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Abstract 

Speaker recognition systems achieved significant improvements over the last decade, especially due to 

the performance of the i-vectors. Despite the achievements, mismatch between training and test data 

affects the recognition performance considerably. In this paper, a solution is offered to increase 

robustness against additive noises by inserting model compensation techniques within the i-vector 

extraction scheme. For stationary noises, the model compensation techniques produce highly robust 

systems. Parallel Model Compensation and Vector Taylor Series are considered as state-of-the-art 

model compensation techniques. Applying these methods to the first order statistics, a noisy total 

variability space training is aimed, which will reduce the mismatch resulted by additive noises. All other 

parts of the conventional i-vector scheme remain unchanged, such as total variability matrix training, 

reducing the i-vector dimensionality, scoring the i-vectors. The proposed method was tested with four 

different noise types with several signal to noise ratios (SNR) from -6 dB to 18 dB with 6 dB steps. High 

reductions in equal error rates were achieved with both methods, even at the lowest SNR levels. On 

average, the proposed approach produced more than 50% relative reduction in equal error rate. 

 
Model Kompanzasyonlu Birinci Derece İstatistikleri ile i-vektörlerin 
Gürbüzlüğünün Artırılması 
 

Anahtar kelimeler 
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tanıma;Vektör Taylor 

serileri; I-vektör 

Öz 

Konuşmacı tanıma sistemleri özellikle i-vektörlerin performansı sebebiyle son on yılda önemli 

gelişmeler elde etmiştir. Bu gelişmelere rağmen eğitim ve test verileri arasındaki uyumsuzluk tanıma 

performansını önemli ölçüde etkilemektedir. Bu çalışmada, model kompanzasyon yöntemleri i-vektör 

çıkarımı şemasına eklenerek toplanabilir gürültülere karşı gürbüzlüğü artıracak bir çözüm 

sunulmaktadır. Durağan gürültüler için model kompanzasyon teknikleri oldukça gürbüz sistemler üretir. 

Paralel Model Kompanzasyonu ve Vektör Taylor Serileri en gelişmiş model kompanzasyon 

tekniklerinden kabul edilmektedir. Bu metotlar birinci dereceden istatistiklere uygulanarak toplanabilir 

gürültülerden kaynaklanan uyumsuzluğu azaltacak gürültülü tüm değişkenlik uzayı eğitimi 

amaçlanmıştır. Tüm değişkenlik matrisin eğitimi, i-vektör boyutunun azaltılması, i-vektörlerin 

puanlanması gibi geleneksel i-vektör şemasının diğer tüm parçaları değişmeden kalmaktadır. Önerilen 

yöntem, 6 dB’lik adımlarla -6 dB’den 18 dB’ye kadar çeşitli sinyal-gürültü oranlarına (SNR) sahip dört 

farklı gürültü tipi ile test edilmiştir. Her iki yöntemle de en düşük SNR seviyelerinde bile eşit hata 

oranlarında yüksek azalmalar elde edilmiştir. Önerilen yaklaşım eşik hata oranında ortalama olarak 

%50’den fazla göreceli azalma sağlamıştır. 
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1. Introduction 

Performance of the text-independent speaker 

recognition systems have increased considerably 

with the introduction of i-vectors (Dehak et al. 

2011).  Based on the joint factor analysis (Kenny et 

al. 2007), i-vectors produce a fixed low dimensional 

vector from variable length utterances. A matrix 

named total variability space (denoted with T) is 

trained to extract i-vectors, where the speaker, 

channel, and session variabilities are modelled. A 

universal background model (UBM) (Reynolds et al. 

2000) is also used in the conventional i-vector 

framework. The low dimensionality of the i-vectors 

gave the opportunity to develop and use more 

complex channel compensation techniques (Dehak 

et al., 2011), and considered as state-of-the-art 

method for text-independent speaker recognition. 

As the majority of speech related systems, the i-

vectors’ performance degrades with the mismatch 

between the training and test utterances, caused by 

environmental noise, channel distortions, etc. (Ming 

2007). Although channel variabilities can be 

compensated effectively within the i-vector space 

(Dehak et al., 2011), the effects of additive noise can 

still be harmful for the recognition performance. 

Various studies can be found in the literature that 

aim to reduce the noise effects in the feature level, 

total variability space, i-vector space or even at the 

late classifying step (i.e. probabilistic linear 

discriminant analysis (PLDA)). Some of these works 

are given in the following, and the difference of this 

work is noted at the end of this section. 

The feature extraction is the first step in speaker 

recognition systems (Tirumala et al. 2017). 

Increasing the robustness of the extracted features 

will make the classifiers’ job easier since the 

deteriorative effects are minimized, and various 

studies focused on this step (Dişken et al. 2017, 

Krobba et al. 2019). On the other hand, the 

conventional Mel frequency cepstral coefficients 

(MFCCs) (Davis and Mermelstein 1980) are still 

preferred in many studies (even in the most recent 

works reported below),  and mismatch effects are 

dealt in later steps, as proposed in this study. 

Many researchers tried to achieve robustness within 

the i-vector framework, or in the low dimensional i-

vector space. In (Ribas and Vincent 2019), 

uncertainty propagation was employed in both 

UBM and factor analysis model, and a slight 

improvement over a speech enhancement 

algorithm was reported. Clean i-vectors were MAP 

estimated (called i-MAP) given the noisy i-vectors in 

(Ben Kheder et al. 2015, Ben Kheder et al. 2014), 

assuming the distributions are normal, and noise is 

additive in the i-vector space. This technique was 

further improved by applying linear regression 

based cleaning, where the Gaussian assumption was 

not required (Baby et al. 2017). Computational time 

of the i-MAP was reduced in (Ben Kheder et al. 

