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Abstract 

 

For a graph 𝐺 = (𝑉,𝐸), a Roman dominating 

function(RDF) is a function 𝑓: 𝑉 → {0,1,2} having the 

property that every vertex 𝑢 for which 𝑓(𝑢) = 0 is 

adjacent to at least one vertex 𝑣 for which 𝑓(𝑣) = 2. 

The weight of an RDF ((𝑤(𝑓)) is the sum of 

assignments for all vertices. The minimum weight of 

an Roman dominating function on graph 𝐺 is the 

Roman domination number, denoted by 𝛾𝑅(𝐺). In this 

paper, we study on this variant of the domination 

number for middle and splitting graphs of some special 

graphs. 

Keywords: Graph vulnerability, domination, Roman 

domination. 

 

1. Introduction 

 

Let 𝐺 be a simple and undirected graph with sets of 

vertex 𝑉(𝐺) and edge 𝐸(𝐺). For any vertex 𝑣 ∈ 𝑉(𝐺),  

the open neighbourhood of  𝑣 is 𝑁(𝑣) = {𝑢 ∈

𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)} and closed neighbourhood of 𝑣 is 

𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The distance 𝑑(𝑢, 𝑣) between 

two vertices 𝑢 and 𝑣 in 𝐺 is the length of a shortest path 

between them. The diameter of 𝐺, denoted by 

𝑑𝑖𝑎𝑚(𝐺) is the largest distance between two vertices 

in 𝑉(𝐺). The eccentricity of a vertex 𝑢, written as 𝜖(𝑢), 

the maximum value of all  𝑑(𝑢, 𝑣) values.  
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The radius of a graph 𝐺, written as 𝑟𝑎𝑑 𝐺, the 

minimum value of all 𝜖(𝑢) values [West 2001]. The 

number of the neighbour vertices of the vertex 𝑣 is 

called degree of 𝑣 and denoted by 𝑑𝑒𝑔𝐺(𝑣), the 

minimum degree is denoted by 𝛿 = 𝛿(𝐺) and the 

maximum degree is denoted by ∆= ∆(𝐺).  

A vertex cover of a graph 𝐺  is a set 𝑄 ⊆ 𝑉(𝐺) that  

contains at least one endpoint of every edge. The 

vertices in 𝑄  cover 𝐸(𝐺) [West 2001]. A vertex 𝑣 is 

said to be pendant vertex if 𝑑𝑒𝑔𝐺(𝑣) = 1. A vertex 𝑢 

is called support if 𝑢 is adjacent to a pendant vertex 

[Harary 1969]. A vertex of degree zero is called an 

isolated vertex. The largest integer not greater than 𝑥 

is denoted by ⌊𝑥⌋ and the least integer not less than 𝑥 

is denoted by ⌈𝑥⌉. Let 𝑣 ∈ 𝑆 ⊆ 𝑉.  A vertex 𝑢 is called 

a private neighbour of 𝑣 with respect to 𝑆 ( denoted by 

𝑢 is an 𝑆 − 𝑝𝑛 of 𝑣 ) if 𝑢 ∈ 𝑁[𝑣] − 𝑁[𝑆 − {𝑣}]. An 

 𝑆 − 𝑝𝑛 of 𝑣 is external if it is a vertex of 𝑉 − 𝑆. The 

set 𝑝𝑛(𝑣, 𝑆) = 𝑁[𝑣] − 𝑁[𝑆 − {𝑣}] of all 𝑆 − 𝑝𝑛′𝑠 of 𝑣 

is called the private neighbourhood set of v with 

respect to 𝑆. The set 𝑆 is said to be irredundant if for 

every 𝑣 ∈ 𝑆, 𝑝𝑛(𝑣, 𝑆) ≠ ∅ [Cockayne et al. 2004].  

The graph with 𝑛 vertices labeled 𝑥1, 𝑥2, … , 𝑥𝑛  and the 

edges 𝑥1𝑥2, 𝑥2𝑥3, … , 𝑥𝑛−1𝑥𝑛 is called a path of length 

𝑛 − 1, denoted by 𝑃𝑛 . The cycle of length 𝑛, 𝐶𝑛 is the 

graph with 𝑛 vertices 𝑥1, 𝑥2, … , 𝑥𝑛  and the edges 

𝑥1𝑥2, 𝑥2𝑥3, … , 𝑥𝑛𝑥1 [Hartsfield and Ringel 1990]. 

