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ABSTRACT. In this paper, one of the nonlinear evolution equation (NLEE)
namely generalised Oskolkov equation which defines the dynamics of an in-
compressible visco-elastic Kelvin-Voigt fluid is investigated. We discuss nu-
merical solutions of the equation for two test problems including shock wave
and Gaussian initial condition, applying the collocation finite element method.
The algorithm, based upon Crank Nicolson approach in time, is uncondition-
ally stable. To demonstrate the efficiency and accuracy of the numerical al-
gorithm, error norms Lo, Lo and invariant I are calculated and the obtained
results are given both in tabular and graphical form. The obtained numeri-
cal results provide the method is more suitable and systematically handle the
solution procedures of nonlinear equations arising in mathematical physics.

1. INTRODUCTION

Nonlinear evolution equations (NLEEs) are special classes of the category of
partial differential equations (PDEs), which have been studied intensively in past
several decades [1]. Various methods [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17] have been devised to find the exact and approximate solutions of PDEs in
order to provide more information for understanding physical phenomena arising in
numerous scientific and engineering fields such as mathematics, physics, mechanics,
biology, ecology, optical fiber, chemical reaction and so on [18].

The Oskolkov system which describes the nonlinear phenomena in incompressible
viscoelastic Kelvin—Voigt fluid and fluid dynamics, based upon Oskolkov equation,

(1.1) Up — Mgt — QUgy + Uty = 0,

and modified Oskolkov equation

(1.2) Up — NUggt — QUgy + uluy =0,
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has the form

(1.3) (1 -2 )u =aviu—(ue)u—’p+f=0, veu=0.

Let’s immediately note that « is viscosity and A plays a vital role and should be
negative. Its negative ness has physical meaning [19, 20]. Various kinds of Os-
kolkov equation are solved by several methods [21, 22, 23, 24, 25, 26, 27, 28] to
construct exact solutions. Even so, numerical methods for initial-boundary value
problem of the generalized Oskolkov equation have not been investigated consider-
able. Karakoc et al. [29] have applied collocation finite element method to find the
numerical solutions of the equation.

The work recreation is organized as follows: In the next section, by giving infor-
mation about septic B-spline functions, collocation method has been applied to the
equation. In Section 3, stability analysis of the method is established. Some nu-
merical examples are reported in Section 4 to validate performance of the method.
Finally, we finish the paper with a brief conclusion.

2. NUMERICAL APPLICATIONS
In this section, we consider the generalised Oskolkov equation as
(2.1) ur + Y (uP)y + oUzy + Nz = 0,
the initial condition u(z,0) = f(z) a < z < b,and the boundary conditions

un(a,t) =0, un(b,t) =0,
(2.2) (uN):c (a,t) =0, (U’N)x (b,1) =0
(uN)z:E (avt) =0, (uN)mz (bv t) =0, t>0

where «, o and n are constants and z is the space coordinate and ¢ symbolizes time
differentiation.

For simplicity, let us assume that the grid distribution a = z¢p < 71 < ... <
zny = b of a finite interval [a,b] is taken into consideration with mesh spacing
h =% = (2,41 — 2,,). First of all, we assume t,,(z) to be the septic B-splines
having nodal points z,, through which the uniformly distributed N nodal points
are taken as a = g < 1 < ... < xy = b on the ordinary real axis. Thus, this
assumption yields a set of B-splines consisting of {¢)_3,9_a,...,)N12,¥n+3} and
forming a basis for functions defined over [a,b]. The septic B-splines ¥, (z) are
defined by the following relationships [30]:

a, [$m747 l'mf?)]»
a — 8b, [Tm—3, Tm—2],
a — 8b + 28c, [Tm—2, Tm—1],
a —8b+28¢c —56d, [Tm—1,Tm],
(2.3) U () = 77 a—8b+28¢ —56d, [T, Tm41],
e —8f +23g, [Tm+1, T2
e—38f, [xm+2a ‘rer?J»
e, [Trm43s Trmtals
0, otherwise.

