (6, X))

for all X,Y € S4(M) and w, 6 € SY(M), where r2 = |X|* = g7} (X*, X©).

The Levi-Civita connection ““V of Cheeger-Gromoll metric ©“g satisfies the following
relations .

i) OV Y =H(VxY)+ 5 3 V(X7 0 R(X,Y)),

o=1

i) YOVaP0="E(Vx0) + %H(X’B(g_l o R( ,X)0)), (3.2)
8

iii) ““Vvo Y = =M (X(g7" o R(,Y))),
i) GV, V20 = 0 for a # 3,
CGvVawVag — —ﬁ(CGg(V“w,’Y(S)V“G + CGg(VO‘Q,*M)Vaw)

+1ha OG g (Vagy Vag)ys — LOGg(Vag 48)CCg(Voaw, v8)7d

for all X,Y € (M), w,0 € SV(M), where & = gL ow, R( , X))@ € SH(M), ho = 1472,
R and «d denotes respectively the Riemanniian curvature of g and the canonical vertical
vector field on F*(M) with local expression v = X7 D;,_ .
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Using (3.2) it is easy to prove that the components ““T'¥; of Levi-Civita connection

CGV for different indices are then found to be
CG1k k CG
I I‘ ng ik
CGTrk B pk jm CGpky _ Y1
Fzm %X R/ FZ]"’B —0,1%,,

copk -~ ﬂXa R jm CGF CGFicajﬁ -0, (3.3)

CGI‘MM =0 for a # 3,

COTY = — L (X91696] + XI5961)+

laja
1thg ij v o 1 voiyajy?
+ hiag Xk+th XX,
where X = g5 X,

4. Para-Norden structures on the coframe bundle

Let (M, g) be an n—dimensional Riemannian manifold. An almost paracomplex mani-
fold is an almost product manifold (M, ¢), * = id, ¢ # id, such that the two eigenbundles
TTM and T~ M associated to the two eigenvalues +1 and —1 of ¢, respectively. The di-
mension of almost paracomplex manifold is even. Let (Mag, ¢) be an almost paracomplex
manifold. A Riemannian metric g is a para-Norden metric (or B—metric) if

(X, pY) = g(X,Y),

or
9(eX,Y) = g(X, 9Y)

for any X,Y € 3(May). We say that the triple (Mag, ¢, g) is an almost paracomplex
Norden manifold ([8], [17], [22]) if (Mag, ) is an almost paracomplex manifold with a
para-Norden metric g. If ¢ is integrable, then (Mayg, ¢, g) is called paracomplex Norden
manifold.

Let (F*(M),“%g) be the linear coframe bundle with the Cheeger-Gromoll metric ““g.
Define a tensor field ““F,, of type (1,1) on F*(M) for each a = 1,2,...,n, by

1
CG H V o V. «
Fo("X)=+vVh oX — —— XY X)Ve X ,
Vhe+1 (X)
CGFQ(VBw):O, B # «a,
1 1 -

cG \% H ~ -1 e} Hvyva

F,("rw) = ( 0+ — XY w'X > 4.1

(o) = <= e (X0) (4.1

for any X € S$(M) and w € SY(M), where X = goX € S M), & = g Low € I§(M) and
the horizontal lifts are considered with respect to the Levi-Civita connection of g. Each
CGF, satisfies the condition

COFR=1
Indeed, by virtue of (4.1), we have

C(;lqz(}{)() CT;]? ((7(?}7 (f{}(' Cz;lp \/ﬁgivaix’

1
I XVaXa /h CGF VQX
Vho +1 (
1 1
-~ x« ;X'(j(;lqj ‘Qﬂ)(a _ ]la ( f{)(
Vha 10 GRS = Vi | 77
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1 -1 v\H v
b Nxe X)X -
Vi ) )
L o
Vhe+1 Vhe +1
L e Ly 1 1
Vhe +1

1

H
D (F———
Vha +1

1 1
—X
Vhe +1

gfl(Xa, Xa)HXa) — HX + gfl(Xa,X

_ 1 Vhe —1
Vha +1 Vhg
CGFQQ(VQW) _ CGFa(CGFa(Vaw)) — CGFa

1
1Y
1 —1 CGp (Hv
+ Xavw FCM Xa:
ViaWhe 7 RO
1
_7XQ~VD¢XO¢
=@ )+
v _1(Xo‘w)#
Vha(Wha + 17 ) e+ 1
1

