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The present manuscript deals with some certain finite sums and identities pertaining to some special 

numbers. Using generating functions methods, some relations and identities involving the Apostol type 
Euler and combinatorial numbers, and also the Fubini type numbers and polynomials, are given. Then, 

by using some certain classes of special finite sums involving the following rational sum which is 

defined by Simsek (2021b): 

 𝒚(𝑟, 𝜗) = ∑
(−1)𝑟

(1 + 𝑏)𝜗𝑏+1(𝜗 − 1)𝑟−𝑏+1 ,

𝑟

𝑏=0

  

many new certain finite sums and formulas related to the Leibnitz, Harmonic, Changhee, and Daehee 

numbers are obtained. Moreover, some applications of these results are presented. 
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1. INTRODUCTION 

It is well known that certain finite sums including special numbers and special functions have taken their place 

among the main subjects of the studies of many researchers in recent years. Because these sums contain 

formulas and relations that are frequently used in mathematics, engineering and other branches of science due 

to their properties. For this reason, they are frequently used in modeling design and other situations involving 

many real-world problems. 

In present manuscript, we give some certain finite sums and relations covering both the Leibnitz, Harmonic, 

Changhee, Daehee, and Apostol type Euler numbers, and also the Fubini type numbers and polynomials. In 

order to obtain these results, let us introduce the following notations and definitions that we will use throughout 

this manuscript:  

Let ℕ = {1,2,3, … }, ℂ denotes by complex numbers and ℕ0 = {0,1,2,3, … }. Let 

 (
𝜔
𝑘

) 𝑘! = (𝜔)𝑘 = 𝜔(𝜔 − 1) … (𝜔 − 𝑘 + 1)  

with (𝜔)0 = 1, 𝑘 ∈ ℕ, 𝜔 ∈ ℂ and  
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 0𝑠 = {
1, 𝑠 = 0
0, 𝑠 ∈ ℕ

  

(Gould, 1972;-;Srivastava & Kızılateş, 2019). 

The numbers 𝐸𝑟
∗(−𝑘)

(𝜗) are defined by 

 𝒵𝐸(𝑡, 𝑘, 𝜗) = (
𝜗𝑒𝑡 + 𝜗−1𝑒−𝑡

2
)

𝑘

= ∑ 𝐸𝑟
∗(−𝑘)

(𝜗)
𝑡𝑟

𝑟!
,

∞

𝑟=0

 (1) 

where 𝑘 ∈ ℕ and 𝜗 ∈ ℂ. The numbers 𝐸𝑟
∗(−𝑘)

(𝜗) are called the second kind Apostol type Euler numbers of 

order – 𝑘 (Simsek, 2017; 2018; 2022a). 

The numbers 𝑊𝑟
(−𝑘)

(𝜗) are defined by 

 𝒵𝑊(𝑡, 𝑘, 𝜗) = (𝜗𝑒𝑡 + 𝜗−1𝑒−𝑡 + 2)𝑘 = ∑ 𝑊𝑟
(−𝑘)

(𝜗)
𝑡𝑟

𝑟!
,

∞

𝑟=0

 (2) 

where 𝑘 ∈ ℕ and 𝜗 ∈ ℂ (Simsek, 2017; 2018; 2022a; see also Kucukoglu & Simsek, 2018; Kucukoglu et al., 

2019). 

By using (1) and (2), one has 

 𝑊𝑟
(−𝑘)

(𝜗) = 2𝑘 ∑ (
𝑘
𝑗

) 𝐸𝑟
∗(−𝑗)

(𝜗)

𝑘

𝑗=0

 (3) 

(Simsek, 2017; 2018; 2022a). 

The Daehee numbers are defined by 

 𝐷𝑟 = (−1)𝑟
𝑟!

𝑟 + 1
 (4) 

(Kim & Kim, 2013; see also Simsek, 2019). 

The Changhee numbers are defined by 

 𝐶ℎ𝑟 = (−1)𝑟
𝑟!