2017), by including a distribution selection scheme, 

where a previously observed distribution was 

selected based on the distance between noisy test i-

vector and all noisy i-vectors distributions available 

in the training data. Jointly modeling the clean and 

noisy i-vectors, a better performance was achieved 

(Kheder et al. 2018). 

(El Ayadi et al. 2017) estimated GMM/UBM 

parameters in a robust manner using robust 

estimation methods named minimum volume 

ellipsoid and minimum covariance determinant. 

Since the UBM takes part in the traditional i-vector 

scheme, resulted i-vectors were considered as 

robust against additive noise. Simplified supervised 

i-vectors were found to be superior than the 

conventional ones in terms of speed and accuracy 

(Li and Narayanan 2014), where a look-up table and 

factor analysis performed on pre-normalized 

Gaussian Mixture Model (GMM) first order statistics 

helped to reduce the system’s complexity. Frame 

weighting was taken into account in (Zhang et al. 

2019), and GMM updating rules were defined which 

lead to more robust sufficient statistics. 

Multicondition training, where clean and noisy 

versions of data are combined in training, was found 

to be effective to increase robustness in several 

studies (Garcia-Romero et al. 2012, Lei et al. 2012, 

Li and Mak 2015, Mak 2014, Rajan et al. 2013), 

where robust PLDA classifier was the main concern. 

Multiple SNR-dependent PLDA models were 

investigated in (Mak et al. 2016). Five back-ends 

were investigated in (Liu and Hansen 2014), and 

fusion of them was found to be very effective with a 

computational burden trade-off. Adaptive boosting 
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was used to combine multiple Support Vector 

Machine (SVM) classifiers which are trained using 

noisy i-vectors (Sarkar and Sreenivasa 2014). 

Deep neural networks (DNN) have gained popularity 

in the last decade, thanks to the developments in 

both software and hardware. They have been 

successfully applied in many diverse areas. Besides 

being a recognition system themselves (Snyder et al. 

2016, Variani et al. 2014), DNNs were also included 

in the i-vector framework at various levels to 

increase their performances. In (Zhang et al., 2020) 

DNNs were used for multi-level enhancement; in 

utterance level, MFCC level, and i-vector level, and 

frame selection also applied to emphasize noise-

invariant frames. Recently, DNN speech 

enhancement also found to be complementary with 

PLDA mutlicondition training (Novotný et al. 2019). 

LDA was replaced with a DNN to learn non-linear 

projection of i-vectors (Wang et al. 2018). The 

sufficient statistics were observed with a DNN (Lei 

et al. 2014), and with a convolutional neural 

network (CNN) (McLaren et al. 2014) instead of the 

traditional UBM. DNNs were also included in the 

mixture of PLDA framework to produce posterior 

probabilities (Li et al. 2016, Li et al. 2017). DNN 

based mapping on i-vectors were used to reduce 

content mismatch between utterances with 

different lengths (Guo et al., 2018). Two neural 

networks with noisy versions of the clean i-vectors 

as inputs were trained to produce denoised i-

vectors before applying PLDA classifier (Mahto et al. 

2017). 

Model adaptation methods such as parallel model 

combination (PMC) (Gales and Young 1993, Gales 

and Young 1996)  and Vector Taylor Series (VTS) 

(Moreno et al. 1996)  aim to reduce the mismatch 

between the training and test data by modifying the 

speech/speaker models’ parameters in an efficient 

manner. Traditional speech recognition systems use 

Hidden Markov Model (HMM) with Gaussian 

Mixture model in each state to model the 

distributions. Model compensation methods modify 

the model parameters so that the mismatch due to 

additive noise and/or channel variations is 

minimized. PMC estimates the noisy models by 

combining the clean speech and noise models. On 

the other hand, VTS estimates the noise parameters 

with (usually) a first-order Taylor Series 

approximation, then adapts the clean speech model 

to the noise conditions. One of the advantages of 

these methods is the requirement of limited 

adaptation data (Kalinli et al. 2010). Due to their 

state-of-the-art performance, many recognition 

systems have included these methods to increase 

robustness (Acero et al. 2000, Chung 2016, Gales 

1997, Gales and Young 1995, Li et al. 2007, Kalinli et 

al. 2009, Kim and Hansen 2009). Modifications on 

delta parameter estimations for PMC were 

investigated in (Geng-Xin et al. 2006, Sim and Luong 

2011). Approximated PMC was proposed in (Sim 

2013) to reduce the computational burden of 

compensating covariance matrices. Mobile (Tao et 

al. 2008) and embedded systems have also 

benefited from model compensation. VTS preferred 

in HMM based speech enhancement to modify 

model parameters for noisy speech (Gao et al. 

2014). Masking factor was included in VTS before 

compensation, and a slight improvement compared 

to the traditional VTS was achieved (Das and Panda 

2016). A GMM with a low number of mixtures was 

used to estimate the noise parameters and another 

GMM with more mixtures than the first one was 

used to estimate clean features to reduce the 

computation load of VTS (Zhou et al. 2016). Several 

PMC approximations were compared in (Gong 

2002). 

Model compensation was also used in speaker 

recognition systems (Bellot et al. 2000, Ping et al. 

2001). However, combining the power of the model-

based methods with i-vectors have not been 

investigated, except (Lei et al. 2013; Lei et al. 2014). 

