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Özet—  Mevcut çalışmalar örneğin şüpheli-bulaş-eksiltme modeli ve makine öğrenmesi modelleri her bir kişi ve alan için 

bulaş riskinin hesaplanmasına uygun değildir. Bu çalışmada mevcut yaklaşımların eksik yönlerinin giderilmesi için 

toplanan verilerin uzaysal ve zamansal tahminleme modeli olarak bir araya getirildiği bir dönüt işleme tasarımı 

önerilmektedir. Önerilen tasarım üç ana işleme aşaması içermektedir. Bunlar verinini üretilmesi, geri dönüş analizi ve 

gerçek zamanlı uzaysal ve zamansal değerlendirme süreçleridir. Verilerin üretilmesi aşamasında her bir bireyin Kovid-

19 durumunun Markov olasılık işlemi kullanılarak üretildiği süreç yer alır. Bu aşamada hastalığın çoğalma parametreleri, 

semptonlu hastaların ve semptonsuz hastaların görülme sıklığı, toplam nüfus, hastalığı geçirmekte olan nüfus, ve hareket 

halinde olan nüfus sayıları kullanılarak her bir hasta için Kovid durumu ve hareket halinde olma durumu rastsal olarak 

güncellenir.  Hareket verisi  ise rastsal olarak belirlenen özel alanlar için oluşturulur. Bu veride kişilerin belirli bir alan 

içerisindeki etkileşimleri rastsal olarak hesaplanır. Geri dünüş analizi aşamasında toplanan istatistikler ve yerel olay 

verileri birleştirilerek doğrusal bir model yardımıyla her bir bireyin Kovid-19 riski tahmin edilir. Bu bağlamda yerel 

istatistilerin elde edilmesinde olasılıksal bir yakınsama yaklaşımı kullanılabilir. Değerlendirme aşamasında, geri dönüş 

analizinden elde edilen tüm etkileşimler kişilerin periodik olarak güncel Kovid-19 riskinin hesaplanmasında kullanılır. 

Daha sonra her bir kişinin üretilen verideki Kovid-19 bilgisi kullanılarak tamin başarısı o zaman aralağı için hesaplanır. 

Populasyon sayısı, yer/zaman ve hareketlilik oranınında bağımsız olarak her bir birey etkileşimi için hesaplanan Kappa 

önerilen tasarımın etkisinin önemli olduğunu göstermiştir.   
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A Spatio-Temporal Approach For Determining Individual's 

Covid-19 Risks  
 

Abstract— Current state of art approaches such as the susceptible-infected-removed model and machine learning models 

are not optimized for modeling the risks of individuals and modeling the effects of local restrictions.   To improve the 

drawback of these approaches, the feedback processing framework is proposed where previously accumulated global 

statistics and the model estimates generated from the spatial-temporal data are combined to improve the performance of 

the local prediction. The proposed framework is evaluated in three processing stages: generation of the simulation dataset, 

feedback analysis, and evaluation for the spatial-temporal and real-time pandemic analysis. In the data generation stage, 

the corresponding state of the illness for each person is modeled by a Markov stochastic process. In this stage, the 

parameters such as the reproduction rate, symptomatic rate, asymptomatic rate, population count, infected count, and the 

average mobility rate are used to update the individual's Covid-19 status and the individual's movements.  The movement 

data of each person is generated randomly for several places of interest. In the feedback analysis stage, both the aggregated 

statistics and the local event data are combined in a linear model to infer a score for the Covid-19 probability of the 

person. In this respect, a stochastic model can be used to approximate the local statistics. In the evaluation stage, the result 

of the feedback analysis for all the interactions is used to classify the state of the individuals periodically. Later the 

accuracy of the evaluation for each person is obtained by comparing the individual's prediction with the real data generated 

in the same time interval. The Kappa scores independent from different populations, locations, and mobility rates obtained 

for every interaction indicate a significant difference from the random statistics. 
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1. INTRODUCTION 

Pandemic analysis models have been frequently used to 

assess the risks of the Covid-19 spread. Common methods 

use the parametric models to estimate the number of 

patients for each stage of the illness [1-3]. Prediction of the 

state of the pandemic is done through aggregating the 

statistics and using those statistics in models. These models 

are used to track the state of the Covid-19 pandemic for a 

short time [4]. In general, aggregated statistics work very 

well for predicting the cases even if the data is noisy. 

However, these parameters may become inaccurate when 

the dynamics of seasonal, and locational changes of the 

pandemic are considered.  The common mathematical 

model of the spread analysis is known as the susceptible 

infected recovered (SIR) model where the number of cases 

is predicted based on the infection rates. This spread model 

has been modified to overcome different challenges in 

Covid-19 prediction [5].  

The mathematical models use the rates of the change of the 

variables of the pandemic [6]. These variables include the 

number of infected people, the reproduction number, the 

number of symptomatic patients, and the number of deads. 

Each of these variables is linked to each other by the 

constants obtained from the real cases. The linking of the 

variables creates a dynamic mathematical model known as 

susceptible, exposed, and asymptomatic (SIR) model [6]. 