2𝑟 (5) 

(Kim et al., 2013; see also Simsek, 2019). 

The Leibnitz numbers are defined by 

 𝒍(𝑟, 𝑏) =
(

𝑟
𝑏

)
−1

(𝑟 + 1)
, (6) 

where 𝑏 = 0,1,2, … , 𝑟 and 𝑟 ∈ ℕ0 (for detail, see Simsek, 2021a). Recently, Simsek (2021a) has given some 

results associated with the Leibnitz, Daehee, Changhee and other well-known special numbers. 
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Simsek (2021a (Theorem 2.9. and Theorem 2.10.)) gave the following formulas 

 2𝓆! ∑ 𝒍(𝓆, 𝑏) − 𝓆! ∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

= 2(−1)𝓆𝐷𝓆 (7) 

and 

 2(1 + 𝓆) ∑ 𝒍(𝓆, 𝑏) − (1 + 𝓆) ∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

= 2. (8) 

The Harmonic numbers, 𝐻𝑟, are defined by 

 𝐻𝑟 = ∑
1

𝑏

𝑟

𝑏=1

  

(for detail, see Simsek, 2021b, 2021c, 2021d; 2022b, 2022c). From the above equation, we have 

 𝐻𝑟+1 − 𝐻𝑟 =
1

𝑟 + 1
 (9) 

(Simsek, 2021b, 2021c; 2022b, 2022c). 

Kilar and Simsek (2017) defined the following the Fubini type numbers 𝑎𝑟
(𝑛)

:  

 
2𝑛

(2 − 𝑒𝑡)2𝑛 = ∑ 𝑎𝑟
(𝑛) 𝑡𝑟

𝑟!
,

∞

𝑟=0

 (10) 

where 𝑛 ∈ ℕ0 and |𝑡| < ln(2) (for detail, see Kilar & Simsek, 2019a, 2019b; 2021a, 2021b; Kilar, 2023a, 

2023b).  

When 𝑛 = 1 in (10), we get 

 𝑎𝑟
(1)

= 𝑎𝑟 .  

Kilar and Simsek (2017) defined the following polynomials 𝑎𝑟
(𝑛)

(𝑥):  

 
2𝑛

(2 − 𝑒𝑡)2𝑛 𝑒𝑥𝑡 = ∑ 𝑎𝑟
(𝑛)

(𝑥)
𝑡𝑟

𝑟!
.

∞

𝑟=0

 (11) 

From (10) and (11), we have 

 𝑎𝑟
(𝑛)

(𝑥) = ∑ (
𝑟
𝑏

)

𝑟

𝑏=0

𝑥𝑟−𝑏𝑎𝑏
(𝑛)

  

(Kilar & Simsek, 2017; 2019a, 2019b; 2021a, 2021b; Kilar, 2023a, 2023b).  
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Two parametric polynomials 𝑎𝑟
(𝐶,𝑛)

(𝑥, 𝑦) and 𝑎𝑟
(𝑆,𝑛)

(𝑥, 𝑦) are defined, respectively, by 

 𝒵𝑎𝑐(𝑡, 𝑛, 𝑥, 𝑦) =  
2𝑛𝑒𝑥𝑡

(2 − 𝑒𝑡)2𝑛 cos(𝑦𝑡) = ∑ 𝑎𝑟
(𝐶,𝑛)

(𝑥, 𝑦)
𝑡𝑟

𝑟!

∞

𝑟=0

 (12) 

and 

 𝒵𝑎𝑠(𝑡, 𝑛, 𝑥, 𝑦) =
2𝑛𝑒𝑥𝑡

(2 − 𝑒𝑡)2𝑛 sin(𝑦𝑡) = ∑ 𝑎𝑟
(𝑆,𝑛)

(𝑥, 𝑦)
𝑡𝑟

𝑟!