=Y — —— X&) X+

1
Vho(Vhe + 1) Vha + 17
Vhe — 1

-1 @ Va ya Ve
_ NVl o lxa )Vexe = Vag,
Vhaha + 1?0
for any X € S3(M) and w € $Y(M), which implies that ““F2 = I for each a = 1,2, ..., n.
The following theorem holds.

l(Xa’w)HXa) —

Vi (Ve to

1
g—l(Xa’w)\/EVaXa

Vha(Vhe +1)
g—l(Xa’on)VaXa

fl(onj w)VaXa

Theorem 4.1. Let (M, g) be a Riemannian manifold and F*(M) be its linear coframe
bundle with Cheeger-Gromoll metric ©“ g and the almost paracomplex structures ““F,, o =
1,2,...,n, defined by (11). Then the triple (F*(M),“%g,CCF,) for each a = 1,2, ...,n, is
an almost paracomplex Norden manifold.

Proof. We put

AX,Y) = “Cg(CCRX,Y) = (X, CRY)
for any X,Y € S§(F*(M)). Then direct calculations using (2.5), (2.6), (3.1) and (4.1)
A(HX, Hy) — CGg(CGFaHX’ Hy) _ CGg(HX, CGFQHY)

1 -
WXO((X)VQXO(,H)/) _ CGQ(HX, /haVaY

e KOV = V(X 1Y)

1 a « ¥,
_WX (X)) x> HY) — /1“9 X, YY)

1
+
Vhe +1
A(Yow, 1Y) = COg(CCF, Vou, Hy) - OOy (Vaw, CFF, )

1 -
H ~ -1 o H oy H
—_ X X Y
(1 + g (X" @)X, 1Y )

X))y x, Ve x*) =0,

=

- (7
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w, Vho Y — 7XQ(Y),w)V“Xa)

f +1
- \/%CGg(H@ Ty) + m—ﬁmg‘l(X " w) (X 1Y)

~ 1
+Vha"Cg(w, oY) 4+ = XU (V) g (e, X
«
1

1
f(fﬂ)

:\/—}Tag(&),Y)—i-
\/> —g ' (w, Y) \ﬁ —g~ (@, X%)g HXY)
1 1

o _ N
o) (hag (@, X%) + 79 Y(x ,w)(ha—l))
1 1 1

= -
(x/ha(\/ha +1)  Vha  ha(vVha+1)
ha -1 a - «
Pl ) X =0

A(HX, Vag) — CGg(CGFaHX’ Vae) o CGQ(HX, CGFaVae)

— —(CGQ(HX, CGFaVae) o CGQ(CGFQHX, Vae)) — —(CGQ(CGFQVO‘H, HX)
CGg(VQGCGFaHX)) — 07
A(Vo‘ Va 9) caq (CGF(XVO‘W, Vae) _ CGQ(VD‘UJ, CGFOCVQ 9)

g (X w)g(X,Y)

_|_

—

(e

1 — a v
+7fh—+19 1(X aw)HX )avae)
1
Hp
0 -
( 1t

:CGQ(m

—Cg(Yow

[u—y

fl(Xa7 H)HXQ))

I ca

=T g( —\/E(\/E+I)Q_I(Xaaw)CGQ(HXa’Vae)
I ca

0 1) 0 0 0) g TR = 0

So ©€Cg is pure with respect to ““F,, for each 1,2, ...,n and Theorem 2 is proved. O

H ~ Vag)

Va Hé)

5. Integrability conditions

Now we shall study the integrability of ““F,,a = 1,2,...,n. As we know, the inte-

grability of “CF, for each a = 1,2, ...,n, is equivalent to the vanishing of the Nijenhuis
tensor. The Nijenhuis tensor of ““F,, is given by

Neap, (X,Y) = [(“F,X,““F,Y] - ““F,[°°F,X,Y] - ““F,[X,““F,Y] + [X,Y],
where X,Y € Q§(F*(M)). It is easy to check that the values Necp, (X,%6) and
Neocp, (Vﬁw V 9) of the Nijenhuis tensor Nccp can be expressed in terms of the values
Neap, (FX,HY) of this tensor, where X,Y € I§(M),w, 0 € SY(M). Indeed, by using of
(2.5), (2.6) and (4.1), we obtain