Paths are trees. A tree is a path if and only if its 

maximum  degree is 2. The wheel with 𝑛 + 1 vertices, 

𝑊1,𝑛, is the graph that consists of an 𝑛 − 𝑐𝑦𝑐𝑙𝑒 and one 

additional vertex that is adjacent to all the vertices of 

the cycle. The complete graph 𝐾𝑛 is the graph with 𝑛 

vertices and every vertex is adjacent to every other 

vertex [Hartsfield and Ringel 1990]. A star is a tree 

consisting of one vertex adjacent to all the others. The 

𝑛 + 1 −vertex star is the biclique 𝑆1,𝑛 [West 2001]. 

The complement 𝐺̅ of a simple graph 𝐺 is the simple 

graph with vertex set 𝑉(𝐺) defined by 𝑢𝑣 ∈ 𝐸(𝐺)̅̅ ̅ if 
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and only if 𝑢𝑣 ∉ 𝐸(𝐺). A complementary prism of 𝐺, 

denoted by 𝐺𝐺̅, is the graph obtained by taking a copy 

of  𝐺 and a copy of its complement 𝐺̅ and then joining 

corresponding vertices by an edge. For arbitrary graphs 

𝐺 and 𝐻, we define the Cartesian product of 𝐺 and 𝐻 

to be the graph 𝐺𝑥𝐻 with vertices { (𝑢, 𝑣)|𝑢 ∈ 𝐺, 𝑣 ∈

𝐻}. Two vertices (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are adjacent in 

𝐺𝑥𝐻 if and only if one of the following conditions is 

true: 𝑢1 = 𝑢2 and 𝑣1 is adjacent to 𝑣2 in 𝐻; or 𝑣1 = 𝑣2 

and 𝑢1 is adjacent to 𝑢2 in 𝐺. If 𝐺 = 𝑃𝑚 and 𝐻 = 𝑃𝑛 , 

then the Cartesian product 𝐺𝑥𝐻 is called the 𝑚𝑥𝑛 grid 

graph is denoted 𝐺𝑚,𝑛 .  

The domination in graph theory has an important role 

in many fields of study such as optimization, design 

and analysis of communication networks, social 

sciences and military surveillance. A dominating set in 

a graph 𝐺 is a set of vertices of 𝐺 such that every vertex 

in 𝑉(𝐺) − 𝑆 is adjacent to at least one vertex in 𝑆. The 

domination number of 𝐺, denoted by 𝛾(𝐺), is the 

minimum cardinality of a dominating set of 𝐺 [Haynes 

et all. 1998].  

Roman domination is a variant of the domination and 

was introduced by Cockayne et al. in 2004 [Cockayne 

et al.2004]. A Roman dominating function  on a graph 

𝐺 = (𝑉, 𝐸) is a function 𝑓: 𝑉 → {0,1,2} satisfying the 

condition that every vertex 𝑢 for which 𝑓(𝑢) = 0 is 

adjacent to at least one vertex 𝑣 for which 𝑓(𝑣) = 2. 

The idea is that colours 1 and 2 represent either one or 

two Roman legions stationed at a given location 

(vertex 𝑣 ). A nearby location (an adjacent vertex (𝑢) 

is considered to be unsecured if no legions are 

stationed there (i.e. 𝑓(𝑢) = 0). An unsecured location 

(𝑢) can be secured by sending a legion to 𝑢 from an 

adjacent location (𝑣). But Emperor Constantine the 

Great, in the fourth century A.D., decreed that a legion 

cannot be sent from a location 𝑣 if doing so leaves that 

location unsecured (i.e. if 𝑓(𝑣) = 1). Thus, two 

legions must be stationed at a location ( 𝑓(𝑣) = 2) 

before one of the legions can be sent to an adjacent 

location. Thus, Roman domination appears to be a new 

variety of both historical and mathematical interest 

[Stewart 1999]. A function 𝑓 = (𝑉0, 𝑉1, 𝑉2) is a Roman 

dominating function (RDF) if 𝑉2 ≻ 𝑉0, where ≻ means 

that the set 𝑉2 dominates the set 𝑉0, i.e. 𝑉0 ⊆ 𝑁[𝑉2]. 