In (Lei et al. 2013), VTS was used to obtain clean 

versions of i-vectors. A noisy UBM was constructed 

for each speech segment with VTS applied to the 

clean UBM and noise distributions. Noisy models are 

updated to each utterance with an EM auxiliary 

function. Expectation maximization (EM) algorithm 

was also developed to train the total variability 

matrix. To reduce the computational load of total 

variability matrix training, a simplified version of this 

approach was studied, and a minor degradation 

compared to the original VTS was observed (Lei et 

al. 2014). VTS was replaced with an unscented 

transform to more accurately estimate the noise-
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adapted UBM parameters (Martinez et al. 2014). 

The aforementioned methods also include 

multicondition training. 

To the best of authors’ knowledge, PMC and i-vector 

combination have not been tested previously. One 

of the reasons may be the complexity issues 

considering that the noise will be injected in UBM, 

total variability, and scoring models (Ben Kheder et 

al. 2017). On the other hand, previous studies have 

shown that late steps such as LDA dimensionality 

reduction and PLDA scoring can remain as in the 

conventional case with VTS approach (Lei et al. 

2014). Also, for stationary noise types, noise can be 

approximated with a single Gaussian. Therefore, the 

number of mixtures in the UBM will not increase 

contrary to the non-stationary noise case (Gales and 

Young 1993). Furthermore, almost every method 

increases the complexity of the system more or less. 

For instance, DNN based approaches usually require 

a high amount of data and a lot of training time. 

Multicondition training requires noisy data which is 

not usually available, and producing noisy data 

inherently increases the training time. Besides, the 

noise information may not be available a priori. 

Model based techniques provides the advantage of 

adapting with a little noise data that can be 

observed within the test/operating environment. 

The noise parameters can be estimated by using 

various methods such as noise tracking, voice 

activity detecting, speech enhancement, etc. 

(Chuwatthananurux and Wanvarie 2016, Dişken et 

al. 2017, Ghosh et al. 2011, Lin et al. 2007, Martin 

2001), or even some of the first frames of the 

incoming utterance can accepted as noise-only 

frames, which is not always true but still provides a 

practical solution. The robustness of the recognition 

system then will be related to the success of the 

noise estimation methods. In this paper, however, 

the noise is assumed to be known since the main 

focus is on the combination of i-vectors and model 

based compensation. Hence, the performance of 

the recognition system is going to depend solely on 

the model based method, and the extracted “noisy” 

i-vectors. Also, considering the modern devices 

developed since the first presentation of model 

based methods, a faster runtime may be 

anticipated.  

The proposed method aims to modify the first order 

statistics with model compensation where there is 

no requirement for noisy training data or any 

multicondition training. Since the T matrix is learned 

from the sufficient statistics, a noisy version of this 

matrix will be learned due to the injection of the 

noise to the first order statistics. Also, the model 

compensation is applied to the UBM since a noisy 

UBM is needed to train T and to extract sufficient 

statistics from noisy test data. All other steps of the 

conventional i-vector extraction scheme remain as 

is, and no modifications were made in the EM 

algorithms in any step. Hence, the model based 

methods fit almost seamlessly with the i-vectors. 

Both PMC and VTS methods showed very high EER 

reductions in the experiments realized with 

different noisy types and various SNR levels. 

The rest of the paper is organized as follow. Section 

2 reviews the PMC and VTS methods, providing the 

essential expressions that will be used in the 

compensation step. Section 3 shows the proposed 

method to inject noise information into the first 

order statistics. Section 4 presents the experimental 

results, along with a discussion part. Section 5 

concludes the paper. 

 

2. Model Based Compensation 

In this section, VTS and PMC methods are reviewed. 

Various improvements were made after their initial 

presentations. Therefore, without analyzing the 

methods detailly or proving the 

expressions/assumptions, the equations used in this 

paper were given for completeness.  

 
2.1. Vector Taylor Series  

VTS is used to characterize the unknown additive 

noise and channel effects in a computationally 

efficient manner. The VTS can be applied to the 

feature vectors, or to the statistics that model them 

(Moreno et al. 1996). In this paper, the latter 

approach is chosen. As the order of the Taylor series 

increase, the complexity of the system increases. A 

first order series usually performs sufficiently. The 

noisy speech cepstral vector can be expressed as 

𝒚 = 𝒙 + 𝒉 + 𝑔(𝒏 − 𝒙 − 𝒉) (1)   
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where x, h, n corresponds to the clean speech, 

channel, and additive noise cepstral vectors, 

respectively, with Gaussian distribution assumption 

(refer to (Acero et al. 2000) for the derivation and 

assumptions). The g(z) is a non-linear function given 

below, 

𝑔(𝒛) = 𝑪ln⁡(1 + exp⁡(𝐶−1𝒛) (2)   

where C is the discrete cosine transform (DCT) 

matrix. Since the convolutive channel noise is not 

considered in this work, it is dropped from the 

following expressions. Further, channel noise can be 

compensated in the lower dimensional i-vector 

space. The additive noise is assumed to be Gaussian, 

and the noisy speech vector y, and its mean vector 

(corresponding to a mixture of noisy UBM), 𝝁𝑦, can 

be obtained from 

𝒚 ≈ 𝝁𝑥 + 𝑔(𝝁𝑛 − 𝝁𝑥) + 𝑨(𝒙 − 𝝁𝑥) + (𝑰 −

𝑨)(𝒏 − 𝝁𝑛) (3) 