During the Covid-19 several variations of the SIR model 

have been proposed. For example, in the SEAIR model the 

variables S, E, A, I, and R are used to denote the fraction 

of individuals which are respectively susceptible, exposed, 

asymptomatic, infectious, and recovered [7]. Similar 

extensions of the SIR model have been successfully 

applied on the Covid-19 data [8]. 

The previously mentioned SIR models and their 

derivations use only the parameters of global spread rates 

of the pandemic. On the other hand, the mobility pattern 

tracking approaches use both global parameters and the 

parameters of the spatial rates obtained through spatially 

linked cases and spatial clustering methods. These 

approaches have been successfully applied in the analysis 

of HIV transmission in Kenya [9], and Covid-19 in Oman 

[10], and in United States of America [11, 12].  All of these 

approaches have the capability of modeling different areas 

through mobility patterns and connections between these 

locations. Since a lockdown in the local area, creates a 

difference in the connections and the mobility patterns, 

thus use of the location information may improve the 

prediction score of the SIR approach. 

To overcome the limitations of the SIR model, machine 

learning (ML) methods have been applied to pandemic 

datasets. During the Covid-19 pandemic, ML methods 

become one of the most studied prediction approaches. 

ARIMA time series forecasting [13], linear regression 

models such as Support Vector Regression [13], Gaussian 

mixture models [2], and random forest classification [14, 

15] has been applied in prediction.  Similarly, recurrent 

deep learning models such as GRU and LSTM [12, 16] 

have been successfully model the parameters of the Covid-

19 pandemic. The main advantage of deep learning 

approaches is the ability to model long-range interactions 

and the ability to use a wide range of feature sets including 

the parameters of the SIR model. These parameters are the 

number of interactions, temporal patterns, census features, 

and reproduction numbers [17] In [17], a neural network 

model has been demonstrated as a successful combination 

of time-series data, cross-country specific features, and 

local features such as the number of hospitals, healthcare 

workers, and percentages in a neural representation. 

Machine learning methods can model recent trends in time 

series data of the Covid-19 pandemic. In this respect, deep 

learning methods such as LSTM have been successful. A 

deep learning study proposed the mean percentage error 

measure in the prediction of the number of patients 

according to each social determinant of health (SDH) such 

as age group, education, etc [18].   In this approach, a 

convolution neural network classifier is trained for each 

region by using the SDH parameters. The prediction 

accuracy of Covid-19 is not the single contribution of the 

deep learning models. In a deep LSTM approach [17], the 

representative vector is modeled from the interaction of the 

features used in the prediction of the Covid-19 cases. The 

findings of this study suggest that the census features such 

as age/sex, race, ethnicity, household/family type, school 

enrollment,  poverty status, income, etc. are correlated with 

all the other features such as mobility, transportation rate,  

mortality rate, and the Covid-19 reproduction numbers. 

Embedding the interactions of such features in the 

pandemic analysis is an effective generalization ability that 

can be used in other pandemic cases [19]. 

Spatial-temporal dynamics in spread models are very 

important for tracking the virus spread. Especially hot-spot 

analysis approaches are used to track the pandemic cases. 

In [20], the number of Covid-19 cases is computed in a 

distance-based correlation index for identifying the 

hotspots. In [21], the reproduction numbers are used in 

geospatial clustering to model the interactions of the 

Covid-19 cases based on the locations. In [22], a center of 

gravity model is proposed to localize the hubs and flow 

effect in pandemic parameters.  Similarly, kernel-based 

spatial-temporal clustering methods have been applied for 

analysis of epidemiological diseases such as childhood 

leukemia and asthma [23]. Along with kernel density 

estimates, a Poisson- and Bernoulli-based prospective 

space-time scan is proposed to find the dense and highly 

probable spread clusters [24]. Moreover, in [10, 20, 25], a 

SIR model and the mobility network analysis is combined 

to estimate the recent reproduction numbers.   

 2. RISK ANALYSIS 

In the Covid-19 pandemic, several mathematical models 

are proposed to predict the rate of the spread. The 

susceptible exposed-infectious resistant-susceptible 

(SEIRs) and susceptible exposed infectious recovery 

models (SEIR) are used for estimating the infection or 
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reinfection rates in a population [7]. These models are the 

extended versions of the susceptible-infected-removed 

(SIR) model which is used for modeling the parameters of 

the virus spread [25]. The SIR model with a time delay 

function for reinfection is demonstrated by Equation (1) 

[26].  In Equation (1), S(t), I(t), R(t), and C(t) are the rate 

of susceptible, infected, recovered, and cross-immune 

people respectively at a given time t, and the population 

size N(t). 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝐶(𝑡)

𝑆(𝑡) = 𝜎(1 − 𝑆(𝑡)) − 𝜖𝑆(𝑡)𝐼(𝑡 − 𝜏) + 𝛽𝐶(𝑡) 

𝐼(𝑡) =
𝑅(𝑡) =

𝐶(𝑡) =

𝜉𝑆(𝑡)𝐼(𝑡 − 𝜏) + 𝜎𝜉𝐶(𝑡)𝐼(𝑡) − (𝜂 + 𝛼)𝐼(𝑡) 

(1 − 𝜎)𝜉𝐶(𝑡)𝐼(𝑡) + 𝛼𝐼(𝑡) − (𝜂 + 𝛾)𝑅(𝑡)

𝛾𝑅(𝑡) − 𝜉𝐶(𝑡)𝐼(𝑡) − (𝜂 + 𝛽)𝐶(𝑡)

  (1) 

The reproduction parameters of the pandemic described in 

the SIR model are found by disease-free equilibrium (DFE) 

[8]. DFE proposes that the change in the number of 

infected people is dependent on other parameters. The 

prediction searches the time or the iteration when the 

changes in these parameters get fixed and the system gets 

to an equilibrium state. The SIR model uses the statistics 

gathered from the pandemic to determine these parameters. 