∞

𝑟=0

 (13) 

(Srivastava & Kızılateş, 2019). When 𝑦 = 0 in (12), one can see that 

 𝑎𝑟
(𝐶,𝑛)

(𝑥, 0) = 𝑎𝑟
(𝑛)

(𝑥).  

Simsek (2021b) defined the following finite sum which is called the numbers 𝒚(𝑟, 𝜗):  

 𝒚(𝑟, 𝜗) = ∑
(−1)𝑟

(1 + 𝑏)𝜗𝑏+1(𝜗 − 1)𝑟+1−𝑏

𝑟

𝑏=0

 (14) 

(see also Simsek, 2021c, 2021d; 2022b, 2022c). 

Simsek (2022b (Equation (59))) gave the following formula 

 𝒚(𝑟 − 1, 𝜗) + (𝜗 − 1)𝒚(𝑟, 𝜗) =
(−1)𝑟

(𝑟 + 1)𝜗𝑟+1. (15) 

When 𝜗 =
1

2
 in the above equation, we get 

 2𝒚 (𝑟 − 1,
1

2
) − 𝒚 (𝑟,

1

2
) =

(−1)𝑟2𝑟+2

𝑟 + 1
 (16) 

(Simsek, 2022b (Equation (61))). 

2. MAIN RESULTS 

Using the generating functions which are introduced previous section, many miscellaneous identities involving 

the Fubini type numbers, the numbers 𝐸𝑚
∗(−𝑘)

(𝜗) and the numbers 𝑊𝑚
(−𝑘)

(𝜗), are given. Using derivative and 

integrate operators, some certain finite sums and formulas pertaining to the Leibnitz, Harmonic, Changhee and 

Daehee numbers and also the numbers 𝒚(𝑚, 𝜗), are presented. Moreover, some applications of the obtained 

results are given. 

Theorem 2.1. For 𝑢 ∈ ℕ0 and 𝒹 ∈ ℕ yields 

 ∑ (
𝑢

2𝑏
)

[
𝑢
2

]

𝑏=0

(−1)𝑏𝑦2𝑏(𝑥 − 𝒹)𝑢−2𝑏 + (−1)𝒹+1 ∑ (
𝑢
𝑏

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
) 𝑎𝑏

(𝐶,𝒹)
(𝑥, 𝑦) = 0

𝑢

𝑏=0

. (17) 
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Proof. By using (2) and (12), we have 

 𝑒(𝑥−𝒹)𝑡 cos(𝑦𝑡) = (−1)𝒹𝒵𝑊 (𝑡, 𝒹, −
1

2
) 𝒵𝑎𝑐(𝑡, 𝒹, 𝑥, 𝑦).  

From above equation, we get 

 ∑(𝑥 − 𝒹)𝑢
𝑡𝑢

𝑢!

∞

𝑢=0

∑
(−1)𝑢(𝑦𝑡)2𝑢

(2𝑢)!

∞

𝑢=0

= (−1)𝒹 ∑ 𝑊𝑢
(−𝒹)

(−
1

2
)

𝑡𝑢

𝑢!

∞

𝑢=0

∑ 𝑎𝑢
(𝐶,𝒹)

(𝑥, 𝑦)
𝑡𝑢

𝑢!

∞

𝑢=0

.  

Thus, 

 ∑ ∑(−1)𝑏 (
𝑢

2𝑏
)

[
𝑢
2]

𝑏=0

∞

𝑢=0

(𝑥 − 𝒹)𝑢−2𝑏𝑦2𝑏
𝑡𝑢

𝑢!
= ∑ ∑ (

𝑢
𝑏

) (−1)𝒹𝑊𝑢−𝑏
(−𝒹)

(−
1

2
) 𝑎𝑏

(𝐶,𝒹)
(𝑥, 𝑦)

𝑢

𝑏=0

𝑡𝑢

𝑢!

∞

𝑢=0

.  

Therefore, Equation (17) is derived. 

When 𝑦 = 0 in (17), we get the Corollary 2.2: 

Corollary 2.2.  