The septic B-spline functions are employed to overcome the higher order deriva-
tives in the equation and when the bases are chosen at a high degree, generally
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better numerical results are obtained [31]. To obtain the numerical solutions of the
equation (2.1) using septic B- splines as approximation functions by the collocation
method, we assume that the approximate solution uy(z,t) of Eq. (2.1) is

N+3

(2.4) un (@, t) = Y j()8;(t)

j=—3

where §;(t) are unknown time dependent quantities to be determined. Using Egs.
(2.3) and (2.4), nodal values of uy,; ul,; u/; u!” and v’ in terms of the element
parameters d,, in the following form
(2.5)
uN(wm, £) = U = O3 + 1208, o + 11918, 1 + 24168, + 11918, 41 + 1200, 19 + Opi3,
/ ( _3 — 560,92 — 2450,,—1 + 2450,,41 + 560,42 + 5m+3)
2( m—3 + 245m 9+ 1581 — 800, + 158,41 + 240,42 + Oms),
/TZ 2(—6 —8Im—2 4+ 19611 — 190,41 + 83 mi2 + dm+3),
W= E5310( 3 95m 1+ 160, — 9mi1 + Omys)

m) m? m

2

Hk;"

where the symbols /, /., " and * indicate first, second, third and fourth differ-
entiation with respect to z, respectively. Putting the node values of u,, and its
derivatives given by Egs. (2.5) into Eq. (2.1) yields the following set of ordinary
differential equations of the form:

(2.6)
(Sm,?, + 12082 + 11918,,_1 + 24168, + 1191641 + 120042 + 5m+3)

M (5 — 5602 — 2450, —1 + 245611 + 560m12 + Omis)
+ 557 (O3 + 240, 5 + 158,01 — 800, + 156,41 + 24012 + G y3)
+4]3;I (Om—3 + 240 —2 + 150,,—1 — 800, + 158,41 + 240,12 + dimys) = 0,

where
(2.7)
Zm = pub” L=yp (Om—3 + 1206, o + 11916, _1 + 24165,, + 11916,,41 + 1206, 42 + 6ny3)? p=l ,

and - states derivative with respect to t. The term puP~! in non-linear term
puP~lu,, is taken as Eq. (2.6) considering that the quantity puP~! is locally con-
stant, with the linearization form presented by Rubin and Graves [32]. Both the
finite difference approach and the Crank-Nicolson diagrams described below can be
applied to the Eq.(2.6):

e A M 1

Therefore, the above process allows us to derive a recursion relationship between
the two time levels based on the parameters 67", 67 as follows:

MO X6l 4 a0 4 X+ AsOt + Aedth -+ Aot

2.9
( ) = )\75m 3+ X600 + )\55m,1 + A4y, + )\35m+1 + )\25m+2 + )\15:,Ll+3,

where
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M=[1—-Ezm+T+ M],

A2 = [120 — 56 Ezy, + 24T + 24M],
As = [1191 — 245E 2, + 15T + 15M],
A\ = [2416 — 80T — 80M],

(2.10)

)\6 = [120 + 56 Bz, + 24T + 24M],
+ Ezp +T 4 M],

[
[
[
[
As = [1191 + 245E 2, + 15T + 15M],
[
=[1
TyAt, T = 250At, M = 331

E_

To assure a unique solution; we eliminate the parameters {d_3,6_2,0_1,n+1,0n+2,ON+3 }
from the system (2.9) using the boundary conditions (2.2). In this case, the system,
becomes a matrix equation for the N + 1 unknowns d = (¢, d1,...,0x)", then last
system can be written in the matrix form

(2.11) Pd"t = Qd".
Using the following initial and boundary conditions,

un(z,0) =u(zm,0), m=0,1,2,.,N
(2.12) (uN)z (a70) =0, (uN)z (b7 O) =0,
(un),, (a,0) =0, (un),, (b,0) =0.

the values of the initial parameters 6, at the initial time are obtained. So, initial
vector d° can be determined in the following system of algebraic equations in matrix
form:

(2.13) Wd = R,
where W is
W =
[ 1536 2712 768 24 T
82731 210568.5 104796 10063.5 1
9%(1)0 9685197 19%%68 9684l?4
81 81 81 81 120 1
1 120 1191 2416 1191 120 1
1 120 96474 195768 96597 9600
1 10063.5 102%96 210%16845 8287131
81
L 24 768 2712 1536 |

dO = ((50,(51,(52, ...,(SN,Q,(SN,héN)T and R = (U(J](),O),u(xl,()), ...,u(xN,1,0)7u(xN,0))T.