For a graph 𝐺 = (𝑉, 𝐸), let 𝑓: 𝑉 → {0,1,2} and let 

(𝑉0, 𝑉1, 𝑉2) be the ordered partition of 𝑉 induced by 𝑓, 

where 𝑉𝑖 = {𝑣 ∈ 𝑉|  ∈ 𝑓(𝑣) = 𝑖} and |𝑉𝑖| = 𝑛𝑖 , for 

𝑖 = 0,1,2. Note that there exists a 1-1 correspondence 

between the functions 𝑓: 𝑉 → {0,1,2} and the ordered 

partitions (𝑉0, 𝑉1, 𝑉2) of 𝑉. Thus, we will write 𝑓 =

(𝑉0, 𝑉1, 𝑉2). The weight of 𝑓 is   𝑤𝑓 =  𝑓(𝑉) =

∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 + 𝑛1. The  minimum weight of 𝑤𝑓 

for every Roman dominating function 𝑓 on 𝐺 is called 

Roman domination number of 𝐺. We denote this 

number with 𝛾𝑅(𝐺).  A Roman dominating function of 

𝐺 with weight 𝛾𝑅(𝐺) is called a 𝛾𝑅 −function of 𝐺 

[Cockayne et al.2004, Mojdeh et al. 2019].  

A graph 𝐺 is a Roman graph if 𝛾𝑅(𝐺) = 2𝛾(𝐺). 

Graphs of the form 𝐺 = 𝐾1 +𝐻, where 𝛾(𝐺) = 1 and 

𝛾𝑅(𝐺) = 2 are Roman graphs. Equivalently, any graph 

𝐺 of order 𝑛 having a vertex of degree 𝑛 − 1 is a 

Roman graph. Complete bipartite graphs are Roman, 

i.e. 𝐾𝑚,𝑛 where min{𝑚, 𝑛} ≠ 2, in which case either 

𝛾(𝐺) = 1 and 𝛾𝑅(𝐺) = 2, or 𝛾(𝐺) = 2 and 𝛾𝑅(𝐺) =

4. A graph 𝐺 is Roman if and only if it has a 𝛾𝑅 −

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 = (𝑉0 , 𝑉1, 𝑉2) with 𝑛1 = |𝑉1| = 0. 

The following figure shows the 𝑓(𝑣) values for each 

vertex 𝑣 ∈ 𝑉(𝐺). Since 𝑤(𝑓) = ∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 +

𝑛1,  we have  𝛾𝑅(𝐺) = 3.  

 
                          Figure 1.1. The graph 𝐺 

To date, many articles have been published on the topic 

of domination as total domination, strong weak 

domination [Aytaç and Turacı 2015] , exponential 

domination, semitotal domination [ Kartal and Aytaç 

2020] etc. and Roman domination. Cockayne et al.  

introduced the properties of Roman dominating 

functions. Blidia et al (2020), Chambers et al. (2009), 

Liu and Chang (2012) researched the bounds on 

Roman dominating functions and Bermudo et al. 

(2014) and Xing et al. (2006) discovered the 

relationships with some domination parameters. 

Cockayne et al. introduced a linear-time algorithm for 

computing Roman domination problem on trees 

[Cockayne et al.2004]. Shirkol et al. (2121) researched 

the middle Roman domination number of path, cycle, 

star, double star,  wheel, friendship and corona graph.   

Kazemi (2012) studied on Roman domination for 

Mycieleski’s structure. McRae showed that the 
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decision problem corresponding to Roman dominating 

functions (DECIDE-RDF) was NP-complete for 

bipartite graphs, split graphs and planar graphs. 

Liedloff et al. (2008) discovered that there were linear-

time algorithms for computing the Roman domination 

number on cographs and interval graphs.   

In this paper, our aim is to present  the Roman 

domination number of middle and splitting graphs for 

Pn, Cn, S1,n,W1,n and Kn. With this work, we have  

knowledge about the Roman domination number of 

some special graphs. These results can later be used in 

larger structures that are their combination. This paper 

is organized as follows: Section 2 is devoted to some 

known results about the Roman domination number. 

Sections 3 and 4  are about the Roman domination 

number of Middle and Splitting  graphs, respectively. 

 

2. Known Results 

 

Theorem 2.1. [Cockayne et al. 2004] For any graph 𝐺, 

𝛾(𝐺) ≤ 𝛾𝑅(𝐺) ≤ 2𝛾(𝐺). 

Proof. Let 𝑓 = (𝑉0, 𝑉1 , 𝑉2) be a 𝛾𝑅 −function, and let 

𝑆 be a 𝛾 − 𝑠𝑒𝑡 of 𝐺. Then, 𝑉1 ∪ 𝑉2 is a dominating set 

of 𝐺 and (∅, ∅, 𝑆) is a Roman dominating function. 

Hence, 𝛾(𝐺) ≤ |𝑉1| + |𝑉2| ≤ |𝑉1| + 2|𝑉2| = 𝛾𝑅(𝐺). 