 (𝑥 − 𝒹)𝑢 = ∑ (
𝑢
𝑏

) (−1)𝒹𝑊𝑢−𝑏
(−𝒹)

(−
1

2
) 𝑎𝑏

(𝒹)
(𝑥)

𝑢

𝑏=0

. (18) 

Applying derivative operator 
𝜕𝑢

𝜕𝑥𝑢 to the Equation (18), we get 

 
𝜕𝑢

𝜕𝑥𝑢
{(𝑥 − 𝒹)𝑢} = ∑(−1)𝒹 (

𝑢
𝑏

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
)

𝜕𝑢

𝜕𝑥𝑢 { 𝑎𝑏
(𝒹)

(𝑥)}

𝑢

𝑏=0

. (19) 

Since  

 
𝜕𝑢

𝜕𝑥𝑢 { 𝑎𝑏
(𝒹)(𝑥)} = (𝑢)𝑏 𝑎𝑏−𝑢

(𝒹) (𝑥)  

(Kilar & Simsek, 2017), after some elementary calculations, Equation (19) is derived as follows: 

  𝑢! = (−1)𝒹𝑢! 𝑊0
(−𝒹)

(−
1

2
)  𝑎0

(𝒹)
(𝑥). (20) 

Since 

   𝑎0
(𝒹)

(𝑥) = 2𝒹 ,  

  



192 
Neslihan KILAR 

GU J Sci, Part A, 9(3): 187-198 (2022) 
 

 

Equation (20) reduced to the following special result: 

  𝑊0
(−𝒹)

(−
1

2
) =

(−1)𝒹

2𝒹
.  

Theorem 2.3. For 𝑢, 𝒹 ∈ ℕ yields 

 ∑ (
𝑢

2𝑏 + 1
)

[
𝑢−1

2 ]

𝑏=0

(−1)𝑏(𝑥 − 𝒹)𝑢−2𝑏−1𝑦2𝑏+1 + ∑(−1)𝒹+1 (
𝑢
𝑏

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
) 𝑎𝑏

(𝑆,𝒹)(𝑥, 𝑦)

𝑢

𝑏=0

= 0. (21) 

Proof. By (2) and (13), we have 

 𝑒(𝑥−𝒹)𝑡 sin(𝑦𝑡) = (−1)𝒹𝒵𝑊 (𝑡, 𝒹, −
1

2
) 𝒵𝑎𝑠(𝑡, 𝒹, 𝑥, 𝑦).  

Using the above functional equation, we have 

 

∑ ∑ (
𝑢

1 + 2𝑏
)

[
𝑢−1

2 ]

𝑏=0

∞

𝑢=0

(−1)𝑏𝑦1+2𝑏(𝑥 − 𝒹)𝑢−2𝑏−1
𝑡𝑢

𝑢!

= ∑ ∑(−1)𝒹 (
𝑢
𝑏

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
) 𝑎𝑏

(𝑆,𝒹)
(𝑥, 𝑦)

𝑢

𝑏=0

𝑡𝑢

𝑢!

∞

𝑢=0

. 

 

Thus, Equation (21) is obtained. 

Combining (17) with (3), we get the Theorem 2.4: 

Theorem 2.4. For 𝑢 ∈ ℕ0 and 𝑑 ∈ ℕ yields 

 ∑(−1)𝑏 (
𝑢

2𝑏
)

[
𝑢
2]

𝑏=0

𝑦2𝑏(𝑥 − 𝒹)𝑢−2𝑏 = (−2)𝒹 ∑ (
𝑢
𝑏

) ∑ (
𝒹
𝑘

) 𝑎𝑏
(𝐶,𝒹)

(𝑥, 𝑦)𝐸𝑢−𝑏
∗(−𝑘)

(−
1

2
)

𝒹

𝑘=0

𝑢

𝑏=0

.  