𝝁𝑦 ≈ 𝝁𝑥 + 𝑔(𝝁𝑛 − 𝝁𝑥) (4)   

where 𝝁𝑥 is the mean vector of clean speech model 

(a mixture of the clean UBM), 𝝁𝑛 is the mean vector 

of additive noise model (single Gaussian in this 

paper), I is the identity matrix, and A is the Jacobian 

of Equation 1 with respect to x and can be expressed 

as 

𝑨 = 𝑪𝑷𝑪−1 (5)   

P is a diagonal matrix whose elements are (𝝁 =

⁡𝝁𝑛 − 𝝁𝑥) 

𝒑(𝝁) =
1

1+𝑒𝑪
−1𝝁

 (6)   

The covariance matrix of the noisy UBM can be 

calculated as 

𝚺𝑦 ≈ 𝑨𝚺𝑥𝑨
𝑻 + (𝑰 − 𝑨)𝚺𝒏(𝑰 − 𝑨)𝑻 (7)   

where 𝚺𝑥 is the covariance matrix of the clean 

speech (a mixture of the clean UBM), 𝚺𝑛 is the 

covariance matrix of the additive noise. The noisy 

covariance matrix is assumed diagonal, although the 

result of the Equation 7 is not diagonal. The delta 

parameters can also be estimated by using 

Equations 8-9. 

Δ𝝁𝑦 ≈ 𝑨Δ𝝁𝑥⁡⁡⁡⁡⁡ (8)   

Δ𝚺𝑦 ≈ 𝑨Δ𝚺𝑥𝑨
𝑻 + (𝑰 − 𝑨)𝚫𝚺𝒏(𝑰 − 𝑨)𝑻 (9)   

2.2. Parallel Model combination 

The basic idea behind PMC is to obtain modified 

models of the acoustic environment (such as HMM, 

GMM), so that the mismatch between training and 

test data are minimized (Gales and Young 1993, 

Gales and Young 1996). The modification is simply 

done by combining a clean speech model with a 

noise model. The combination of the parameters is 

performed in the linear spectral domain. Therefore, 

parameters of each model must be mapped from 

cepstral domain. Once the models are combined, 

the observed noisy model parameters are mapped 

back to the cepstral domain. One of the advantages 

of the PMC is that no change is required in the 

further process such as scoring. Some assumptions 

made for the PMC are as follows (Gales and Young 

1996); 

- The speech and noise are independent. 

- They are additive in the time and power 

spectrum domains. 

- A single Gaussian or a GMM well presents the 

distribution of the observation vectors in the 

cepstrum or log filter-bank energy domain. 

- The frame alignment used to generate the 

speech models from clean data is not changed by 

the addition of noise. 

Additional assumptions to use log normal 

approximation (Gales and Young 1993, Tufekci et al. 

2006) are given below. 

- The sum of two log normal distributed random 

variables results in a log normal distributed 

random variable. 

- The variances of (
𝑆𝑖

𝑆𝑖+𝑁𝑖
) and (

𝑁𝑖

𝑆𝑖+𝑁𝑖
) are 

negligible. Si and Ni are the ith components of 

the clean speech observation vector and noise 

observation vector, respectively, in the mel-

scaled filter-bank energy domain. 

- E(
𝑆𝑖

𝑆𝑖+𝑁𝑖
) ≈

𝜇𝑖

𝜇𝑖+�̃�𝑖
) = 𝛾𝑖,        E(

𝑁𝑖

𝑆𝑖+𝑁𝑖
) ≈

�̃�𝑖

𝜇𝑖+�̃�𝑖
) =

𝜂𝑖, where E is expectation operator, 𝜇𝑖  and �̃�𝑖  are 

the ith components of the clean speech and 

noise mean vectors in the mel-scaled filter-bank 

energy domain. 
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For the rest of the equations, superscripts are used 

to denote the domain, i.e., c indicates the cepstral 

domain, l indicates log domain. Absence of a 

superscript indicates linear domain. The symbols ~ 

and ^ are used to depict noise and estimated noisy 

speech parameters. 

The model parameters (µ: mean vector, Σ: 

covariance matrix) are mapped to the log energy 

domain as follows: 

𝝁𝑙 = 𝑪−1𝝁𝑐 (10)   

Δ𝝁𝑙 = 𝑪−1Δ𝝁𝑐 (11)   

𝚺𝑙 = 𝑪−1𝚺𝑐(𝑪−1)T (12)   

Δ𝚺𝑙 = 𝑪−1Δ𝚺𝑐(𝑪−1)T (13)   

Then, exponential function is applied to transform 

into linear domain: 

𝜇𝑖 = 𝑒𝑥𝑝(𝜇𝑖
𝑙 +

Σ𝑖𝑖
𝑙

2
) (14)   

Δ𝜇𝑖 = 𝑒𝑥𝑝(Δ𝜇𝑖
𝑙 +

ΔΣ𝑖𝑖
𝑙

2
) (15)   

Σ𝑖𝑗 = 𝜇𝑖𝜇𝑗[𝑒𝑥𝑝(Σ𝑖𝑖
𝑙 ) − 1] (16)   

ΔΣ𝑖𝑗 = Δ𝜇𝑖Δ𝜇𝑗[𝑒𝑥𝑝(ΔΣ𝑖𝑖
𝑙 ) − 1] (17)   

Then, the noisy model parameters are estimated by 

using Equation 18 and Equation 19, 

 

�̂� = 𝝁 + 𝑔�̃� (18)   

�̂� = 𝚺 + 𝑔2�̃� (19)   

where g is a gain matching term calculated with 

averages of noisy speech signal energy (Ens), noise 

energy (En), and clean speech energy (Es) as 

𝑔 =
𝐸𝑛𝑠−𝐸𝑛

𝐸𝑠
 (20)   

Similarly, delta parameters of the noisy model are 

estimated by using the following equations. 