In Equation (1), these parameters are denoted by the 

symbols of eta, beta, alpha, tau and sigma.  

In Covid-19, the SIR model is applied in certain intervals 

especially during the initial outbreak. In Figure 1, the 

periods are shown for describing the application of training 

and testing phases. The model is constructed from 

aggregated statistics gathered in the stages of Training 1 

and Training 2. Later this model is verified through the 

validation time-frame and applied to predict the state of the 

pandemic in evaluation. The features such as the average 

number of mobility, the number of active cases, the number 

of symptomatic cases are accumulated through the training 

period and used to obtain the model parameters so that the 

number of active patients, symptomatic patients, and 

serious cases for the evaluation period can be predicted. 

The regulations and local restrictions enforce the time 

range of the prediction to be kept minimum and reduce the 

prediction performance of the model. The stochastic SIR 

model, the Markovian model, and the machine learning 

model have been used in the prediction of the aggregated 

statistics of the Covid-19 pandemic. 

3. DATA GENERATION  

In general, the pandemic datasets contain the statistics such 

as the percentages of active patients, serious cases, and the 

deads on a weekly basis for each location [27]. The 

parameters such as the time and the number of visits of 

each census block group (CBG) to a place of interest (POI) 

are not given [12] in those datasets. There are also mobility 

tracking datasets such as SafeGraph [29] where the 

tracking information for the individuals including the 

visited locations are available.  However, none of these 

datasets contain GPS tracking information of the 

individuals thus they don't pinpoint the location of the 

violations of the social distance rules.  Similarly, the 

datasets collected by the companies such as Google and 

Facebook do not include the tracking information. It can be 

claimed that the performance limitations of the previous 

analytic models are occurred not only because of the 

complexity of the Covid-19 pandemic but also the details 

of the gathered information. In this study, in order to 

overcome these limitations, a simulation approach based 

on a Markov chain model is proposed. This model 

approximates the true statistics by tracking the states of 

each individual and also by approximating the actual 

statistics of the pandemic.  

A Markov chain is a random process model constructed 

from the finite (discrete) state Markov stochastic process. 

Markov property is the fundamental assumption of the 

Markov chain where the probability of an event in a given 

state is conditionally dependent on the previous state. In a 

Markov chain, the conditional property is used to 

determine the transitions from one state to another. In order 

to generate a dataset, we used weekly aggregated data of 

Covid-19 pandemic such as the number of tested patients, 

the number of infected and the number of serious cases. 

These numbers are used to create the transition probability 

matrix of the Markov chain. An example Markov chain 

transition diagram for 1st week of April 2020 is given in 

Figure 1. 

 

Figure 1. Markov transition diagram 

 

In Figure 1, the number of checkups, the number of 

patients, and the number of healthy individuals are used to 

compute the transition probabilities for the disease-

detected (positive) and disease-undetected (negative) 

cases. For example, if 100 people have been checked-up 

for the virus, and 80 people have not been infected then the 

transition probability to the state of disease undetected 

becomes 0.8. In order to generate a dataset, the transition 

matrix is used to approximate true posterior probability. In 

this case, there are three parameters are used to create a 

dataset, the number of weeks starting from a given date, the 

population size, total number of healthy people, total 

number of infected people, the percentage of the mobility 

in population, the probability of getting the disease from an 

infected person and the number of different permitted 

locations. These numbers and also the Markov chain 

matrix is used to decide whether a person can travel 

through the permitted location in a randomly determined 

time range. The person gets infected or not based on the 

transition matrix and the interactions of the person. In this 

respect, if the person is close enough to another person then 
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his/her getting an infection becomes more likely. Similar 

to the SIR model, a person might get infected again and 

shows either signs of illness (symptomatic) or not 

(asymptomatic). If the person is symptomatic then he/she 

is in isolation and by no chance, he/she can infect others. 

However, if the person is asymptomatic then he/she might 

infect others. The Markov network shown in Figure 1, is 

represented by a transition matrix given in the Equation (2). 

The element-wise multiplication of the transition matrix 

gives the estimate of the current transition probabilities at 

time h for a given person.           

𝑃ℎ = (
𝑝11
ℎ ⋯ 𝑝1𝑛

ℎ

⋮ ⋱ ⋮
𝑝𝑛1
ℎ ⋯ 𝑝𝑛𝑛

ℎ
)

𝑃ℎ =
ℎ − 𝑡𝑖𝑚𝑒𝑠

𝑃 × 𝑃 × 𝑃…𝑃

                                     (2) 

The probability of the transition from state i to state j is 

given in the ith row and jth column of the matrix.  If the ith 

state is not connected to the jth state then the probability 

value is 0.0. The decision for each person is computed 

according to Equation (3).  