2.1. Stability of the scheme. To implement the von Neumann stability anal-
ysis, generalised Oskolkov equation is linearized by considering quantity u?~! in
nonlinear term u?~lu, is locally fixed. Writing Fourier formula

(2.14) o1 = Enetmkh
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where k is the mode number and h is the space step size, into the system of Eq.

(2.9) we get the following system:

(2.15)
w1§n+1ei(m73)kh 4 w2£n+1ei(m72)kh 4 w3§n+1ei(m71)kh =+ w4§n+1eimkh + w5§n+1ei(m+l)kh+
w6§n+16i(m+2)kh + w7€n+16i(m+3)kh _ w7§n6i(m73)kh + wﬁgnei(m72)kh + wsgnei(mfl)kh+
w4£neimkh +w3£nei(m+1)kh+
w2§nei(m+2)kh +w1€nei(m+3)kh

If Eq.(2.15) is simplified, we obtain the following growth factor
a—b—1c

2.16 = —

(2.16) ¢ a+b+ic’

which gives

a = A(2cos(3kh) + 240 cos(2kh) + 2382 cos(kh) + 2416)+
B(2cos(3kh) + 48 cos(2kh) 4+ 30 cos(kh) — 80,

b= C(2cos(3kh) + 48 cos(2kh) + 30 cos(kh) — 80,

¢ = D(2sin(3kh) + 112sin(2kh) + 490sin(kh),

where
42 21

c

Azla B:ﬁ"% :h2

oAt, D:%WAth, m=20,1,...,N.

|€] < 1, is found when we take the modulus of Eq.(2.16). Thus, the linearized
algorithm is unconditionally stable.

3. COMPUTER APPLICATIONS AND DISCUSSIONS

In this section, the two well-known test problems are investigated namely motion
of shock wave and evolution of solitary waves with Gaussian initial condition. The
accuracy of the present numerical method is controlled using the following error
norms, Ly and L., respectively [33]:

2

7

u;zact _ (UN)J

N
(3.1) Ly = [Ju* —uyll, = \|h Y
j=1

uimd - (uN)j j=1,2..,N.

(3.2) Leo = |Juc®e — uNHOO o max ,

In addition to these error norms, the lowest invariant, of which formulae is given
below, is computed

b N n
(3.3) I= [ udr~h > =1 Uy,
which corresponds to mass.

3.1. Propagation of shock wave. Among others, the first test problem has been
considered as the shock wave solution of the Eq. (2.1) which exact solution is given
in the form

2/(p—1)

B po aj
(34) ) =14+ BD(§ a + cosh [u(z — kt)] — sinh [u(z — nt)]) ’

where
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717(02* 802 (p+1) )\/m

(p+3)

A= _1 o(p—1) v(+3)
T2 2_ 802(p+1)> ’
) (o222
- 2_802(p+1) )\’
v (p+3) (0' (013)2 )

vo (02 22D ) fonGpeT)
D =ov2n(p+ 1)\/ n(p+3) ’
_ V8 [p%2-2p+1
H= n(p+1)
o/2n(p+1)
n(p+3)
and a, K, p, p are arbitrary constants [34]. We take Eq. (3.4) as initial condition

at ¢t = 0 of the form

K=

2/(p—1)

M ap
(3:5) u(,0) = [A +BD( 2 a+ cosh(uz) — sinh(ux)
We have selected values of parameters as ¢ = 0.1; n = 7; h = At = 0.1; v =
0.5,0.33; p = 2,3 and a = 0.3,0.5 through the region z € [-50, 50] for the compu-
tational work.
Case 1. For the first case, we choose p = 2 with the parameters as v = 0.5, 0 = 0.1,
n="7 h=0.1,a=0.3and At = 0.1 over the interval —10 < z < 10. Amplitude
of the wave is found as A = —0.096. Numerical values of the invariants and error
norms have been reported at some predefined times up to ¢ = 5 in Table (1). It is
observed from table that the errors are noticeably small and invariant of solutions
are almost unchanged as time grows. We have drawn graphs of the numerical
solution of a shock wave in Fig. (1).