By combining (21) with (3), we derive the Theorem 2.5: 

Theorem 2.5. For 𝑢, 𝒹 ∈ ℕ yields 

 ∑ (−1)𝑏 (
𝑢

2𝑏 + 1
)

[
𝑢−1

2 ]

𝑏=0

𝑦2𝑏+1(𝑥 − 𝒹)𝑢−2𝑏−1 = (−2)𝒹 ∑ (
𝑢
𝑏

) ∑ (
𝒹
𝑘

) 𝑎𝑏
(S,𝒹)

(𝑥, 𝑦)𝐸𝑢−𝑏
∗(−𝑘)

(−
1

2
)

𝒹

𝑘=0

𝑢

𝑏=0

.  

Theorem 2.6. For 𝑢 ∈ ℕ0 and 𝒹 ∈ ℕ yields 

  
(1 − 𝒹)𝑢+1 + 𝒹(−𝒹)𝑢

𝑢 + 1
= ∑ ∑ (

𝑢
𝑏

) (
𝑏
𝑝

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹𝑎𝑝
(𝒹)

𝑏 − 𝑝 + 1

𝑢

𝑏=0

. (22) 
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Proof. Integrating both sides with respect to 𝑥 of (18), we obtain 

  ∫ (𝑥 − 𝒹)𝑢𝑑𝑥
1

0

= (−1)𝒹 ∑ (
𝑢
𝑏

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
) ∫ 𝑎𝑏

(𝒹)
(𝑥)𝑑𝑥

1

0

𝑢

𝑏=0

.   

Hence 

  
(−1)𝑢+2𝒹𝑢+1 + (1 − 𝒹)𝑢+1

1 + 𝑢
+ ∑ ∑ (

𝑏
𝑝

) (
𝑢
𝑏

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹+1𝑎𝑝
(𝒹)

𝑏 + 1 − 𝑝
= 0

𝑢

𝑏=0

.  

From the above equation, we get the Equation (22). 

Gould (1972 (p. 5, Equation (1.37)) gave the combinatorial finite sum:  

  
(𝑥 + 1)𝜈+1 − 1

𝑥(1 + 𝜈)
= ∑ (

𝜈
𝑠

)
𝑥𝑠

1 + 𝑠

𝜈

𝑠=0

. (23) 

Using (23), Equation (22) is reduced to as follows: 

Corollary 2.7.  

 ∑ (
𝑢
𝑏

)
 (−𝒹)𝑢(−1)𝑏

(𝑏 + 1)𝒹𝑏

𝑢

𝑏=0

= ∑ ∑ (
𝑢
𝑏

) (
𝑏
𝑝

) 𝑊𝑢−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹𝑎𝑝
(𝒹)

𝑏 − 𝑝 + 1

𝑢

𝑏=0

. (24) 

Replacing 𝜗 by 
1

𝒹
 in (15), we have 

 𝒚(𝓆 − 1, 𝒹−1) + (𝒹−1 − 1)𝒚(𝓆, 𝒹−1) = −
(−𝒹)𝓆+1

1 + 𝓆
. (25) 

 Replacing 𝜗 by 
1

𝒹−1
 in (15), we also have 

 𝒚(𝓆 − 1, (𝒹 − 1)−1) + ((𝒹 − 1)−1 − 1)𝒚(𝓆, (𝒹 − 1)−1) = −
(1 − 𝒹)𝓆+1

𝓆 + 1
. (26) 

Combining (26) and (25) with (22), we get 

 

𝒚(𝓆 − 1, 𝒹−1) + (𝒹−1 − 1)𝒚(𝓆, 𝒹−1) − 𝒚(𝓆 − 1, (𝒹 − 1)−1) 

                                                      −((𝒹 − 1)−1 − 1)𝒚(𝓆, (𝒹 − 1)−1) 

                                                            = ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹𝑎𝑝
(𝒹)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

. 
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From here, we get the Theorem 2.8: 

Theorem 2.8. For 𝒹 ∈ ℕ\{1,2} and 𝓆 ∈ ℕ yields 

 

𝒚(𝓆 − 1, 𝒹−1) − 𝒚(𝓆 − 1, (𝒹 − 1)−1) + (
1 − 𝒹

𝒹
) 𝒚(𝓆, 𝒹−1) + (

2 − 𝒹

1 − 𝒹
) 𝒚(𝓆, (𝒹 − 1)−1)

= ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹𝑎𝑝
(𝒹)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

. 
(27) 

Now it is time to give some interesting applications of Equation (24). 

