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Abstract. At this paper, we describe Gaussian Oresme numbers taking into account the Oresme numbers. Fur-
thermore, we investigate their some basic characteristic properties such as Binet formula and Cassini identity, etc.
Moreover, we define quaternions with Gaussian Oresme coefficients and obtain their some spectacular properties.
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1. Introduction

1.1. A Brief Review on Quaternions. The set of real quaternions can be represented as

H = {q = q0 + q1i + q2 j + q3k : q0, q1, q2, q3 ∈ R}

and it is a 4-dimensional vector space on R, for details see [9,27,32]. A general from of a real quaternion is represented
as below:

q =

3∑
m=0

kmem = k0e0 + k1e1 + k2e2 + k3e3,

where k0, k1, k2, and k3 are real coefficients and e0, e1, e2, and e3 are quaternion units, that satisfies

e2
0 = 1, e0ei = eie0 = ei, i = 1, 2, 3, e2

1 = e2
2 = e2

3 = −1.

The multiplication of quaternion units is listed in Table 1:

· 1 e1 e2 e3

1 1 e1 e2 e3
e1 e1 −1 e3 −e2
e2 e2 −e3 −1 e1
e3 e3 e2 −e1 −1

Table 1. The multiplication of the quaternion units

For any quaternions p = p0 + p1i + p2 j + p3k and q = q0 + q1i + q2 j + q3k, the addition operation is defined as
follows:

p + q = S (p+q) + V(p+q),
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A. Ertaş, F. Yılmaz, Turk. J. Math. Comput. Sci., 15(1)(2023), 192–202 193

the vector product is defined as follows:

p × q = (p2q3 − p3q2)i + (p3q1 − p1q3) j + (p1q2 − p2q1)k,

and moreover, the quaternion product is defined as follows:

pq = S pS q − 〈Vp,Vq〉 + S qVq + S qVp + Vp × Vq,

where ”〈 , 〉” denotes the inner product and ”×” denotes the vector product in R3. In this definition S q and Vq are the
scalar part and vector parts, respectively. For λ ∈ R, the scalar product is defined as

λq = (λq0) + (λq1)i + (λq2) j + (λq3)k.

The conjugate of q is given by
q̄ = S q − Vq.

Also, the norm of q is defined as below:

‖q‖ =
√

qq̄ =

√
q2

0 + q2
1 + q2

2 + q2
3.

The inverse of a real quaternion q is

q−1 =
q̄
‖q‖

, ‖q‖ , 0.

1.2. On the Oresme Numbers. The Oresme numbers are defined by the following recurrence relation:

On = On−1 −
1
4

On−2

for n ≥ 2 with O0 = 0,O1 = 1
2 . These numbers are obtained as a special case of Horadam numbers. Horadam numbers

are defined as Wn = Wn(W0,W1; p, q), for n ≥ 0:

Wn+2 = pWn+1 − qWn,

where p, q, n are integers and W0 = a, W1 = b. It is a general form of some famous number sequences, please
see e.g. [2, 5–8, 13–18, 21, 22, 28–30]. Moreover the author, in [16], presents some identities for Oresme numbers as
follows:

On =
n
2n (Binet Formula),

On+1On−1 − O2
n = −

1
22n (Cassini Formula),

On+3 =
3
4

On+1 −
1
4

On,

On+3 =
3
4

On+2 −
1

16
On,

n∑
j=0

O j = 4
(

1
2
− On+2

)
.

In [3], the authors defined the quaternions with the Oresme coefficients as below:

QOn = One0 + On+1e1 + On+2e2 + On+3e3.