𝑉 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝛼)

𝑆 = [1.0,0.0,0.0,0.0]

𝑆_𝑛𝑒𝑥𝑡 =
𝑆𝑛𝑒𝑥𝑡 =
𝑆𝑛𝑒𝑥𝑡 =
𝑆𝑛𝑒𝑥𝑡 =

𝑆 × 𝑃ℎ

[0.05, 0.8,0.2,0.3]

𝑅𝑎𝑛𝑑𝑜𝑚(𝑆𝑛𝑒𝑥𝑡)

[0.0, 1.0, 0.0,0.0]

                  (3) 

 

In Equation (3), the state probabilities are given in the S 

vector for a person. If there is not any state vector (S) for a 

person then the first state vector is determined by a normal 

distribution where the mean is the average number of 

check-ups and the standard deviation is the deviation from 

the mean for the current month. In this case, whether a 

person get a check-up or not is determined by randomly 

tossing a bias coin where heads are sampled from a normal 

distribution of checkups in the current month. After the S 

vector is constructed than the next S vector is computed via 

multiplication of the transition matrix. The multiplication 

creates another state vector. The state vector is used to 

determine the next vector by random selection. In this case, 

if the probability of the state is higher than any other state 

probability then it is more probable to be selected as the 

next state.  

 

The states of each person are updated daily. So if a person 

got infected during the day, then he/she can infect others as 

well during the day. If he/she is tested positive then he/she 

cannot infect others. Each person is selected for a check-up 

by pure chance driven from the normal distribution.  A step 

by step example is given in the Table 1. The theory for the 

above calculations is given in [28]. The algorithm of the 

data generation is given in Figure 2.  

 

 

 

 

Table 1. Example calculations 

Name Operation Example 

V 

A vector of values 

where checkups are 

stored with 1’s and 

no checkup with 0’s.  

A population size of 4 

with a mean of 3 and 

standard deviation of 

0.25 

V=[1, 1, 1, 0] 

S 

A state vector where 

a non zero value 

positioned at the 

index represent the 

probability of being 

at that state for the 

person 

Person is in 0th state 

where it is 

represented by a 

checkup. 

S=[1.0, 0.0,0.0] 

𝑆𝑛𝑒𝑥𝑡  

State vector is 

multiplied with the 

state probability 

matrix so that the 

next state is 

calculated. 

State vector now 

indicate greater than 0 

values for the possible 

states 

S = [0.05, 0.8, ..,0.3]  

𝑆𝑛𝑒𝑥𝑡  

The next state index 

is determined by 

randomly selecting 

the state index by 

using the 

probabilities in the 

state vector 

The state vector is 

now becomes a one 

hot vector such as 

[0.0, 1.0, 0.0,..0.0]. It 

is computed and 

stored for each person 

separetely. 

𝑃ℎ 

The new transition 

matrix is calculated 

by expanding the 

current transition 

matrix with 

multiplication from 

left. 

The next transition 

matrix is calculated 

from the previous 

one. Now the 

transition 

probabilities becomes 

modified. 

 

 
Figure 2. Data generation 

In Figure 2, the statistics such as the population size, the 

percentage of mobility, the percentage of Covid-19 

patients, and the number of different locations are used to 

generate the geo-coordinates (latitude and longitude) and 

the movement between these coordinates. All the data is 

generated through a Gaussian random number generator. 

At first, the number of locations, healthy people, 

symptomatic patients, and asymptomatic patients are 

determined. Later, the interaction between the location and 

the person is created by a random number generator and 

represented by a matrix. The contents of the matrix 
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represent the percentage of the time which is spent by a 

person in the location. Through using the matrix, the 

movement coordinates and the Covid-19 interactions are 

generated. If two-person violates the social distance rule 

then the maximum of the Covid-19 probability of the 

location and the Covid-19 probability of the interacted 

people is entered as the new Covid-19 probability of two-

person. For example, if a person is tested Covid-19 positive 

then his/her interactions have the Covid-19 probability 

score of 1.0. If the person tested positive or the person gets 

Covid-19 then based on the stored and memorized stage of 

the person in the Markov chain, he/she gets the 

symptomatic or asymptomatic stage. A person exits the 

illness according to the time, and according to the next 

random probable state determined by the approximations 

in the transition states of the Markov chain. 

In the data generation not only the states of the people are 

simulated but also the coordinates of their movement are 

modeled. In this case, a person either moves or waits 

according to the randomly determined degree. If a person 

is waiting then he/she can move backward or forwards. The 

backward movement happens only once in a one-time step. 

The time step is determined as 1 second, and the step size 

of the movement is 1 meter. These parameters are constant 

for every individual. There are two constraints: two people 

can not be in the same coordinate at the same time and the 

area boundary can not be cross passed so that all the people 

move freely in a closed area.  