NCGF (HX V-Ye) [CGF HX CGF V»y@] CGFOC[CGFO(HXy VW@]
_CGFOC[HX’ CGFaV,ye] + [HX, V-Ye}
— [CGFOCHX’ CGFQ((sgCGFaHW)]
—CGFQ[CGFQHX, CGFa(égCGFaHW)
—CGFa [HX7 CGFa(égCGFaHW)]
+7X, 519 F MW = 6 [C R X, MW
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*5ZCGFQ[CGFQHX, Hw] o 5gCGFa[HX’ Hw]
+52 [ X, CCF W) = —8) Nea, (X, HW),

where
. 1
Y1 = 61 FTW = 60 (Vha W — ———— X (W)Yo X
& ol NS (W) )
. 1
= Vo (VhaW — ——— XYW XY, W € SH(M).
a ( \/E"_ 1 ( ) ) ‘yO( )

Similarly, we get
Neap, (YPw,"70) = [C9F, V2w, O F,V0] — CCF,[CCF, w., V]
_OCR Ve, CCR, V0] + [Vew, V1]
— [CGFQ((SgCGFaHZ)., CGFa(égCGFaHW)]
—CGFa [CGFa(égCGFaHZ)', 5gCGFaHW]
_CCR [§8CC R, H 7 CC R (516G F H )
HORCOF 2,53 R W = a3 2, W]
—8880°“F, M Z, OO F A W]~
_555306‘}7& [CGFQHZ, HW]
+355)[CCF M 2, CO W]
= 8503 Neay, (" 2,1W),

where V8w = 08CCF, "7, 7 € S§(M).
Therefore, we have

Lemma 5.1. An almost paracomplex structure “CF, on (F*(M),“%g) for any o =
1,2,...,n is integrable if and only if Ncha(HX,HY) =0 for all X,Y € S{(M).
Let us consider
Neoop, (BX,HY) = [C9F 2 X, CCF Y] - OCF,[CCF X HY)

—CGFQ[HX, CGFaHy] + [HX, Hy]
Before calculating Ncc g, (7 X, HY) it is necessary to prove the following.
Lemma 5.2. Let “CV be the Levi-Civita connection of the Cheeger-Gromoll metric ©Cg
and f: R — R any smooth function. Then

TX(f(r2)) =0, (5.1)

Vew(f(rk)) =205 (r2)g H(w, X), (5.2)
TX(g71(X%,0)) =g~ (X Vxb), (5.3)
Yaw(g™ (0, X7)) = 6597 (w, 0), (5.4)
OOV Vo X = 2;H(Xa(g—l oR( ,X)X?)), (5.5)
CvaawVaXa — iVaw + 1 1(w’ Xo‘)fyd (5.6)

ha e’
for all X € S§(M) and w,0 € I§(M), where r2 = g71(X*, XY) = hy — 1.
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Proof. (i) Direct calculations using (2.1) give
HX(f0r2)) =X (flg™H (X XY) = (X' D) (f(g~ (X, X))
= X'(0i + X7T3,0,,) (f(g~ (X%, X))
= X0(f(g (X7, X))
FXTXITT0, (Flgm (X0, X))
— X f(r2)(Big™) (XS XE)
+f'(r a)XZXUFra ("X XT)
= X'f'(r2)(-Tig" — Tig™) X5 X
() XTXIT] g™ (5560, XS + 03P X))
= f'(r2)X X7 X2 (~Thg" —Tig™)
+f () X X7 X2 (T g™ —Thg™) = 0.
(ii) Calculations like above using (2.2) give
w(f(ra)) = wnd; f'(r2)d;, (9 X XS)
= w8, ['(r2)g"* (806, X + 050X X
= 2wibn f'(ra)g " X = 200 f'(rd)g ™ (w, X).
(iii) Using (2.5) we obtain
HX(g71(X%,0)) = (X'Di)(g~ 1 (X*,0)) = X*(9;
+XTT7,0,,) (97 (X, 0)) = X'0i(g" X [0)
X XIT,0p, (g™ X20s) = X' (9;9"°) X205
+XTg X005 + X XOT] g2 60,0,
— X (T — T3g™)X20, + X' X200,
+XXOT), g0, = —X'Th g™ X0,
—X'T5g" X0, + X'g" X200, + X'TT, g™ 0, X"
= X'g" X200, — —X'T5g" X0, = X2 X (0;0,
~T0,00)9" = XX (Vx0)sg™ = g~ (X*, Vx0).
(iv) Direct calculations using (2.6) give
Vaw(g™ (0, X7)) = wi620;, (970, XT) = w;83 970,050
= ws039" "0, = 5gg_1(w,9).
(v) By using of (3.2) we get
COVnx "X = OV xip,(05X00;,) = X'05D;(X)0,
+X05X$CCV p, Dy, = X'65(0;
+XIT,0p, ) (X205, + X165 XTE D