In Table 2, we have listed some quaternions with Oresme coefficients.

n −1 0 1 2
QOn −2 + 1

2 e2 + 2
4 e3

1
2 e1 + 2

4 e2 + 3
8 e3

1
2 + 2

4 e1 + 3
8 e2 + 4

16 e3
2
4 + 3

8 e1 + 4
16 e2 + 5

32 e3
Table 2. Some Oresme Quaternions

In [12], Halici investigated the complex Fibonacci quaternions and give the generating function and Binet formula
for these quaternions. In [4], Arslan introduced the Gaussian Pell quaternion and Gaussian Pell-Lucas quaternion.
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Then, the author obtained some interesting identities of them. Any complex quaternion λ is defined in the following
form:

λ = λ0e0 + λ1e1 + λ2e2 + λ3e3

where each coefficient λi is a complex number and e0, e1, e2, e3 are quaternionic units. The set of all complex quater-
nions is denoted by Hc. The complex quaternion λ can be written as

λ = k + ik′, i2 = −1,

where k and k′ are real quaternions.
In literature, there are many amazing papers that are interested in Oresme numbers, Gaussian-type numbers, Ho-

radam sequence, quaternions and their spectacular properties. For example; in [26], the authors studied Oresme hybrid
numbers and hybrationals based on the known Oresme sequence and gave some properties of Oresme hybrid numbers.
In [10], the authors defined the Horadam hybrid quaternions and gave some of their properties. Moreover, they in-
vestigated the relations between the Fibonacci hybrid quaternions and the Lucas hybrid quaternions which connected
the Fibonacci quaternions and Lucas quaternions. In [11], the authors considered determinants for some families of
Toeplitz-Hessenberg matrices whose entries are Oresme numbers. In particular, they established a connection between
the Oresme and the Fibonacci and Pell sequences via Toeplitz-Hessenberg determinants. In [24], the authors defined
the generalization of the matrix form of the Oresme sequence, extending it to the field of integers. In [23], using
the Leonardo Pisano numbers and hybrid numbers, the authors investigated Leonardo Pisano polynomials and hybri-
nomials. In [1], the authors provided De Moivre’s formula for the light-like Pauli quaternions. In [31], Yılmaz and
Özkan took into account the generalized Gaussian Fibonacci numbers. In [20], Yılmaz and Karaca constructed new
number systems, called the harmonic complex Fibonacci sequences (HCF) and the harmonic hybrid Fibonacci (HHF)
sequences. Moreover, they examined some algebraic properties such as Binet-like-formula, partial sums related to
these sequences. In [19], the authors present, in a unified manner, results which are valid on both split quaternions
with quaternion coefficients and quaternions with dual coefficients, simultaneously, calling the attention to the main
differences between these two quaternions.

At this paper, initially, we consider Gaussian Oresme numbers and examine some spectacular properties of them.
Then, we define quaternions with Gaussian Oresme coefficients and obtain some of their characteristic properties.

2. Gaussian Oresme Numbers

In [25], the authors defined generalized Gaussian Fibonacci sequence, denoted by G fn, as below:

G fn+1 = pG fn + qG fn−1

where G f0 = a, G f1 = b are initial values. For p = 1, q = − 1
4 , a = −2i, b = 1

2 , we get the Gaussian Oresme sequence.
In other words, the Gaussian Oresme sequence, denoted by GOn, defined by the following recurrence relation

GOn = GOn−1 −
1
4

GOn−2, for n ≥ 2 (2.1)

with initial conditions GO0 = −2i, GO1 = 1
2 . We remind that the Gaussian Oresme sequence can be rewritten as below:

GOn = On + iOn−1.

We have listed some values of the Gaussian Oresme numbers in the following table.

n 0 1 2 3 4 5 6
GOn −2i 1/2 (1 + i)/2 (3 + 4i)/8 (2 + 3i)/8 (5 + 8i)/32 (3 + 5i)/8

Table 3. Some Gaussian Oresme numbers

Theorem 2.1 (Generating function). The generating function for the Gaussian Oresme numbers is

f (x) =

∞∑
n=0

(GOn) xn =
−2i + ( 1

2 + 2i)x

1 − x + x2

4

.
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Proof. By exploiting the definition of the generating function, we have:

f (x) = GO0 + GO1x + GO2x2 + GO3x3 + ... + GOnxn + · · · ,

−x f (x) = −GO0x −GO1x2 −GO2x3 − ... −GOn−1xn − · · · ,

1
4

x2 f (x) =
1
4

GO0x2 +
1
4

GO1x3 +
1
4

GO2x4 + ... +
1
4

GOn−2xn + · · · .