But, 𝛾𝑅(𝐺) ≤ 2|𝑆| = 2𝛾(𝐺). 

Theorem 2.2. [Cockayne et al. 2004] For any graph 𝐺 

of order 𝑛, 𝛾(𝐺) = 𝛾𝑅(𝐺) if and only if 𝐺 = 𝐾𝑛̅̅̅̅ .  

Proof. Let 𝑓 = (𝑉0, 𝑉1 , 𝑉2) be a 𝛾𝑅 −function. The 

equality 𝛾(𝐺)= 𝛾𝑅(𝐺) implies that we have equality in 

𝛾(𝐺) ≤ |𝑉1| + |𝑉2| = |𝑉1| + 2|𝑉2| = 𝛾𝑅(𝐺). Hence, 

|𝑉2| = 0, which implies that 𝑉0 = ∅. Therefore, 

𝛾𝑅(𝐺) = |𝑉1| = |𝑉| = 𝑛. This implies that 𝛾(𝐺) = 𝑛, 

which, in turn, implies that 𝐺 = 𝐾𝑛̅̅̅̅ .  

Theorem 2.3. [Cockayne et al.2004] Let 𝑓 =

(𝑉0, 𝑉1, 𝑉2) be a 𝛾𝑅 −function. Then 

(a) 𝐺[𝑉𝟏], the subgraph induced by 𝑉1 has 

maximum degree 1. 

(b) No edge of 𝐺 joins 𝑉1 and 𝑉2. 

(c) Each vertex of 𝑉0 is adjacent to at most two 

vertices of 𝑉1. 

(d) 𝑉2 is a 𝛾 − 𝑠𝑒𝑡 of 𝐺[𝑉0 ∪ 𝑉2]. 

(e) Let 𝐻 = 𝐺[𝑉0 ∪ 𝑉2]. Then each vertex 𝑣 ∈ 𝑉2 

has at least two H-pn's (i.e. private neighbours 

relative to 𝑉2 in the graph H).  

(f) If 𝑣 is isolated in 𝐺[𝑉2] and has precisely one 

external H-pn, say 𝑤𝜖𝑉0, then 𝑁(𝑤) ∩ 𝑉1 =

∅.  

(g) Let 𝑘1 equal the number of non-isolated 

vertices in 𝐺[𝑉2], let 𝐶 = {𝑣 ∈ 𝑉0: |𝑁(𝑣) ∩

𝑉2| ≥ 2},  and let |𝐶| = 𝑐.  Then 𝑛0 ≥ 𝑛2 +

𝑘1 + 𝑐.  

Theorem 2.4. [Cockayne et al. 2004] Let 𝑓 =

(𝑉0, 𝑉1, 𝑉2) be a 𝛾𝑅-function of an isolate-free graph 𝐺, 

such that 𝑛1 is a minimum. Then, 

(a) 𝑉1 is independent and 𝑉0 ∪ 𝑉2 is a vertex 

cover. 

(b) 𝑉0 ≻ 𝑉1.  

(c) Each vertex of 𝑉0 is adjacent to at most one 

vertex of 𝑉1, i.e. 𝑉1 is a 2-packing. 

(d) Let 𝑣 ∈ 𝐺[𝑉2] have exactly two external H-

pn's 𝑤1  and 𝑤2  in 𝑉0. Then there do not exist 

vertices 𝑦1, 𝑦2 ∈ 𝑉1 such that 

( 𝑦1, 𝑤1 , 𝑣, 𝑤2 , 𝑦2) is the vertex sequence of a 

path 𝑃5.  

(e) 𝑛0 ≥ 3𝑛/7 and this bound is sharp even for 

trees. 

Theorem 2.5. [Mojdeh et al. 2019] If 𝐺 is a connected 

graph of order 𝑛, then 𝛾𝑅(𝐺) ≤
4𝑛

5
. 

Theorem 2.6. [Mojdeh et al. 2019] For any graph 𝐺 of 

order 𝑛, we have 𝛾𝑅(𝐺𝐺̅) ≤ 𝑛 + 𝛾(𝐺).  

Theorem 2.7. [Mojdeh et al. 2019] If 𝐺 is a graph with 

no isolated vertices, then 𝛾𝑅(𝐺𝐺̅) ≤
3𝑛

2
. 

Theorem 2.8. [ Cockayne et al. 2004]  For any graph 

𝐺 of order 𝑛 and maximum degree ∆, 
2𝑛

∆+1
≤ 𝛾𝑅(𝐺). 