TABLE 1. Invariants and error norms for Case I

t I Lo — Norm Lo — Norm
0.0 17.0705095646 0.0000000000 0.0000000000
1.0 17.4126759927 0.0006036666 0.0001831731
2.0 17.1657255366 0.0010375625 0.0003252532
3.0 16.9222773872 0.0015305140 0.0004885243
4.0 16.6822818739 0.0020426984 0.0006586780
5.0 16.4456900304 0.0025654551 0.0008324359

Case II. For the present case, to provide the simulation through the region —10 <
x < 10, the parameters v = 0.33, 0 = 0.1, n =7, a = 0.5, h = 0.1 and At = 0.1
are used for p = 3. It is computed that the amplitude of shock wave has —0.116.
In Table (2), we list values of the invariant and error norms for different time
levels. The table shows that invariant is almost constant as the time increases.
The behaviours of solutions have been shown in Fig. (1) for # € [-10,10] and
0 <t < 5. Distribution of errors at ¢ = 10 are depicted in Fig. (2) for p = 2 and 3,
respectively.
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FIGURE 1. Shock wave profiles for a)p = 2, v = 0
n="T7,h=01a=03and At =0.1b)p=3,v=0.33, 0 =0.1,
n=7h=0.1,a=05and At =0.1.

TABLE 2. Invariants and error norms for Case II

t I Lo — Norm Lo — Norm
0.0 -1.8145676980 0.0000000000 0.0000000000
1.0 -1.7917168932 0.0251287079 0.0078733542
2.0 -1.7848595276 0.0273149732 0.0083127545
3.0 -1.7782317207 0.0318511153 0.0096966411
4.0 -1.7718229053 0.0380046052 0.0117056417
5.0 -1.7656224690 0.0452176097 0.0141149714

3.2. Evolution of Waves. For the last application, Gaussian initial condition to

display the evolution of waves are considered.
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FIGURE 2. Error distributions at ¢ = 10 for the parameters a)p =
2,v=05,0=01,n=Tand a=03b)p=3,v=0.33, 0 =0.1,
n=7and a=0.5

3.2.1. Gaussian Initial Condition. For the equation under consideration, the evo-
lution of waves is now investigated using the Gaussian initial condition

(3.6) u(x,0) = exp (fo) ,
and boundary condition
(3.7) u(=10,t) = u(10,¢) =0 , t>0

for different values of h and At [34]. For the numerical simulations, two sets of
parameters v =0.5,0.33, 0 =0.1,7=7,a=0.3, h= At =0.1 and h = At = 0.01
in the region [—10,10] are selected for p = 2,3. Results are reported in Table(3).
Evolution of a train of waves with Gaussian initial condition is plotted in Fig. (3)
for p =2,3.
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TABLE 3. Invariant and error norms for Gaussian initial condition

t p=2 p=3
h=At=0.1 h=At=0.01 h=At=0.1 h=At=0.01
1 1 1 1
0.0 1.7724537283 1.7724549574 1.7724537283 1.7724549574
1.0 1.8037525365 1.8028647197 1.8030392033 1.8025903847
2.0 1.8344852561 1.8328243023 1.8328702827 1.8320166101
3.0 1.8640699962 1.8617827701 1.8618301065 1.8606202391
4.0 1.8916727204 1.8889600314 1.8897528713 1.8882439336
5.0 1.9162436998 1.9133811566 1.9164297119 1.9146920566
1,0 1
0,8
= 06
3
=1
0,4
0,2
0,0
10 5 0 5 10

10,00

FIGURE 3. Generated waves profiles with a)p = 2,7 = 0.5, 0 =
0.1, n=7and a =03b)p=3,7vy=0.33 0=01n=7and
a = 0.5 with various values of h and At.

4. CONCLUSION

In this study, septic B-spline collocation method has been employed to obtain the
numerical solutions of the generalised Oskolkov equation. The presented method
has been shown to be unconditionally stable. To demonstrate the performance of
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the algorithm, two test problems including shock wave and evolution of waves with
Gaussian initial condition have been examined. For shock wave Lo and L., error
norms and for the Gaussian initial condition the invariant I; has been calculated.
The obtained numerical results indicate that the error norms are satisfactorily small
and the conservation law is marginally constant in all computer program run.
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