Δ�̂�𝑖 = 𝛾𝑖Δ𝜇𝑖 + gη𝑖Δ�̃�𝑖 (21)   

ΔΣ̂𝑖𝑗 = 𝛾𝑖𝛾𝑗ΔΣ𝑖𝑗 + g2η𝑖η𝑗ΔΣ̃𝑖𝑗 (22)   

Once the noisy model is constructed, its parameters 

must be transformed back to the cepstral domain by 

first taking the logarithm (Equations 23-26), then 

applying the DCT (Equations (27-30). 

�̂�𝑖
𝑙 = 𝑙𝑛(�̂�𝑖) −

1

2
𝑙𝑛(

Σ̂𝑖𝑖

�̂�𝑖
2 + 1) (23)   

Δ�̂�𝑖
𝑙 = 𝑙𝑛(Δ�̂�𝑖) −

1

2
𝑙𝑛(

ΔΣ̂𝑖𝑖

Δ�̂�𝑖
2 + 1) (24)   

Σ̂𝑖
𝑙 = 𝑙𝑛(

Σ̂𝑖𝑖

�̂�𝑖�̂�𝑗
+ 1) (25)   

ΔΣ̂𝑖
𝑙 = 𝑙𝑛(

ΔΣ̂𝑖𝑖

Δ�̂�𝑖Δ�̂�𝑗
+ 1) (26)   

�̂�𝑐 = 𝑪�̂�𝑙  (27)   

Δ�̂�𝑐 = 𝑪Δ�̂�𝑙 (28)   

�̂�𝑐 = 𝑪�̂�𝑙𝑪𝑇 (29)   

Δ�̂�𝑐 = 𝑪Δ�̂�𝑙𝑪𝑇 (30)   

In the experiments, four preceding and four 

succeeding frames were considered to obtain delta 

features as given in Equation 31, where y is the static 

feature vector,  Δ𝒚 is the delta feature vector, k and 

i are the frame indexes, and N=4. 

Δ𝒚𝒍(𝑘) =
∑ 𝑖𝒚𝒍(𝑘−𝑖)𝑁
𝑖=−𝑁

∑ 𝑖𝑁
𝑖=1

 (31)   

However, in the PMC method, the equations for 

deltas were derived considering that the deltas 

were calculated using the present frame and its 

succeeding one. To apply the same formulas, it is 

assumed that the delta features can be expressed 

as, 

Δ𝒚𝒍(𝑘) ≅ Δ𝒚𝒍(𝑘 − 𝜏) − Δ𝒚𝒍(𝑘 + 𝜏) (32)   

Considering that the noisy speech is the sum of the 

speech (x) and noise (n) signals in the linear domain, 

Equation 32 can be transformed into Equation 33. 

Δ𝒚𝒍(𝑘) ≅ log(
𝑒𝒙(𝑘−𝜏)+𝑒𝒏(𝑘−𝜏)

𝑒𝒙(𝑘+𝜏)+𝑒𝒏(𝑘+𝜏)
)   

= log⁡(𝑒𝒙(𝑘−𝜏)−𝒙(𝑘+𝜏)
𝑒𝒙(𝑘+𝜏)

𝑒𝒙(𝑘+𝜏)+𝑒𝒏(𝑘+𝜏)
+

𝑒𝒏(𝑘−𝜏)−𝒏(𝑘+𝜏)
𝑒𝒏(𝑘+𝜏)

𝑒𝒙(𝑘+𝜏)+𝑒𝒏(𝑘+𝜏)
) (33)   

The expressions within the log operation follows 

Equation 21, where the ratios correspond to 𝛾 and 

𝜂, and the exponentials correspond to the speech 
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signal and noise signal, respectively. Therefore, we 

do not need to modify the original PMC equations 

for the deltas. 

 

3. Model Compensated First Order Statistics 

In this section, the conventional i-vector extraction 

scheme is reviewed first, then the combination of 

the model based methods with i-vectors is 

explained. The main idea is observing noisy first 

order statistics. Since the total variability matrix (T) 

is learned from sufficient statistics, a noisy version 

of T will be estimated. Further, as T is also called as 

i-vector extractor, noisy i-vectors will be observed at 

the final stage. The model compensation methods 

are applied to the UBM and first order statistics. All 

of the other steps and training conditions remain 

the same (i.e. training of T, applying channel 

normalization and/or dimensionality reduction 

methods, scoring the i-vectors). Hence, there is no 

requirement to develop new EM algorithms, apply 

multicondition training, or modify the scoring 

process. 

 

3.1. Extraction of i-vectors 

The conventional i-vector scheme (Dehak et al. 

2011) is reviewed for convenience. A speaker and 

channel dependent GMM supervector can be 

defined as  

𝑀 = 𝑚+ 𝑇𝜔 (34)   

where m is the mean supervector taken from the 

UBM, T is the i-vector extractor, and 𝜔 is a random 

vector with a normal distribution. For each 

utterance, an i-vector is obtained by the maximum 

a posterior (MAP) estimate of 𝜔. Sufficient statistics 

(Baum-Welch), which are used in the training of T 

and in the extraction of i-vectors, are collected using 

the UBM (Ω) as follows: 

𝑁𝑐 = ∑ 𝑃(𝑐|𝑓𝑡, Ω)
𝐿
𝑡=1  (35)   

𝐹𝑐 = ∑ 𝑃(𝑐|𝑓𝑡, Ω)𝑓𝑡
𝐿
𝑡=1  (36)   

N and F called as the zero and first order statistics, 

respectively, calculated for a sequence of L frames. 