Theorem 2.9. [Cockayne et al. 2004] For a graph 𝐺 on 

𝑛 vertices, 𝛾𝑅(𝐺) ≤ 𝑛
2+ln ((1+𝛿(𝐺)/2)

1+𝛿(𝐺)
. 

Theorem 2.10. [Cockayne et al. 2004] For the classes 

of paths 𝑃𝑛  and cycles 𝐶𝑛, 𝛾𝑅(𝑃𝑛) = 𝛾𝑅(𝐶𝑛) = ⌈
2𝑛

3
⌉.  

Theorem 2.11. [Cockayne et al. 2004] Let 𝐺 =

𝐾𝑚1,…,𝑚𝑛
 be the complete n-partite graph with 𝑚1 ≤

𝑚2 ≤ ⋯ ≤ 𝑚𝑛. 

(a) If 𝑚1 ≥ 3 then 𝛾𝑅(𝐺) = 4.  

(b) If 𝑚1 = 2 then 𝛾𝑅(𝐺) = 3.  

(c) If 𝑚1 = 1 then 𝛾𝑅(𝐺) = 2.  

Theorem 2.12. [Cockayne et al. 2004] If 𝐺 is a graph 

of order 𝑛 which contains a vertex of degree 𝑛 − 1, 

then 𝛾(𝐺) = 1 and 𝛾𝑅(𝐺) = 2. 

Theorem 2.13. [Cockayne et al. 2004] For the 2 x 𝑛  

grid graph 𝐺2,𝑛 , 𝛾𝑅(𝐺2,𝑛) = 𝑛 + 1. 

Theorem 2.14. [Cockayne et al. 2004] If 𝐺 is any 

isolate-free graph of order 𝑛, then 𝛾𝑅(𝐺) = 𝑛 if and 

only if 𝑛 is even and 𝐺 = (
𝑛

2
)𝐾2.  
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Theorem 2.15. [Cockayne et al. 2004] If 𝐺 is a 

connected graph of order 𝑛, then 𝛾𝑅(𝐺) = 𝛾(𝐺) + 1 if 

and only if there is a vertex 𝑣𝜖𝑉 of degree 𝑛 − 𝛾(𝐺). 

Theorem 2.16. [Cockayne et al. 2004] If 𝑇 is a tree on 

two or more vertices, then 𝛾𝑅(𝑇) = 𝛾(𝑇) + 1 if and 

only if 𝑇 is a wounded spider.  

Theorem 2.17. [Cockayne et al. 2004] If 𝐺 is a 

connected graph of order 𝑛, then 𝛾𝑅(𝐺) = 𝛾(𝐺) + 2 if 

and only if: 

(a) 𝐺 does not have a vertex of degree  𝑛 − 𝛾(𝐺).  

(b) either 𝐺 has a vertex of degree  𝑛 − 𝛾(𝐺) − 1 

or 𝐺 has two vertices 𝑣 and 𝑤 such that 

|𝑁[𝑣] ∪ 𝑁[𝑤]| = 𝑛 − 𝛾(𝐺) + 2.  

Theorem 2.18. [Cockayne et al. 2004]  If 𝐺 is a 

connected graph and 𝛾𝑅(𝐺) = 𝛾(𝐺) + 2, then 2 ≤

𝑟𝑎𝑑(𝐺) ≤ 4 and 3 ≤ 𝑑𝑖𝑎𝑚(𝐺) ≤ 8.  

Theorem 2.19. [Cockayne et al. 2004] If 𝑇 is a tree of 

order 𝑛 ≥ 2, then 𝛾𝑅(𝐺) = 𝛾(𝐺) + 2 if and only if 

either (i) 𝑇 is a healthy spider or (ii) 𝑇 is a pair of 

wounded spiders 𝑇1  and 𝑇2 , with a single edge joining 

𝑣 ∈ 𝑉(𝑇1) and 𝑤 ∈ 𝑉(𝑇2), subject to the following 

conditions: 

(1) if either tree is a 𝑃2 , then neither vertex in 𝑃2  

are joined to the head vertex of the other tree.  

(2) 𝑣 and 𝑤 are not both foot vertices. 

 

3. Roman Domination for Middle Graphs  

In this section, we gived some results about the Roman 

domination number  of middle graphs for path graph 

𝑃𝑛 ,  cycle graph 𝐶𝑛,  star graph 𝑆1,𝑛 , wheel graph 𝑊1,𝑛 

and complete graph 𝐾𝑛 . 