Based on the constraints described above the dataset is 

created by the Markov  transition diagram is given in 

Figure 1. and the calculations are given in Equation (3) 

randomly. The state of each individual is stored by the state 

vector. At every time-step a movement data is created by 

moving an individual by a random direction in a closed 

area. The probability of the movement may create a 

collition. If a collision occurs the movement changes the 

direction by certain degree at random angles and 

continuous until no collision occurs. At every time-step the  

interactions are computed, if the movement yield an 

interaction then the state vector is updated based on the 

infectiousness of the interaction randomly. Approximately 

half of the interactions are assumed to be infectious if any 

of the two person is infected otherwise both person’s states 

stays the same. In the final phase of data generation, each 

movement is recorded for each place of interest and person 

in the form of latitude and longitude. An example 

movement sequence is given in Table 2.   

In Table 2. The small fragment of the generated dataset is 

shown. The dataset contains rows which represent a step. 

The rows are generated sequentially by updating the states 

of the individuals. The dataset contains latitude and 

longitude of the movement of a person inside a given place. 

The movement is determined randomly for each person. 

Each movement is done approximately in 1 meter diameter 

circle. The POI is the identifier of the place. The person is 

identified by CBG number. The Covid-19 status is defined 

in C19 column where the infections are marked by 1. In 

this dataset, there are two person. The second person is 

infected by Covid-19. The movement data is collected in a 

11 seconds step range and the first person get close to the 

infected person at second 9. After this stage, the person 

becomes infected. When he/she gets infected the infection 

state is updated immediately and it is represented by the 

C19 column of the following step.  

Table 2. An example movement data 

Latitude Longitude POI CBG T C19 

50.0001 29.32001 122 001 1 0 

50.0001 29.32001 122 001 2 0 

50.0001 29.32002 122 001 3 0 

50.0001 29.32003 122 001 4 0 

50.0001 29.32004 122 001 5 0 

50.0001 29.32005 122 001 6 0 

50.0001 29.32006 122 001 7 0 

50.0001 29.32007 122 001 8 0 

50.0001 29.32008 122 001 9 1 

50.0001 29.32009 122 001 1 1 

50.0001 29.320010 122 002 2 1 

50.0001 29.320011 122 002 3 1 

50.0001 29.320012 122 001 4 1 

50.0001 29.320013 122 001 5 1 

50.0001 29.320013 122 001 6 1 

50.0001 29.320012 122 001 7 1 

50.0001 29.320011 122 001 8 1 

50.0001 29.320009 122 001 9 1 

50.0001 29.320008 122 001 10 1 

50.0001 29.320009 122 001 11 1 

The dataset contains the coordinates, place, time and 

Covid-19 status of each individual. During the evaluation 

only the information about the interactions are classified. 

In this respect, first the interactions are found, second the 

interaction states are determined based on the individuals. 

In this respect, only the new states of the individuals are 

predicted. The new state represents the state of an 

unknown, and previously undetected person. The 

evaluation of these new states gives a more reliable 

prediction accuracy since the interactions between two 

known Covid-19 patients do not contain any state changes 

and it can be easiy said that they are already patients.  

 4. FEEDBACK INFERENCE MODEL  

The feedback model is built on the stream analyzing 

framework where the probability of an individual having a 

disease inferred through geospatial analysis of the 

previously generated statistics as in Figure 3.  The feedback 

model estimates the Covid-19 probability of every 

individual through using the mobility patterns such as 

individuals' connections, the global and the local statistics 

of the previous time frame such as a day, or a week. The 

local and global statistics extracted from previous time 

frames are used to approximate the true probability score 

for the infections of the individuals. 
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Figure 3. Feedback modelling 
 

In Figure 3, the feedback modeling is depicted. The local 

and global statistics for the first 9 days is combined to 

predict Covid-19 risks for the 10th day. The local statistics 

are represented by the interaction risks of the individuals in 

a given specific location and in a given time frame. The 

global statistics represent the reproduction constants. For 

instance, if two person interacts the probability of getting 

an infection from each other is determined by these 

constants. This probability for each individual is calculated 

according to the equation given in Equation (4) and 

Equation (5). 

𝑠𝑐𝑜𝑟𝑒𝑖
ℎ = 𝜇𝑙𝑜𝑐𝑎𝑙 × [

0.9 ⋯ 0.1
⋮ ⋱ ⋮
0.5 ⋯ 0.4

]
⏟          

𝑃𝑒𝑟𝑠𝑜𝑛−𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥

+ 𝜇𝑔𝑙𝑜𝑏𝑎𝑙           (4) 

In Equation (4), the Covid-19 score of an individual 

becoming infected is calculated by multiplying the local 

parameters with the person-location matrix and adding to 

the global constants. The person-location matrix is the 

probability of getting infections in the specified location by 

a person. In this matrix, the rows represent the people and 

the columns represent the locations. Each element of this 

matrix represents the person's probability of infection in 

the specified location. For example, if the first person visits  

the second and thrid locations then the first row of this 

matrix will contain a zero value for the first location and 

the infection probability for the second and third locations. 

If there is not any data for the person-location matrix, then 

the probability of infection for the visited locations can be 

assumed as one. The Covid-19 score is not only dependent 

on the person-location matrix. It is also dependent on the 

interaction vector (𝜇𝑙𝑜𝑐𝑎𝑙) . In Equation (4),  𝜇𝑙𝑜𝑐𝑎𝑙  
represents the interaction risks of the ith person with the 

other three people in the h'th iteration. These risks can be 

estimated according to the time and distance proximity and 

the probability of being the Covid-19 patient. Through 

multiplication of the 𝜇𝑙𝑜𝑐𝑎𝑙  vector with the person location 

matrix, only the interactions of the people on the same 

location will be accumulated.  Also, there are base 

conditions related to the rate of the Covid-19. These are 

given as a global estimate vector represented by 𝜇𝑔𝑙𝑜𝑏𝑎𝑙 . 