𝑃(𝑐|𝑓𝑡, Ω) is the posterior probability of mixture 

component 𝑐 = 1,… , 𝐶 generating the observation 

vector 𝑓𝑡. Centralized first order statistics can be 

calculated by substituting the UBM mean 

supervector. 

𝐹�̅� = ∑ 𝑃(𝑐|𝑓𝑡, Ω)(𝑓𝑡 −𝑚𝑐)⁡
𝐿
𝑡=1  (37)   

Given an utterance, the posterior estimation of i-

vector is obtained by using Equation 38.   

𝜔 = (𝐼 + 𝑇𝑡Σ−1𝑁(𝑢)𝑇)−1𝑇𝑡Σ−1�̅�(𝑢) (38)   

𝑁(𝑢) is a diagonal matrix whose diagonal block are 

𝑁𝑐𝐼, �̅�(𝑢) is a supervector constructed by 

concatenating all 𝐹�̅� for a given utterance, and 𝐼 is 

the identity matrix. Σ is the covariance matrix that 

can be copied from the UBM (Kenny 2012). 

Assuming the first and second order moments 

〈𝜔(𝑠)〉 and 〈𝜔(𝑠)𝜔(𝑠)𝑇〉 have been calculated, T 

can be updated using the formula below (Kenny, 

2012). 

𝑇𝑐 = (∑ ⁡�̅�𝑐(𝑠)〈𝜔
𝑇(𝑠)〉𝑠 )(∑ 𝑁𝑐(𝑠)〈𝜔(𝑠)〉𝑠 〈𝑤𝑇(𝑠)〉)−1 (39)   

As seen in Equation 39, T matrix depends on the 

sufficient statistics. It is assumed that if the statistics 

are noisy, the resulted T will be noisy, Hence, 

robustness of the system will be increased due to 

the fact that noisy i-vectors can be extracted from 

the clean training data, and the mismatch between 

noisy test data will be reduced. 

 

3.2. Extraction of noisy i-vectors with model 

compensation 

The proposed method modifies the UBM 

parameters and the first order statistics. The UBM 

has a critical role in the i-vector scheme. It is used to 

estimate sufficient statistics, centering the first 

order statistics, and the covariance matrices used in 

the MAP estimation of the i-vectors. Considering 

these facts, it is clear that a noisy UBM is needed to 

before further processes. The noise is assumed to be 

stationary and modeled as a single Gaussian. Hence, 

using the PMC and VTS methods described in the 

previous section, a noisy UBM is obtained with the 

number of mixtures equal to the clean UBM. It 

should be noted that both methods applied 

independently at the exact same stages.  Hence, the 

noisy model, or compensated model means that the 

model parameters are modified either PMC or VTS.  
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The next step of the proposed method is to extract 

the sufficient statistics, as in the conventional i-

vector framework. In this case however, using the 

noisy UBM will produce erroneous results since the 

training data is clean. Also, as mentioned in Section 

2.2, The frame alignment used to generate the 

speech models from clean data is not changed by 

the addition of noise. Therefore, there is no need to 

modify the zero order statistics. The first order 

statistics, on the other hand, are multiplied by the 

observation vectors which will be noisy in the test 

data. Model compensation is applied to the first 

order statistics so that noisy i-vectors can be 

extracted from the clean training data. The zero and 

first order statistics can be thought as weights and 

mean vectors of the UBM, respectively. In fact, 

dividing the first order statistics to the zero order 

statistics yields to updated mean values as in the M-

step of the GMM/UBM training. Hence, after 

reshaping and dividing, the first order statistics are 

available for model compensation. The covariance 

matrix of the clean UBM is used in conjunction with 

the first order statistics to apply PMC method. For 

the VTS, the first order statistics can be directly 

modified without considering the covariance 

matrices. The modified equations are given below 

for convenience. 

Let �̌� denote the reshaped and divided first order 

statistics (mean vector of a mixture). For the VTS 

method,𝝁𝑥 = �̌�, and 𝝁Δ𝑥 = Δ�̌� so the noisy first 

order statistics (�̂�) and its deltas (Δ�̂�) can be 

estimated as in Equation 4 and Equation 8, 

�̂� ≈ �̌� + 𝑔(𝝁𝑛 − �̌�) (40)   

Δ�̂� ≈ 𝑨Δ�̌�⁡⁡⁡⁡⁡ (41)   

For the PMC method, 𝝁𝑐 = �̌� andΔ𝝁𝑐 = ⁡Δ�̌�, and 

the related equations in Section 2.2 should be 

handled accordingly, with the covariance matrix 

taken from the clean UBM. Equation 27 and 

Equation 28 give the �̂�⁡and its deltas Δ�̂�, 

respectively. 

Note that model compensation is applied before 

calculating the centralized statistics. In order to 

follow the i-vector framework, the noisy first order 

statistics must be multiplied with the zero order 

statistics, then concatenated (to reverse the 

reshape and divide operations). Equation 37 can be 

rewritten as 

𝐹�̅� = 𝐹𝑐 −𝑁𝑐𝑚𝑐 (42)   

Using the noisy first order statistics and the mean 

vectors from the noisy UBM (�̂�) , the centered 

statistics can be expressed as 

�̂� ≈ �̌� + 𝑔(𝝁𝑛 − �̌�) (43)   

The remaining process is completely the same as the 

standard i-vector process. T matrix is trained using 

the noisy UBM, clean zero order statistics, and noisy 

first order statistics. The observed matrix can be 

considered as noisy total variability space. Finally, 

the noisy i-vectors can be extracted using the noisy 

T matrix. 