Definition 3.1. [Ramakrishnan 1988] The middle 

graph 𝑀(𝐺) of a graph 𝐺 is the graph whose vertex set 

is 𝑉(𝐺) ∪ 𝐸(𝐺), and two vertices of 𝑀(𝐺) are adjacent 

if either they are adjacent edges of 𝐺 or one is a vertex 

and the other is an edge of 𝐺, incident with it.  

 

The star graph 𝑆1,4 and the middle graph 𝑀(𝑆1,4) can 

be depicted as in the following figures:  

 

Figure 3.1. Star graph 𝑆1,4

 
Figure 3.2. Middle graph  𝑀(𝑆1,4) 

 

Theorem 3.1. [Shirkol et al. 2121] Let 𝑀(𝑃𝑛) be a 

middle graph of the path graph of order 2𝑛 − 1 

for 𝑛 ≥ 2. Then, 

𝛾𝑅(𝑀(𝑃𝑛)) = 𝑛 + 1. 

Theorem 3.2. [Shirkol et al. 2121] Let 𝑀(𝐶𝑛) be a 

middle graph of the cycle graph of order 2𝑛. Then, 

𝛾𝑅(𝑀(𝐶𝑛) = 𝑛. 

Theorem 3.3. [Shirkol et al. 2121] Let 𝑀(𝑊1,𝑛) be a 

middle graph of the wheel graph of order 3𝑛 +

1. Then, 

𝛾𝑅(𝑀(𝑊1,𝑛) = 𝑛 − 1. 

Theorem 3.4. [Shirkol et al. 2121] Let 𝑀(𝑆1,𝑛) be a 

middle graph of the star graph of order 2𝑛 + 1. Then, 

𝛾𝑅(𝑀(𝑆1,𝑛) = 𝑛 + 1. 

Proof. The vertex 𝑣 and vertices 𝑒1, 𝑒2, … , 𝑒𝑛 are make 

up the complete graph 𝐾𝑛+1. We know 𝛾𝑅(𝐾𝑛) = 2. 

Since the remaining vertices 𝑣1, 𝑣2,… , 𝑣𝑛 are 

independent, 𝑉2 ≻ 𝑉0 and 𝑉1 and  𝑉2 have no edges 

between them, 𝑒𝑖 ∈ 𝑉2, where each 𝑖 is related to 

exactly one 1,2,… , 𝑛. So, |𝑉2| = 1 and 𝑣𝑖 ∈ 𝑉0 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ 

due to 𝑑(𝑣𝑖 , 𝑒𝑖) = 1. Hence, |𝑉1| = 𝑛 − 1 and we have 

𝛾𝑅(𝑀(𝑆1,𝑛) = 𝑓(𝑉) = ∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 + 𝑛1 = 2 +

𝑛 − 1 = 𝑛 + 1. 

Theorem 3.5. Let 𝑀(𝐾𝑛) be a middle graph of the 

complete graph of order 𝑛 + (
𝑛
2
). Then, 

𝛾𝑅(𝑀(𝐾𝑛) = 𝑛. 

Proof. We can split the vertex set of the 𝑀(𝐾𝑛) as 

𝑉(𝑀(𝑃𝑛) = 𝑉(𝑉(𝐾𝑛)) ∪ 𝑉(𝐸(𝐾𝑛)), 𝑣𝑖 ∈ 𝑉(𝐾𝑛), 𝑖 =

1, 𝑛̅̅ ̅̅ ̅ and 𝑒𝑖,𝑗 ∈ 𝑉(𝐸(𝐾𝑛)), 𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗 = 𝑖 + 1, 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ . 

|𝑉(𝑉(𝐾𝑛))| = 𝑛 and |𝑉(𝐸(𝐾𝑛)) | = (
𝑛
2
). Also, 

deg(𝑒𝑖,𝑗) = 2𝑛 − 4 for ∀𝑒𝑖,𝑗 ∈ 𝑉(𝐸(𝐾𝑛)) and 

deg(𝑣𝑖) = 𝑛 − 1 for ∀𝑣𝑖 ∈ 𝑉(𝐾𝑛). Let 𝑓 =

(𝑉0, 𝑉1, 𝑉2) be a 𝛾𝑅 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and 𝑆 be a 𝛾 − 𝑠𝑒𝑡 of 

𝑀(𝐾𝑛). Then, 𝑉1 ∪ 𝑉2 is a dominating set of 𝑀(𝐾𝑛) 
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and  (∅, ∅, 𝑆) is a Roman dominating function. We 

have two cases: 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 2) 