Substituting 𝑥 = −1 into (23), we get  

  ∑
(

𝓆
𝑏

) (−1)𝑏

(𝑏 + 1)

𝓆

𝑏=0

=
1

𝓆 + 1
. (28) 

When 𝒹 = 1 in (24), and using (28), we get the Corollary 2.9: 

Corollary 2.9.  

 1 =  (𝓆 + 1) ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−1)

(−
1

2
)

𝑏

𝑝=0

(−1)1−𝓆𝑎𝑝

𝑏 − 𝑝 + 1

𝓆

𝑏=0

. (29) 

Moreover, substituting 𝒹 = 2 into (22) we obtain 

  (2𝓆+1 − 1)(−1)𝓆 = (𝓆 + 1) ∑ ∑ (
𝑏
𝑝

) (
𝓆
𝑏

) 𝑊𝓆−𝑏
(−2)

(−
1

2
)

𝑏

𝑝=0

𝑎𝑝
(2)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

.  

When 𝑥 = 1 in (23), and using the previous equation, we also obtain 

  ∑ (
𝓆
𝑏

)
(−1)𝓆

𝑏 + 1

𝓆

𝑏=0

= ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−2)

(−
1

2
)

𝑏

𝑝=0

𝑎𝑝
(2)

𝑏 + 1 − 𝑝

𝓆

𝑏=0

. (30) 

Also, substituting 𝒹 = 2 into (24), we obtain 

 
 ∑ (

𝓆
𝑏

)
(−1)𝓆+𝑏

(1 + 𝑏)2𝑏−𝓆

𝓆

𝑏=0

= ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−2)

(−
1

2
)

𝑏

𝑝=0

𝑎𝑝
(2)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

. 
(31) 

Combining (30) with (31), we derive the following presumably known result: 
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Corollary 2.10.  

  ∑
(

𝜑
𝑏

)

1 + 𝑏

𝜑

𝑏=0

= ∑ (
𝜑
𝑏

)
(−1)𝑏

(1 + 𝑏)2𝑏−𝜑

𝜑

𝑏=0

.  

By using (22) and (4), we have 

  
(−1)𝓆

𝓆!
D𝓆 −

(𝒹 − 1)𝓆+1

𝒹𝓆+1(𝓆 + 1)
=

1

𝒹𝓆+1 ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹+𝓆𝑎𝑝
(𝒹)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

.  

Using (7) and the above equation, we have the Theorem 2.11: 

Theorem 2.11. For 𝓆, 𝒹 ∈ ℕ yields 

 

 ∑ 𝒍(𝓆, 𝑏) −
1

2
∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

=
(1 − 𝒹−1)𝓆+1

𝓆 + 1
+

1

𝒹1+𝓆 ∑ ∑ (
𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹+𝓆𝑎𝑝
(𝒹)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

. 

(32) 

Combining (9) with (8), we derive 

 ∑ 𝒍(𝓆, 𝑏) −
1

2
∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

= 𝐻𝓆+1 − 𝐻𝓆.  

Using the above equation and (32), we get the Corollary 2.12: 

Corollary 2.12. 

  𝐻𝓆+1 − 𝐻𝓆 −
(1 − 𝒹−1)𝓆+1

𝓆 + 1
= ∑ ∑ (

𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−𝒹)

(−
1

2
)

𝑏

𝑝=0

(−1)𝒹+𝓆𝑎𝑝
(𝒹)

𝒹𝓆+1(𝑏 − 𝑝 + 1)

𝓆

𝑏=0

.  