In the test stage, contrary to the training, sufficient 

statistics are extracted using the noisy UBM. The 

reason for this approach is that test data contains 

noise, and we do not have any frame alignment 

information as in the UBM training with clean data. 

Using the noisy UBM, noisy statistics will be 

observed inherently so there is no need to add any 

compensation in this stage. Experimental results 

given in the next section confirmed that this 

approach effectively reduce the mismatch due to 

the additive noises, even in severely degraded 

situations such as -6 dB and 0 dB SNR levels.  

To summarize the proposed approach, a block 

diagram is given in Figure 1. The leftmost blocks 

show processes for the conventional i-vector 

system. The dashed blocks are the proposed 

modifications. Note that clean sufficient statistics 

are extracted using the clean UBM. In the proposed 

method, noisy statistics are obtained directly with 

the model compensation in the training stage. As 

mentioned in the previous paragraph, in the test 

stage, the noisy UBM is used to obtain the sufficient 

statistics. 

 

4. Speaker Verification Experiments 

4.1. Experimental setup 

250 male speakers from the NIST SRE 1998 database 

were used in the verification experiments. For each 

speaker, approximately 5 minutes of training data 

were available. The durations of test data were 30 
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seconds. 1308 test utterances were used to 

measure the performance of the proposed method. 

A simple energy-based VAD was used to remove the 

silence parts found in the utterances (Kinnunen and 

Li 2010). Four different noises (F16, factory, Lynx, 

speech) from the NOISEX-92 noise database (Varga 

and Steeneken 1993) were added to the test files at 

SNR levels varying from -6 dB to 18 dB with 6 dB 

steps. All utterances (training and test files) and 

noise signals were normalized to have equal energy 

in each utterance. Then, for the test files, noise was 

added with a suitable multiplier to have the desired 

SNR level. As mentioned in the previous section, 

noise was modeled with a single Gaussian. Although 

F16 and factory noises were not as stationary as 

Lynx and speech noises, this approach still estimates 

the noise sufficiently, as reported in the test results. 

However, more Gaussian components may be 

needed for more complex noise types, or more 

accurate results, at the expense of computational 

time. 

26-dimensional MFCCs were extracted (13 static 

features including the zeroth coefficient, and their 

deltas). A UBM with 512 mixtures was trained with 

all available training data. 400 dimensional i-vectors 

were extracted. LDA was applied to reduce the i-

vector dimensions to 200. PLDA was utilized for 

scoring stage. The system trained on the clean data 

with the given parameters was served as baseline. 

For the proposed noisy i-vectors, the model based 

methods were applied to obtain noisy first order 

statistics and noisy UBM. 

As the success of the model compensation methods 

for GMM/HMM based systems are known from the 

related literature, results with the traditional GMM-

UBM method are also given in order to prove that 

model compensation with the i-vectors can achieve 

better recognition performances. In the GMM-UBM 

method, speaker models were adapted from the 

clean UBM, then model compensation applied to 

both UBM and adapted speaker models. Since the 

training data is clean, this approach produced better 

results than adapting the speaker models from the 

noisy UBM. Table 1 shows the results for the GMM-

UBM method, and Table 2 shows the results for the 

i-vectors. 

 

 

Feature Extraction

UBM 

Sufficient Statistics

T-matrix 

LDA

PLDA scoring

Model 
Compensation

Model 
Compensation

Noisy UBM

Noisy First Order 
Statistics

Noisy T-matrix 

Clean 
training 

data

Noisy i-vector

Decision  
Figure 1. The conventional i-vector system (leftmost blocks) and the proposed modifications (dashed blocks). At the test 

stage, the noisy test data follows the same path for the conventional system. For the proposed system, noisy 

UBM and noisy T-matrix are used instead of their clean versions. 

 

Table 1. Speaker verification results in terms of percent EER for the GMM-UBM method. 
Noise 
Type 

SNR Level 
(dB) 

Baseline GMM-
UBM 

PMC  
GMM-UBM 

VTS  
GMM-UBM 

Average relative 
EER reduction 

with PMC 

Average relative 
EER reduction 

with VTS 

 
 

Lynx 

-6 42.6991 18.8879 11.4853   

0 32.2446 7.881 7.6711   

6 20.742 5.3957 5.7279 ~53% ~57% 

12 9.2896 4.4805 4.8593   

18 4.8387 4.2667 4.0667   
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F16 

-6 46.3478 26.4758 16.446   

0 41.5461 11.1111 9.6579 ~65% ~69% 

6 33.6294 6.4645 6.7848   

12 20.9424 4.8346 5.2057   

18 9.0211 4.2636 4.5739   

 
 

Factory 

-6 45.2763 22.8278 18.8776   

0 36.4122 10.163 9.3799   

6 23.913 6.4626 6.4181 ~55 ~60 

12 12.3656 4.7804 5.1453   

18 5.5556 4.3702 4.3928   

 
 

Babble 

-6 38.8889 11.3965 11.0018   

0 25.8913 7.1288 7.4157   

6 12.7907 5.6355 5.5353 ~44 ~44 

12 5.8548 4.6914 4.563   

18 4.1995 4.0897 4.1775   

 

The average relative EER reduction rates are also 

given in the last columns for each noise type. The 

VTS performed slightly better than the PMC. For the 

GMM-UBM method, reduction rates vary between 

44% and 69%. The proposed method produced 

similar results with the i-vectors, 42% and 65%, the 

lowest and the highest reduction rates, respectively. 