In this case, 
𝑛

2
 vertices 𝑒𝑖,𝑖+1, 𝑖 = 1,3,5,… , 𝑛 − 1 make 

up 𝑉2. So, all vertices are dominated. 𝛾𝑅(𝑀(𝐾𝑛) =

2𝛾(𝑀(𝐾𝑛)). 𝑓(𝑉) = ∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 + 𝑛1 =

2(
𝑛

2
) = 𝑛. 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 2) 

In this case, ⌊
𝑛

2
⌋ vertices 𝑒𝑖,𝑖+1, 𝑖 = 1,3,5,… , 𝑛 − 2 

make up 𝑉2. So, ∀𝑒𝑖,𝑗  and 𝑣1, 𝑣2, … , 𝑣𝑛−1 are 

dominated. The vertex 𝑣𝑛 make up 𝑉1. Hence, 𝑓(𝑉) =

∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 + 𝑛1 = 2 ⌊
𝑛

2
⌋ + 1 = 𝑛. 

So, we have 𝛾𝑅(𝑀(𝐾𝑛) = 𝑛 from Case 1 and Case 2. 

4. Roman Domination for Splitting Graphs 

In this section, we investigated the Roman domination 

number of splitting graphs for  path graph 𝑃𝑛 ,  cycle 

graph 𝐶𝑛,  star graph 𝑆1,𝑛 , wheel graph 𝑊1,𝑛 and  

complete graph 𝐾𝑛 . 

Definition 4.1.[Sampathkumar, E. and  Walikar 1980] 

Splitting graph 𝑆(𝐺) of a graph 𝐺 is obtained by taking 

a copy of 𝐺, for each vertex 𝑣 of a graph 𝐺, take a new 

vertex 𝑣′ and join 𝑣′ to all the vertices of 𝐺 adjacent to 

𝑣.  

The path graph 𝑃5 and the splitting graph 𝑆(𝑃5) can be 

depicted as in the following figures:  

 

Figure 4.1. Path graph 𝑃5 

 

 

               Figure 4.2. Splitting graph 𝑆(𝑃5)  

 

Theorem 4.1. Let 𝑆(𝑃𝑛) be a splitting graph of the path 

graph of order 2𝑛. Then, 

𝛾𝑅(𝑆(𝑃𝑛)) = {
𝑛,

𝑛 + 1,
𝑛 ≡ 0(𝑚𝑜𝑑 3)
 𝑛 ≡ 1,2(𝑚𝑜𝑑 3)

         

Proof. Let 𝑓 = (𝑉0, 𝑉1 , 𝑉2) be the RDF of 𝑆(𝑃𝑛). The 

value of the function for the corresponding vertices 𝑣𝑖′ 

, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ is 𝑓(𝑣𝑖
′) = 0 if 𝑓(𝑣𝑖) = 0; 𝑓(𝑣𝑖

′) = 1 if 

𝑓(𝑣𝑖) = 1 𝑜𝑟 𝑓(𝑣𝑖) = 2, respectively. We know 

𝛾𝑅(𝑃𝑛) = ⌈
2𝑛

3
⌉ from the Theorem 1.9. So, we have 

three cases: 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 3) 

In this case, 𝑓(𝑣𝑖) = 0, 𝑓(𝑣𝑖+1) = 2, 𝑓(𝑣𝑖+2) = 0 and 

𝑓(𝑣𝑖′) = 0, 𝑓(𝑣𝑖+1′) = 1, 𝑓(𝑣𝑖+2′) = 0 for 𝑖 =

1,4,7,… , 𝑛 − 2. Hence, 𝑓(𝑉) = ∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 +

𝑛1 =
2𝑛

3
+

𝑛

3
= 𝑛. 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 3) 

In this case, 𝑓(𝑣𝑖) = 0, 𝑓(𝑣𝑖+1) = 2, 𝑓(𝑣𝑖+2) = 0 and 

𝑓(𝑣𝑖′) = 0, 𝑓(𝑣𝑖+1′) = 1, 𝑓(𝑣𝑖+2′) = 0 for 𝑖 =

1,4,7,… , 𝑛 − 3. Also, 𝑓(𝑣𝑛) = 𝑓(𝑣𝑛
′ ) = 1.  Hence, 

𝑓(𝑉) = ∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 + 𝑛1 = ⌈
2𝑛

3
⌉ +

𝑛−1

3
+ 1 =

⌈
2𝑛

3
⌉ +

𝑛+2

3
= 𝑛 + 1.  