1JB
= X'6§ X717 60680;, + X'6§XFCCTY, Dy

+X 5gXaCGr%DkW = 85 X'T, X2,
k ]m
+%65X2X°‘X°‘R Dy,

—X'086) X 0T X2 Dy,

1 o gl
= 5 (Xg o R X)K"),
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(vi) Direct calculations using (3.2) and (3.3) give
€OV, Vo X" = OOV, (X0 D)

= 6§wi““Vp,, (65 X;Dj,)
= 0§wid59i, (X5 Dj, + 0fwide X7 9V p, D,
= 0wi0y0565D;, + %wlaaxaccrfﬁ i Dk

+05wid2 XPCOT, Dy, = 85wiD;
+wiX]qCGFiajaDk =Vay

-
1 vl so s vaj sa st
o (Keas8] o+ KeIo%})

. 1 -
90X+ g XXX Dy,

+wiX;“(f

_l’_

«

Vaw _ FéaXa 71(Xaaw)DkW

1 _
—Edfy‘wkg l(xe, X*) Dy, +

Ltha
h2

Hw, X*)g (XY X)X Dy, = Vow

(w, X*)X] Dy,
1 _
+h729
ha =1y,
ha
9w, XN X0

,1(Xa,w)VaXa o
heg — 1

e, X (o — VX

1, 1y ho—1
= X —Va
hag (w, X*)v6 + I w+ e
—1 e 1 1 —1 «
(W, X¥)(hg — 1)y0 = h— ‘w4 79 (w, X¥)v6.

g (w, XY)v6

+h739
This completes the proof of the lemma.
Direct calculations using (2.7), (3.1) and (4.1) give

Hx By =H[X Y] +Z 70 R(X,Y)),

CGF [CGF HX HY CGF \/7VQX_ XO‘(X)V"XO‘,HY]

\/ha +1
= OCF,(Vha[" X, Y] - g(X*, X) [V x>, 1y

1
+\/ha +1

1 . 1
=g (X7, X)) (Vy X 4 =
Ve 19 ) (VrXE) \/ +1
cG Ve
= OO, (—vVha"*(Vy X)
Y 1 +1

=CCF,(-9CF(Vy X)) = -““F2H(VyX) = -H(VyX),
CGFQ[HX, CGFQHY] — —CGFOC[CGFO(HY, HX] — H(VXY)

1
Vhe +1
HY(Q(XaaX))VaXa = CGFa(_ V hava(vYX)

Ty (9(X°, X)) X

“HVy X, X9)Vex)
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[CGF HX CGF HY \/EVO‘X— = +1Xa(X)VaXa’\/EVaY/
V (o3

X)X = [Vha"* X, Vho' Y]

1
_7\/+1

XO‘(Y)VO‘XO‘] + [_#XQ(X)VD‘X&’ \/EVQY/]

/ VD‘X
’ Vho +1

F+1

1 1
. Xoy VO‘Xa
+ Vha +1 Vhe +1 ¥) ]
= VAV R (Vha) ¥ = VBV (V) X
1 -1 o\ Vi Va v
—-— XYY XY Vhe e X
[ \/EWng ( ) ) 9 ]
1

Vhao +17
2071 (X", X)"Y — Vha -

XQ(X)VO‘XQ, o

+[_ _1(XQ,X)VQXQ,\/EV“Y/]

2g7H( X, Y) X

\ﬁ

1 fl(on’f/)VaXa( /ha>VaX—

1Y
Vhe
e+ 17

1 - a vy o %
_WQ HX X)X (Vha) Y

__Vha
Vha+17

“XO )X +

_ Vha
Ve +17

+ “Hxe y)Yexe, Ve X]

_I(XQ,X)[V(’XQ, Va?] — g_l(Xa,X)VQY/

1
Via(Wha +1)?

1
VhaWha +1)?

_1(Xo¢’X)Va? _ (g—l (Xa7)~()va17

XY (X X)X
,1(Xa7 y)VQX _

Vha
g
Vhe +1

-9~ (X, Y)V“X) (1 — : o Vha )

fl(Xaj X)gfl(Xa’ XQ)VQY

\/E(\/ZZJHD Vha +1

Therefore, we have

2
"o

Neap, (X, 1Y) =Y (g7 (X DY =™ (X" 1X) (1 = S

+ \/hihjrl> +1(Vy X = VxY) + 7 [X.Y]
_|_ZVU To0R(X,Y)) = zn:V”(XUOR(XaY))
o=1
+mva (97 (X XY — g 1 (X, V)X).