From here;

(1 − x +
1
4

x2) f (x) = GO0 + (GO1 −GO0) x

+

(
GO2 −GO1 +

1
4

GO0

)
x2

+

(
GO3 −GO2 +

1
4

GO1

)
x3

...

+

(
GOn −GOn−1 +

1
4

GOn−2

)
xn + · · ·

and as a result;

f (x) =
GO0 + (GO1 −GO0) x

1 − x + x2

4

=
−2i + ( 1

2 + 2i)x

1 − x + x2

4

.

So, the proof is completed. �

Note that the generating function helps us to obtain the Binet formula which is an explicit closed-form formula for
the coefficients of these generating functions.

Theorem 2.2 (Binet formula). For n ≥ 0:

GOn = 2−n(−A + B(n + 1)),

where A = (4i + 1) , B = (2i + 1) .

Proof. By using the generating function and the definition of the Gaussian Oresme numbers, we have

f (x) =
GO0 + (GO1 −GO0) x

1 − x + x2

4

=
−2i + ( 1

2 + 2i)x

1 − x + x2

4

=
−2i + ( 1

2 + 2i)x

( x
2 − 1)2

=
A

( x
2 − 1)

+
B

( x
2 − 1)2 ,
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where A = (4i + 1) and B = (2i + 1) . It can be rewritten

−2i + ( 1
2 + 2i)x

1 − x + x2

4

= −
(4i + 1)
(1 − x

2 )
+

(2i + 1)
(1 − x

2 )2

=

 ∞∑
n=0

−A2−nxn

 +

 ∞∑
n=0

B2−n(n + 1)xn


=

∞∑
n=0

(
−A2−n + B2−n(n + 1)

)
xn,

where f (x) =
∑∞

n=0 (−A2−n + B2−n(n + 1)) xn. In other words, the Binet formula is obtained as below:

GOn = −A2−n + B2−n(n + 1)

= 2−n(−A + B(n + 1)).

So, the proof is completed. �

Example 2.3. GO4 can be obtained by using Binet’s formula. For n = 4,

GO4 = 2−4(−A + B(4 + 1))

= 2−4(−(4i + 1) + (2i + 1)5)

=
3i + 2

8
.

Theorem 2.4 (Cassini identity). For n > 0, the following identity holds

GOn+1GOn−1 −GO2
n = −2−2nB2.

Proof. From the Binet formula for the Gaussian Oresme numbers;

GOn+1GOn−1 −GO2
n =

(
2−n−1(−A + B(n + 2))

) (
2−n+1(−A + Bn)

)
−

(
(2−n(−A + B(n + 1)

)2

= 2−2n(A2 − ABn − AB(n + 2) + B2(n + 2)n)

− 2−2n(A2 − 2AB(n + 1) + B2(n + 1)2)

= 2−2n(A2 − ABn − AB(n + 2) + B2(n + 2)n

− A2 + 2AB(n + 1) − B2(n + 1)2)

= −2−2nB2,

where A = (4i + 1) and B = (2i + 1) . �

Example 2.5. For n = 5, Cassini identity can be observed as follows:

GO6GO4 −GO2
5 = −2−10B2

= −2−10(2i + 1)2

= 2−10(3 − 4i)

=
3 − 4i

210 .

Theorem 2.6 (Catalan identity). For n, r ≥ 0,

GOn+rGOn−r −GO2
n = −2−2nB2r2.
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Proof. From the Binet formula for the Gaussian Oresme numbers;

GOn+rGOn−r −GO2
n =

(
2−n−r(−A + B(n + r + 1))

) (
2−n+r(−A + B(n − r + 1))

)
−

(
2−n(−A + B(n + 1))

)2

= 2−2n(A2 − 2ABn − 2AB + B2(n2 + 2n − r2 + 1))

− 2−2n(A2 − 2ABn − 2AB + B2n2 + 2B2n + B2))

= −2−2nB2r2,

where A = (4i + 1) and B = (2i + 1) . So, the proof is completed. �

Example 2.7. For n = 4, r = 1,

GO5GO3 −GO2
4 = −2−2nB2r2

= −2−8(2i + 1)2

= 2−8(3 − 4i)

=
3 − 4i

28 .