The final result (probability) is the score of being a Covid-

19 patient for a person in the specified location. There 

cannot be any conclusion drawn for the majority of the risk 

without knowing the local vector because the location-

specific risk is assumed to be not only dependent on the 

locations but also the interaction with the people in those 

locations. 

𝜇𝑙𝑜𝑐𝑎𝑙[𝑗] = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(
𝑠𝑐𝑜𝑟𝑒𝑗+𝑠𝑐𝑜𝑟𝑒𝑖

2.0
, 𝑠𝑐𝑜𝑟𝑒𝑖)              (5) 

 

 
Figure 4.  The Stream processing steps 

 

Having an infection or not is determined by maximum 

averaging. The maximum averaging is given in Equation 

(5). In this equation, s𝑐𝑜𝑟𝑒𝑖 and 𝑠𝑐𝑜𝑟𝑒𝑗  represent the 

Covid-19 risk of the ith and jth person respecively. The 

equation assigns the maximum score of two person to the 

jth local index of the ith person. Thus, in the final decision 

the magnitute/norm of the 𝜇𝑙𝑜𝑐𝑎𝑙  vector is used to calculate 

the total Covid-19 risk of the ith person. Each element of 

the vector represents the Covid-19 infection of the current 

person from the jth person. The infection risk is not only 

dependent on the Covid-19 risk of the other person but also 

the risks of the individual. Thus, taking the maximum of 

the average risk and the current person's risk is more 

appropriate than only considering the current interaction 

risk. Also, it should be noted that if a person has Covid-19 

and his/her state is known. The risk of this patient is not 

updated by maximum averaging but his/her risk is used in 

both the person-location matrix in Equation (4) and 

maximum averaging in Equation (5). In this study, the 

global scores (𝜇𝑔𝑙𝑜𝑏𝑎𝑙) are not used. However, in general 

the global scores can be drawn from the total risk for every 

individual. The risk of an individual given by 𝑠𝑐𝑜𝑟𝑒𝑖
ℎ is the 

vector, which represents the total risks in each location.  In 

order to find individual’s final risk score, the norm of the 

vector is used. 
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In Figure 4, the stream processing framework is shown. All 

the theoretical model described in this paper is 

implemented by the tools in Apache Big Data Ecosystem. 

In order to process the streaming data, Apache Flume and 

Apache Spark stream processing frameworks are used. The 

data is generated for each person and location by using the 

Covid-19 states of the people and places. Information 

about the people and places is stored in Apache HBase. The 

generated data is pushed to the Apache Flume streaming 

engine and the data is fetched from Apache Spark for 

processing. During the processing, the Apache Hbase is 

used for storing the latest Covid-19 probability of 

individuals, the interactions, and the main statistics about 

the places. The Covid-19 probability and the place 

averages are computed in the Apache Spark streaming 

engine every 2 minutes. During the stream processing, the 

person and location identifiers are used to load/save the 

latest Covid-19 states and status from Apache HBase.  

The stream processing framework (Apache Spark) is used 

to capture the interactions of geo-spatial events. These 

events contain the time and the coordinate of each mobile 

individual. To capture the interactions of individuals, the 

event data is indexed by geospatial hashing. Each 

coordinate is converted to 45 bit (1/0) geohash where any 

changes in the last bit correspond to approximately a 2.3-

meter difference. The geocode of the event is hashed with 

the minute window of the time of the event so that the 

geospatial index can represent the time and the location of 

the event. Using geospatial indexing the events are 

clustered into bins. All the events in the same bin are sorted 

and approximate locations for as most as 6 seconds 

occurred one another are accepted as interactions. Later all 

the interactions are processed as explained above. 

5. EVALUATIONS 

The main concern in the evaluation of the pandemic model 

is the accuracy of the predictions. In many applications, the 

predictions include the number of patients, the number of 

hospitalized patients, and the number of deads for the next 

day or the next week. The number of deads is a major 

concern in pandemic analysis. So the prediction of the risks 

and applying the isolation procedures on time is very 

affective in reduction of the number of Covid-19 patients 

as well as the number of deads. For this reason, the 

evaluation interval for the streamed data is chosen as 2 

minutes. Apache Flume and Apache Spark processing 

framework is used to capture the streamed data. The 

streamed data contains the person identifier, the 

coordinates of each person, the time, infected information, 

and the location id. The infected information denote 

whether a person is infected or not. This information is 

used for only evaluation.  

In the data generation and evaluation stages several 

parameters are used. In Table 3, these parameters are given. 

The population size is denoted by CBG and the number of 

places is denoted by POI respectively. The population size 

is the total number of people who visited all the places. The 

maximum steps in the maximum amount of step taken by 

each individual. The number of steps are determined 

randomly in between the 300 steps and maximum steps. An 

individual takes a step in each second so that the step size 

of an individual is equal to the time spend in the place. In 

every step or second an individual moves by one meter. 