Thus the following theorem holds.
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Theorem 5.3. An almost paracomplex structure ““F, on (F*(M),¢%

g) for each o =
1,2,...,n is integrable if and only if

n

=> Y (X70oR(X,Y))
o=1
1+ ha‘|'ha ~ — « a YV
Vet r 9 XD =g )

for all X,Y € S(M).

6. Non-existence of Kahler type structures

Let (Mag, ¢, g) be an almost paracomplex Norden manifold. If Vi = 0, where V is the
Levi-Civita connection of g, then we say that (Mag, ¢, g) is a para-Kahler-Norden manifold
[16].

We now calculate the covariant derivative of para-Norden structures “CF,,a = 1,2

Direct calculations using (3.2) and (4.1)-(5.6) give

i

(CGVHXCGFQ)( Y) CGV (CGFQHY) . CGFa(CGVHXHY>

Oy (VT — \/iﬂxwywcvxa)
OGP (H(VxY) + = Z (X7 0 R(X,Y))
o=1
= TX(Vh)Y + Vho OV VoY
_HX(\/F:HXO((Y))VQXQ _ \/F:HXO‘(Y)CGVHXVO‘XQ
_CGp (H(VxY)) - = Z “CF,V7 (X7 0 R(X,Y))
o=1

1 a( —1
:2\/EH(X (97 o [R( ,X),Y)—R(X,Y)])

1 of, — «@
72m(m+1)[H(X (g IOR( ’X)X )
+971(X? X0 R(X,Y))X?];

(CGVHXCGFQ)(VO‘Q)) _ CGVHX(CGFaVaw) _ C’GFa<CGvHXVaw)

1 1
— CGVHX(_ H

T O Uit X)X
~COF (" (Vxw) + 5 (X (g7 o R, X))

+AX (-



Arif Salimov, Habil Fattayev

314
+\/%H(91(VXOJ)) + WQI(XQ, VXW)HXa
L e e Rt 30a)
= (3 O 0 ROGD) + ¥ (g(REE, X)2)
o 5=1
_; -1 O‘wnv" 70 X
Vha a0 (X0e) 2, (X7 e R
g X RUE, X2 X

i) (CCVva,C9F,)(7Y) =

N 1
CcG V.
=09y, (Vha"Y —
verw Vha +1

1
_CG
F,
(2h

- ~ 1
Ve \% cG Ve Ve
— Va ha aY ha ww aY_ @
w(Vha) + Vv, w(\/E—i-l

1

Vho +1

ow(X(Y))

(VR gt o R

2hq
B 1
Vhe +1

CGVVaw (CGFaHy)

_ CGFa(CGVVawHY)

Xa(v)'x)

(X9 o R( YD)

JX(Y)Vexe

1
X - X*(Y)9CV,,,

Vho+1

Va X

,Y)@)))

XUXg "o R( ,Y)®))

1
VA

1+ Vha

2h2(\ﬁ+ 1)) g

g Hw, V)V x

+ (g -

Vha +1
Y Xa _1(W,Xa)VaXa

+<1+W 1

e~ Vi VT D

1
" 2Vhe

(Vv COF)(6) =

" (g(R(X2,Y )w)) —

CGvVaw(CGFaVae) _

Hp

)
)

v a+1

XU(R(X*,Y)w);

CGFa (CGVVQWVQQ)

— Cvaaw(r

CcG
—CCR,
(— -

9("w,

ha
1

= hovi?

Y20)y5 —

Lo, Xy +

—1 o H v«
! OO

1
—(9Cg(Yow,~0)"*0 + “C“g(V0,~5)"w)

RRCEPRA ca
I 9("20,~6) % g("

“w,7y0)70)

1 — Qo
T ! @otX
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ho — Vo +1
havTia(vV/ha + 1)

1+ he
-

[0}

+ g Hw, XY)g MO, X)X

(g7 (w,0) + g Hw, X*)g~1(0, X))V X

1

+mH(R(Xa,§)w).

From iii) and iv) it follows that ““VECF,, # 0 even for the locally flat manifold M. Thus
we have

Theorem 6.1. Let (M, g) be a Riemannian manifold and let F*(M) be its coframe bundle
equipped with the Cheeger-Gromoll metric “Cg and the paracomplex structures “¢F,, a =

L2,

...,n defined by (11). Then the triple (F*(M),“CF,, “Cg) for each a = 1,2,...,n is

never a para-Kahler-Norden manifold.

1]
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