This proves that compensating the first orders 

statistics along with the UBM, model compensation 

methods have fitted in the i-vector scheme 

seamlessly. Another important point is that the 

baseline i-vectors produced better EER values than 

the baseline GMM-UBM, which was expected. 

Therefore, despite the similar range,  

EER reductions within the i-vector framework are 

much more valuable. 

 

 

 

 
 
 
 
 
Table 2. Speaker verification results in terms of percent EER for the i-vector method. 

Noise 

Type 

SNR Level 

(dB) 

Baseline  

i-vector 

PMC  

i-vector 

VTS  

i-vector 

Average relative 

EER reduction 

with PMC 

Average relative 

EER reduction 

with VTS 

 
 

Lynx 

-6 39.0395 14.5712 12.8728   

0 30.8655 6.8681 6.3043   

6 19.021 4.4348 4 ~60 ~65 

12 7.3783 3.5477 2.8278   

18 4.4346 3.0214 2.6992   

 
 

F16 

-6 41.0819 23.1481 19.913   

0 33.6728 10.9322 9.0617   

6 23.8502 5.7018 5.0998 ~58 ~62 

12 11.7347 3.8069 3.6465   

18 5.5987 3.4404 3.3814   

 
 

Factory 

-6 39.1631 19.087 15.1623   

0 29.6333 8.8207 8.5456   

6 19.5322 5.4581 4.5918 ~53 ~57 

12 8.2418 3.7037 3.3419   

18 4.0466 3.2651 3.2776   

 
 

Babble 

-6 35.6015 14.961 15.5222   

0 22.7521 6.3662 6.402   

6 10.9442 4.2813 3.7275 ~42 ~45 

12 4.6784 3.6355 3.3259   

18 3.0435 3.0702 2.9933   

 

4.2. Discussion 

The experimental results indicated that the i-vectors 

can benefit from the model compensation 

techniques, without extreme changes in the 

conventional procedure. Both the VTS and the PMC 

methods achieved very high relative reduction rates 

in terms of EER. The VTS performed slightly better 

than the PMC. This situation was expected since the 
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previous literature showed that the VTS 

approximates the noise better than the PMC (Acero 

et al., 2000). 

The benefits of the proposed scheme were more 

observable for the lower SNR values. For instance, 

both baseline and the proposed systems performed 

similar when the SNR level was 18 dB. However, as 

the SNR drops to 6 dB, the baseline method’s 

performance dropped dramatically while the 

proposed systems’ EERs were not even doubled. For 

the -6 dB SNR level, the best performing baseline 

system produced 35.6% EER. The worst performing 

proposed system yielded 26.47% EER. The gap 

between the best and worst performing systems 

proves the effectiveness of the noise compensation 

methods. 

No other data besides the clean training data were 

used in the experiments. This is a more practical 

approach then the multicondition training since the 

training data usually collected in clean, controlled 

environments. It should be noted that the noise was 

modeled with a single Gaussian. The F16 and factory 

noises are more volatile than the Lynx and babble 

noises, however, model compensation still 

increased the robustness against these noises. More 

Gaussians should lead to more accurate noise 

estimates, which will further improve the results. On 

the other hand, the system’s complexity will 

increase in accordance with the number of 

Gaussians used to estimate the noise parameters. 

In the experiments, we assumed that the noise type 

in the test data is known to focus solely on the 

performance of the model compensation within i-

vector framework. For practical systems, various 

methods can be used to estimate the noisy sections 

on-line, if no prior information is available. A little 

adaptation data is required for the model 

compensation methods, and the proposed 

approach only includes compensation in the UBM 

and first order statistics, then the total variability 

matrix can be trained as usual. Hence, the system 

can be adapted to a new environment with a little 

noise data, and once the adaptation completed, the 

scoring is just as fast as the conventional i-vectors. 

For the noisy environments where the noise is highly 

non-stationary the proposed approach still can be 

effective providing enough mixture to model the 

noise off-line, but in a practical system adapting the 

system to a highly non-stationary environment will 

be much more time consuming. In fact, robustness 

against non-stationary noise is an active research 

area for speech related studies, and most solutions 

require complex systems. 

 

5. Conclusion 

In this paper, state-of-the-art model compensation 

methods, namely PMC and VTS, were combined 

with the i-vectors. The main purpose of the 

proposed method is to extract noisy i-vectors from 

the clean training speech, hence the mismatch 

between the clean training data and the noisy test 

data will be minimized. Contrary to the previous 

approaches, mutlicondition training was not 

required, since the compensation was directly 

applied to the UBM and the first order statistics. 

Hence, only a little noise data was used for modeling 

the parameters with a single Gaussian. The 

proposed approach does not change the training of 

the total variability matrix, hence the standard EM 

training was used. The LDA dimensionality reduction 

and PLDA scoring were also included without any 

modification, as in a standard i-vector system.  

Speaker verification experiments were conducted to 

show the effectiveness of the proposed method. 

Four different noise types were considered with SNR 

level changing from -6 dB to 18 dB with 6 dB steps. 

Results with the GMM-UBM method were also 

given to indicate the effectiveness of the model 

compensation systems since they are mainly 

combined with GMM/HMM systems in robust 

speech recognition systems. Results with the i-

vector method proved that the proposed method 

could produce as high EER reductions as the GMM-

UBM system. Considering all noise types and all SNR 

levels, more than 50% relative EER reduction was 

achieved.  
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