Theorem 2.8 (d’Ocagne’s identity). For n,m ≥ 0,

GOm+1GOn −GOmGOn+1 = 2−m−n−1B2(n − m).

Proof. From the Binet formula for the Gaussian Oresme numbers;

GOm+1GOn −GOmGOn+1 =
(
2−m−1(−A + B(m + 2))

) (
2−n(−A + B(n + 1))

)
−

(
2−m(−A + B(m + 1))

) (
2−n−1(−A + B(n + 2))

)
= 2−m−n−1(A2 − AB(n + 1) − AB(m + 2)

+ B2(m + 2)(n + 1)) − 2−m−n−1(A2 − AB(n + 2)

− AB(m + 1) + B2(m + 1)(n + 2))

= 2−m−n−1(A2 − ABn − AB − ABm − 2AB

+ (B2m + 2B2)(n + 1)) − 2−m−n−1

× (A2 − ABn − 2AB − ABm − AB

+ (B2m + B2)(n + 2))

= 2−m−n−1(−B2m + B2n)

= 2−m−n−1B2(n − m),

where A = (4i + 1) and B = (2i + 1) . So, the proof is completed. �

Example 2.9. For n = 4, m = 1,

GO2GO4 −GO1GO5 = 2−1−4−1B2(4 − 1)

= 2−63(2i + 1)2

= 2−6(12i − 9).

3. Quaternions with Gaussian Oresme Numbers

In this section, we define quaternions with Gaussian Oresme coefficients and investigate some of their properties.
Let us define the quaternions with Gaussian Oresme coefficients as below:

QGOn = GOne0 + GOn+1e1 + GOn+2e2 + GOn+3e3.

Note that, it verifies the equation QGOn = QOn + iQOn−1. We have listed some values of the quaternions with Gaussian
Oresme coefficients in Table 4.
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n QGOn

0 −2i + e1
2 + ( 1+i

2 )e2 + ( 3+4i
8 )e3

1 1
2 + ( 1+i

2 )e1 + ( 3+4i
8 )e2 + ( 2+3i

8 )e3

2 i+1
2 + ( 3+4i

8 )e1 + ( 2+3i
8 )e2 + ( 8i+5

32 )e3

3 3+4i
8 + ( 2+3i

8 )e1 + ( 5+8i
32 )e2 + ( 3+5i

32 )e3

Table 4. Some Gaussian Oresme Quaternions

The conjugate, complex conjugate, norm of the quaternions with Gaussian Oresme coefficients are defined as below,
respectively:

QGO∗n = GOne0 −GOn+1e1 −GOn+2e2 −GOn+3e3,

QGOn = GOne0 + GOn+1e1 + GOn+2e2 + GOn+3e3,

NQGOn = QGOnQGO∗n = GO2
n + GO2

n+1 + GO2
n+2 + GO2

n+3.

Theorem 3.1. For n > 1, the quaternions with Gaussian Oresme coefficients verifies:

i) QGOn+1 = QGOn −
1
4 QGOn−1.

ii) QGOn + QGO∗n = 2GOn.

Proof.

i) Using the equation (2.1) and the definition of quaternions with Gaussian Oresme coefficients, we get

QGOn −
1
4

QGOn−1 = (GOn + GOn+1e1 + GOn+2e2 + GOn+3e3)

−
1
4

(GOn−1 + GOne1 + GOn+1e2 + GOn+2e3)

=

(
GOn −

1
4

GOn−1

)
+

(
GOn+1 −

1
4

GOn

)
e1

+

(
GOn+2 −

1
4

GOn+1

)
e2 +

(
GOn+3 −

1
4

GOn+2

)
e3

= GOn+1 + GOn+2e1 + GOn+3e2 + GOn+4e3

= QGOn+1.

ii) From the definition of quaternions with Gaussian Oresme coefficients and its quaternion conjugate, we obtain

QGOn + QGO∗n = (GOn + GOn+1e1 + GOn+2e2 + GOn+3e3)
+ ((GOn −GOn+1e1 −GOn+2e2 −GOn+3e3)
= 2GOn.