Combining (32) with (27), we have the Corollary 2.13: 

Corollary 2.13. For 𝒹 ∈ ℕ\{1,2} and 𝓆 ∈ ℕ yields 

 

𝒹(𝒹 − 1)(𝒚(𝓆 − 1, 𝒹−1) − 𝒚(𝓆 − 1, (𝒹 − 1)−1)) − (𝒹 − 1)2𝒚(𝓆, 𝒹−1) + 𝒹(𝒹 − 2)𝒚(𝓆, (𝒹 − 1)−1)

= (𝒹 − 1)𝒹𝓆+2(−1)𝓆 (∑ 𝒍(𝓆, 𝑏) −
1

2
∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

) −
𝒹(1 − 𝒹)𝓆+2

𝓆 + 1
. 

When 𝒹 = 3 into Corollary 2.13, and using (16), we get the Corollary 2.14: 
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Corollary 2.14.  

 3𝒚 (𝓆 − 1,
1

3
) − 2𝒚 (𝓆,

1

3
) = (−3)𝓆+2 (∑ 𝒍(𝓆, 𝑏) −

1

2
∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

) 

 

or, equivalently,  

 3𝒚 (𝓆 − 1,
1

3
) − 2𝒚 (𝓆,

1

3
) = (−3)𝓆+2(𝐻𝓆+1 − 𝐻𝓆). 

 

When 𝒹 = 2 in (32), we get 

 

2 ∑ 𝒍(𝓆, 𝑏) − ∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

=
2−𝓆

(𝓆 + 1)
+ 2−𝓆(−1)𝓆 ∑ ∑ (

𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−2)

(−
1

2
)

𝑏

𝑝=0

𝑎𝑝
(2)

𝑏 + 1 − 𝑝

𝓆

𝑏=0

. 

 

Using (4), (5) and the above equation, we have 

2 ∑ 𝒍(𝓆, 𝑏) − ∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

=
2𝐶ℎ𝓆+1

(2 + 𝓆)(1 + 𝓆)𝐷𝓆+1
(1 + (1 + 𝓆)(−1)𝓆 ∑ ∑ (

𝓆
𝑏

) (
𝑏
𝑝

) 𝑊𝓆−𝑏
(−2)

(−
1

2
)

𝑏

𝑝=0

𝑎𝑝
(2)

𝑏 − 𝑝 + 1

𝓆

𝑏=0

). 

Using the previous equation and (30) (or (31)), the following result is derived: 

Corollary 2.15.  

 2 ∑ 𝒍(𝓆, 𝑏) − ∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

=
2𝐶ℎ𝓆+1

(1 + 𝓆)(2 + 𝓆)𝐷𝓆+1
(1 + (𝓆 + 1) ∑

(
𝓆
𝑏

)

𝑏 + 1

𝓆

𝑏=0

)  

or, equivalently, 

  2 ∑ 𝒍(𝓆, 𝑏) − ∑ 𝒍(𝓆 − 1, 𝑏)

𝓆−1

𝑏=0

𝓆

𝑏=0

=
𝐶ℎ𝓆+1

(1 + 𝓆)(2 + 𝓆)𝐷𝓆+1
(2 + ∑ (

𝓆
𝑏

)
(−1)𝑏(𝓆 + 1)

2𝑏−𝓆−1(𝑏 + 1)

𝓆

𝑏=0

).  

3. CONCLUSION 

In this manuscript, some certain finite sums and identities included some special numbers were studied. Using 

certain special polynomials and numbers with generating functions, and integrating some results, various novel 

formulas, combinatorial finite sums and identities were given. These various results pertaining to the Leibnitz, 

Harmonic, Apostol type Euler, Changhee, Daehee, combinatorial and Fubini type numbers, and also the Fubini 

type polynomials. As a result, the results obtained in present manuscript may be usefulness in related sciences 

especially engineering and mathematics. 
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