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 3) 

In this case, 𝑓(𝑣𝑖) = 0, 𝑓(𝑣𝑖+1) = 2, 𝑓(𝑣𝑖+2) = 0 and 

𝑓(𝑣𝑖′) = 0, 𝑓(𝑣𝑖+1′) = 1, 𝑓(𝑣𝑖+2′) = 0 for 𝑖 =

1,4,7,… , 𝑛 − 4. Also, 𝑓(𝑣𝑛) = 2 and 𝑓(𝑣𝑛
′ ) = 1. 

Hence, 𝑓(𝑉) = ∑ 𝑓(𝑣) = 2𝑛2𝑣∈𝑉 + 𝑛1 = ⌈
2𝑛

3
⌉ +

𝑛−2

3
+ 1 = ⌈

2𝑛

3
⌉ +

𝑛+1

3
= 𝑛 + 1. 

So, from Case 1, Case 2 and Case 3, we have 

𝛾𝑅(𝑆(𝑃𝑛)) = {
𝑛,

𝑛 + 1,
𝑛 ≡ 0(𝑚𝑜𝑑 3)
 𝑛 ≡ 1,2(𝑚𝑜𝑑 3)

 

Corollary 4.1. Let 𝑃𝑛 be a path graph of order 𝑛 and 

𝑆(𝑃𝑛) be a splitting graph of the path graph of order 

2𝑛. Then,  

𝛾𝑅(𝑆(𝑃𝑛)) =

{
 
 

 
 𝛾𝑅(𝑃𝑛) +

𝑛

3
, 𝑛 ≡ 0(𝑚𝑜𝑑 3)

𝛾𝑅(𝑃𝑛) +
𝑛 + 2

3
, 𝑛 ≡ 1(𝑚𝑜𝑑 3)

𝛾𝑅(𝑃𝑛) +
𝑛 + 1

3
, 𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

Theorem 4.2. Let 𝑆(𝐶𝑛) be a splitting graph of the 

cycle graph of order 2𝑛. Then, 

𝛾𝑅(𝑆(𝐶𝑛)) = {
𝑛,

𝑛 + 1,
𝑛 ≡ 0(𝑚𝑜𝑑 3)
 𝑛 ≡ 1,2(𝑚𝑜𝑑 3)

    

Proof.  The proof is similar to the proof of the Theorem 

4.1. 

Theorem 4.3. Let 𝑆(𝑆1,𝑛) of order 2𝑛 + 2, 𝑆(𝑊1,𝑛) of 

order 2𝑛 + 2 be splitting graphs of a star graph and a 

wheel graph respectively and 𝑆(𝐾𝑛) of order 2𝑛 be a 

splitting graph of a complete graph. Then, 

𝛾𝑅 (𝑆(𝑆1,𝑛)) = 𝛾𝑅(𝑆1,𝑛) + 1, 𝛾𝑅 (𝑆(𝑊1,𝑛)) =

𝛾𝑅(𝑊1,𝑛) + 1 and 𝛾𝑅(𝑆(𝐾𝑛)) = 𝛾𝑅(𝐾𝑛) + 1. 
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Proof. We denote 𝑆1,𝑛, 𝑊1,𝑛 and 𝐾𝑛 by 𝐺. ∃𝑢 ∈ 𝐺 | 

deg(𝑢) = 𝑛 in 𝐺. Let 𝑓 = (𝑉0 , 𝑉1, 𝑉2) be the RDF of 

𝑆(𝐺). We denote the corresponding vertices of 𝑣𝑖 by 

𝑣𝑖
′, 𝑖 = 1, 𝑛 ̅̅ ̅̅ ̅ in 𝑆(𝐺).  If 𝑓(𝑢) = 2, then 𝑓(𝑣𝑖) =

𝑓(𝑣𝑖
′) = 0, since 𝑑(𝑢) = 𝑑(𝑣𝑖) = 𝑑(𝑣𝑖

′) = 1.  So, 

{𝑢′} = 𝑉1. We have 𝛾𝑅(𝐺) = 2𝛾(𝐺) and 𝛾𝑅(𝑆(𝐺)) =

𝛾𝑅(𝐺) + 1. 

Corollary 4.2. Let 𝐺 be a graph of order 𝑛. If ∃𝑣 ∈

𝑉(𝐺)| deg(𝑣) = 𝑛 − 1,  then 𝛾𝑅(𝑆(𝐺)) = 𝛾𝑅(𝐺) + 1. 
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