�

It is known that, the generating function is a way of coding an infinite sequence by treating them as the coefficients of
a formal power series. Let us compute the generating function for the quaternions with Gaussian Oresme coefficients.

Theorem 3.2 (Generating function). The generating function for the quaternions with Gaussian Oresme coefficients
is given by

g(x) =

∞∑
n=0

(QGOn) xn =

[
−2i + e1

2 + ( 1+i
2 )e2 + ( 3+4i

8 )e3

]
+ x

[
( 1+4i

2 ) + ( i
2 )e1 − ( 1

8 )e2 − ( 1+i
8 )e3

]
1 − x + x2

4

.
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Proof. By exploiting the definition of the generating function, we have:

g(x) = QGO0 + QGO1x + QGO2x2 + QGO3x3 + ... + QGOnxn + · · · ,

−xg(x) = −QGO0x − QGO1x2 − QGO2x3... − QGOn−1xn − · · · ,

1
4

x2g(x) =
1
4

QGO0x2 +
1
4

QGO1x3 +
1
4

QGO2x4 + ... +
1
4

QGOn−2xn + · · · .

From here;

(1 − x +
1
4

x2)g(x) = QGO0 + (QGO1 − QGO0) x

+

(
QGO2 − QGO1 +

1
4

QGO0

)
x2

+

(
QGO3 − QGO2 +

1
4

QGO1

)
x3

...

+

(
QGOn − QGOn−1 +

1
4

QGOn−2

)
xn + · · ·

and as a result;

g(x) =
QGO0 + (QGO1 − QGO0) x

1 − x + x2

4

=

[
−2i + e1

2 + ( 1+i
2 )e2 + ( 3+4i

8 )e3

]
+ x

[
( 1+4i

2 ) + ( i
2 )e1 − ( 1

8 )e2 − ( 1+i
8 )e3

]
1 − x + x2

4

.

So, the proof is completed. �

Theorem 3.3 (Binet formula). For n ≥ 0

QGOn = 2−n(−A + B(n + 1)),
where

A =

[
1 + 4i + ie1 −

1
4

e2 −

(
1 + i

4

)
e3

]
and

B =

[
1 + 2i +

(
1 + 2i

2

)
e1 +

(
1 + 2i

4

)
e2 +

(
1 + 2i

8

)
e3

]
.

Proof. By exploiting the generating function and the definition of the quaternions with Gaussian Oresme coefficients,
we have

g(x) =
QGO0 + (QGO1 − QGO0) x

1 − x + x2

4

=

[
−2i + e1

2 + ( 1+i
2 )e2 + ( 3+4i

8 )e3

]
+ x

[
( 1+4i

2 ) + ( i
2 )e1 − ( 1

8 )e2 − ( 1+i
8 )e3

]
1 − x + x2

4

=
A

( x
2 − 1)

+
B

( x
2 − 1)2 ,

where

A =

[
1 + 4i + ie1 −

1
4

e2 −

(
1 + i

4

)
e3

]
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and

B =

[
1 + 2i +

(
1 + 2i

2

)
e1 +

(
1 + 2i

4

)
e2 +

(
1 + 2i

8

)
e3

]
.

It can be rewritten[
−2i + e1

2 + ( 1+i
2 )e2 + ( 3+4i

8 )e3

]
+ x

[
( 1+4i

2 ) + ( i
2 )e1 − ( 1

8 )e2 − ( 1+i
8 )e3

]
1 − x + x2

4

= −
A

(1 − x
2 )

+
B

(1 − x
2 )2

=

 ∞∑
n=0

−A2−nxn

 +

 ∞∑
n=0

B2−n(n + 1)xn


=

∞∑
n=0

2−n (−A + B(n + 1)) xn,

where

f (x) =

∞∑
n=0

(
−A2−n + B2−n(n + 1)

)
xn, i.e.,

QGOn = −A2−n + B2−n(n + 1)

= 2−n(−A + B(n + 1)).