The social distance constant is the safe distance for every 

individual. A virus transmission may occur when any two 

individual get closer than the social distance. Thus, 

increasing the social distance increases the risk of infection 

by assuming that two person are not safe with-in a large 

social distance.  Batch frame constant is the window-

sampling time for all the events in the dataset. Using two 

minute window, we can group more events in the same 

window bucket. If the events of two individuals gets in the 

same window than these events may contain an interaction. 

The time constant is the maximum duration for the 

interaction. If any two events in the same location have 

occured in 6 seconds gap than these events are assumed to 

be an interaction. Increasing the time constant will 

eventually increase the number of interactions.  

Table 3. Parameters  for data generation and evaluation 

Parameter Name 
Parameter 

Type 

Parameter 

Value 

Population size Variable 100, 400, 1600 

Location size Variable 1, 4, 16 

Patients Percentage 70 

Asymptomatic Cases Percentage 30 

Sumptomatic Cases Percentage 70 

Maximum Seconds Range 600, 1800,5400 

Social Distance Constant 2 meters 

Covid-19 Threshold Constant 0.88 

Batch Frame Time Constant 2 Minutes 

Time Constant Constant 6 seconds 

Data Range Constant 10 days 

Isolation Range Constant 7 days 

The date range is the number of days that is used for 

generating the data.  The date range is inversely 

proportional to the density of the mobility. If the date range 

is large then the possibility of an interaction is low, else 

vice-versa. The isolation range is the number of days in 

isolation. If a person is known to be a patient then he/she 

gets isolated for 7 days. The Covid-19 threshold is the 

value to accept whether a person is infected or not. The 

Covid-19 value is determined based on the number of 

positive interactions. If the calculation of the Equation (5) 

is above the Covid threshold then it is assumed to be an 

infection. The threshold is chosen as 0.88 because it is 

assumed that the number of interactions with more than 

three Covid-19 patients (same or different) infects the 

healty individual.  

Each person also has a Covid-19 probability value which 

is continuously updated in each interaction and each person 

also has a true Covid-19 state which is generated and 

updated during the generation stage. The batch frame time 

is used to predict the Covid-19 probability of the person. 

Every 2 minutes, the evaluation for the event dataset 

occurs. If the person has a Covid-19 value greater than the 
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threshold then he/she is accepted as positive otherwise 

he/she is accepted as negative. The prediction for each 

person of having a Covid-19 positive or negative is 

compared with the true state of the person. The predictions 

are measured according to the positive and negative cases 

separately. The average scores such as true-positive, true-

negative, false-positive, and false-negative are calculated.   

The Covid-19 prediction of each person is computed by 

measuring the maximum Covid-19 probability of the 

interaction. An interaction contains two people and a place. 

The person and the place are represented by a unique 

identifier and a Covid-19 score. The estimate of the current 

Covid-19 risk for a person is the person's score and the 

average Covid-19 score of the people during visiting the 

place is the place's score. If the interaction doesn’t contain 

any risks then the person gets the global constant score 

based on the calculation given in the feedback inference 

model.  If the person has a high Covid-19 probability then 

his interactions get the same Covid-19 score too. If the 

probability of Covid-19 is greater than the threshold then 

he/she is accepted as Covid-19 positive and his/her 

interactions would have an above-average Covid-19 score. 

So, a person's having an infection is conditioned on his/her 

interactions, the location visits, and the average number of 

people infected in these places. In the calculations, the 

global constant vector is discarded, and the person-location 

risk matrix is computed by the average number of 

interaction scores in the location. For the initial value of the  

person-location matrix, the values are set to the percentage 

of visits to the location. In this case, if a person visits 3 

locations the row values of this person will be 1/3.  So both 

the global constant vector and the person-location matrix 

are chosen as same for every individual.  

6. RESULTS AND DISCUSSION 

In this study, the datasets are created randomly. Kappa 

statistics are used to measure the significance of the 

proposed method according to the random prediction [30].    

To measure the Kappa statistics, the confusion matrix of 

the predictions is used. A Kappa score above 0.5 implies 

that the proposed approach is significantly better than 

random chance. In the evaluations, along with the Kappa 

score, the F-measure is used. These evaluation measures 

are given in Table 4 and Table 5 where true positive (tp), 

false positive (fp), true negative (tn), and false negative (fn) 

rates are used for f-score and Kappa score calculations. In 

Table 6, these scores are given for each population size, 

place of interest, and day range. 

Table 4. Confusion matrix 

 
Actual 

Positive 

Actual 

Negative 
Total 

 Positive tp fp m1 

Negative fn tn m0 

Total n1 n0 n 

 

 

 

Table 5. Evaluation measures 

 Formulations 
 n0 𝑓𝑝 +  𝑡𝑛 

m1 𝑡𝑝 +  𝑓𝑝 

precision 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝) 
recall 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛) 

p0 (𝑡𝑝 + 𝑡𝑛)/𝑛 

pe 
((𝑡𝑝 + 𝑡𝑛) ∗  (𝑡𝑝 + 𝑓𝑛) + (𝑓𝑛 +  𝑡𝑛)

∗  (𝑓𝑝 + 𝑡𝑛))/𝑛2 

Kappa (𝑝0 –  𝑝𝑒)/(1 −  𝑝𝑒) 

f-score 
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+ 𝑟𝑒𝑐𝑎𝑙𝑙) 

 
In Table 5. the calculation of evaluation measures are 

given. In Kappa score, the p0 indicate the accuracy of the 

proposed framework and pe is the random prediction 

accuracy based on the ratio of the most probable cases. The 

measures of F-Measure and Kappa for different datasets 

are given in Table 6. In Table 6. 18 different datasets are 

given. These datasets are randomly generated where 

individual’s steps are determined randomly. Each row of 

the dataset corresponds to geographic location of a person 

in a given POI at each time step. The step size corresponds 

to minimum number of steps for an individual to randomly 

take. Increasing the step size increases the mobility density. 

For example, the dataset with a 200 step size has a lower 

mobility density than the dataset with 5400 steps. The 

mobility density is also proportional to CBG size. 

Oppositely, the mobility density is inversely proportional 

to POI size. Along with POI size, each dataset has a 

random number of interactions. Because the interaction 

size is dependent on the movement coordinates and the 

movement of individuals is randomly generated. The 

number of interactions is given in interaction size.  

 

Table 6. Evaluation results 

POI 

Size 

CBG 

Size 

Step 

Size 

Interactio

n Size 

F-

Score 
Kappa 

1 100 600 480 84.197 72.66 

1 100 1800 825 86.019 75.492 

1 100 5400 1718 85.466 74.610 

1 400 600 2020 80.575 73.251 

1 400 1800 7450 82.255 77.023 

1 400 5400 8215 84.615 71.962 

4 100 600 3483 83.172 71.259 

4 100 1800 41632 84.538 73.245 

4 100 5400 45712 75.061 83.962 

4 400 600 10243 77.544 64.664 

4 400 1800 11798 84.718 73.621 

4 400 5400 49347 84.895 73.787 

16 100 600 34604 84.620 73.101 

16 100 1800 35769 85.284 74.379 

16 100 5400 39872 85.284 74.379 

16 400 600 51304 84.673 73.452 

16 400 1800 111349 84.538 73.245 

16 400 5400 84895 84.538 73.245 
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The performance measures are obtained by comparing the 

predicted Covid-19 status with the generated case for every 

new interaction. According to theses results, increasing the 

number of interactions between people neither has a 

negative impact on the prediction performance nor on the 

Kappa score. Thus, it can be said that determining the 

individuals Covid-19 risk through other individuals risks, 

location risks and the interactions is done independently 

from the mobility density. On the contrary, if the risks are 

computed by assuming that each interaction with a Covid-

19 patient infects the other person, we can not observe 

Kappa scores above 0.5 because every person would be 

infected and the prediction performance will be close to 1. 

From the Kappa scores, it can be said that the increased 

number of interactions increases the possibility of getting 

an infection and the model prediction approximates this 

change appropriately.  

 

In Table 6. the scores indicate that the perfomance of the 

Covid-19 infection for each persons’ interaction is better 

than determining the persons getting infected from a 

Covid-19 patient by pure chance. The performance scores 

are significant according to the Kappa scores. Kappa scores 

indicate that the prediction is reliable.  

 

The final remarks for the dataset is the baseline 

performance. The baseline performance of pure chance can 

be calculated by selecting whether a person infected or not 

by 0.5 chance. Then for half of the interactions may emit 

an infection if one of the person is a Covid-19 patient. In 

this case, let’s say mobility size and population size 

increased to a hypothetical limit where all the interactions 

are infectious. Then the accuracy will be approximately 

50%. So, the question is how the proposed framework 

perform better  than 50%. Because the model uses the total 

number of interactions of a person as well as the location 

risk. In this case, whether the person get infected is 

dynamically calculated based on these priors. If the density 

increases the possibility of getting infection increases. The 

proposed framework approximates this possibility 

appropriately.  

7. CONCLUSION 

In this study, a geo-spatial analyzing framework is 

proposed for simulating the pandemic conditions of every 

person. First, the movement and status data for each 

individual is generated, then the mobility of each person is 

aggregated in an interval and the probability of his/her 

infection is estimated using his/her interactions, and the 

visited places. The framework consists of three stages; the 

data generation stage, the processing stage, and the 

evaluation stage. Four variables are used in the data 

generation stage; these are the population size, the number 

of places, the maximum step size, and the time interval. 

Along with these variables, the data generation of each 

individual consists of the geospatial movement patterns, 

and the Covid-19 state of the individual. The Covid-19 

states of the individuals are derived from the Markov chain 

where the probability estimates of the global Covid-19 

rates are modelled. During the data generation, the chance 

of getting infected and the paths of the infection are 

determined randomly by using the transition probabilities 

of the Covid-19 in the Markov chain.  

For varying set of parameters, the performance of the 

proposed framework is evaluated through the Kappa and 

F-Measure of Covid-19 status of every interaction. Only 

the interactions of the individuals having unknown Covid-

19 status are considered in evaluations. Based on the Kappa 

statistics, the proposed framework is significantly better 

than random guesses and the F-measure scores indicate that 

the event/location based interaction statistics is an effective 

measure for Covid-19 prediction of individuals.  
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