So, the proof is completed. �

Example 3.4. For n = 1,

QGO1 = 2−1(−A + B(1 + 1))

= 2−1
[
−

(
1 + 4i + ie1 −

1
4

e2 −

(
1 + i

4

)
e3

)]
+

[
1 + 2i +

(
1 + 2i

2

)
e1 +

(
1 + 2i

4

)
e2 +

(
1 + 2i

8

)
e3

]
= −

1
2
− 2i −

ie1

2
+

1
8

e2 +

(
1 + i

8

)
e3

+ 1 + 2i +

(
1 + 2i

2

)
e1 +

(
1 + 2i

4

)
e2 +

(
1 + 2i

8

)
e3

=
1
2

(
1 + i

2

)
e1 +

(
3 + 4i

8

)
e2 +

(
2 + 3i

8

)
e3.

Theorem 3.5 (Cassini identity). For n > 0, the following identity holds

QGOn+1QGOn−1 − QGO2
n = −2−2nB2.

Proof. From the Binet formula;

QGOn+1QGOn−1 − QGO2
n =

(
2−n−1(−A + B(n + 2))

) (
2−n+1(−A + Bn)

)
−

(
(2−n(−A + B(n + 1)

)2

= 2−2n(A2 − ABn − AB(n + 2) + B2(n + 2)n)

− 2−2n(A2 − 2AB(n + 1) + B2(n + 1)2)

= 2−2n(A2 − ABn − AB(n + 2) + B2(n + 2)n

− A2 + 2AB(n + 1) − B2(n + 1)2)

= −2−2nB2,

where A =
[
1 + 4i + ie1 −

1
4 e2 −

(
1+i
4

)
e3

]
and B =

[
1 + 2i +

(
1+2i

2

)
e1 +

(
1+2i

4

)
e2 +

(
1+2i

8

)
e3

]
.
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So, the proof is completed. �

Example 3.6. For n = 3,

QGO4QGO2 − QGO2
3 = −2−6

[
1 + 2i +

(
1 + 2i

2

)
e1 +

(
1 + 2i

4

)
e2 +

(
1 + 2i

8

)
e3

]2

= −2−6
(

1 + 2i
8

)2

[8 + 4e1 + 2e2 + e3]2

= −2−12(4i − 3) (43 + 68e1 + 24e2 + 32e3) .

Theorem 3.7 (Catalan identity). For n, r ≥ 0, the following property holds

QGOn+rQGOn−r − QGO2
n = −2−2nB2r2.

Proof. By considering the Binet formula;

QGOn+rQGOn−r − QGO2
n =

(
2−n−r(−A + B(n + r + 1))

) (
2−n+r(−A + B(n − r + 1))

)
−

(
2−n(−A + B(n + 1))

)2

= 2−2n(A2 − 2ABn − 2AB + B2(n2 + 2n − r2 + 1))

− 2−2n(A2 − 2ABn − 2AB + B2n2 + 2B2n + B2))

= −2−2nB2r2,

where A =
[
1 + 4i + ie1 −

1
4 e2 −

(
1+i
4

)
e3

]
and B =

[
1 + 2i +

(
1+2i

2

)
e1 +

(
1+2i

4

)
e2 +

(
1+2i

8

)
e3

]
.

So, the proof is completed. �

Example 3.8. For n = 2, r = 1,

QGO3QGO1 − QGO2
2 = −2−2nB2r2

= −2−4
[
1 + 2i +

(
1 + 2i

2

)
e1 +

(
1 + 2i

4

)
e2 +

(
1 + 2i

8

)
e3

]2

= −2−4
(

1 + 2i
8

)2

[8 + 4e1 + 2e2 + e3]2

= −2−10(4i − 3) (43 + 68e1 + 24e2 + 32e3) .

4. Conclusion

In this paper, we consider the Oresme numbers, defined by Horadam in [16], and describe the Gaussian Oresme
numbers. Then, we investigate some of their characteristic properties, such as the Binet formula, generating function,
Cassini identity, etc. In the following section, we define the quaternions with Gaussian Oresme coefficients and obtain
some properties for them. Finally, we illustrate the results with some examples.
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[21] Karataş, A., Halıcı, S., Horadam octonions , Analele Universitatii ”Ovidius” Constanta - Seria Matematica, 25(3)(2017), 97-106.
[22] Koshy,T., Fibonacci and Lucas Numbers with Applications, A Wiley Interscience Publication, 2001.
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