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Abstract  
Original scientific paper 

In this paper, the linear combination of the Lie Frenet frame of a given curve is used to create a parametric surface family. Using the 

coefficients of the surface's first and second fundamental forms, the Gauss curvature of this parametric surface is determined. Also, 

sufficient conditions for the surface when its Gauss curvature is constant along the given curve are derived. Moreover, sufficient conditions 

are found when the finding surface is a ruled surface, as a member of the family. Finally, a few examples to support our theory are created 

in the Lie group. 
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LİE GRUBUNDA BİR EĞRİ BOYUNCA SABİT GAUSS EĞRİLİKLİ 

YÜZEYLER ÜZERİNE NOTLAR  

 
Özet 

Orijinal bilimsel makale  

Bu çalışmada, parametrik bir yüzey ailesi oluşturmak için verilen bir eğrinin Lie Frenet çatısının lineer kombinasyonu kullanılmıştır. 

Yüzeyin birinci ve ikinci temel form katsayıları kullanılarak bu parametrik yüzeyin Gauss eğriliği hesaplanmıştır. Ayrıca verilen eğri 

boyunca yüzeyin Gauss eğriliğinin sabit olması durumunda yeterli koşullar üretilmiştir. Dahası, ortaya çıkan yüzeyin, ailenin bir üyesi 

olarak açılabilir bir regle yüzey olduğu durumlardaki koşullar üretilmiştir. Son olarak, Lie Group'ta teorimizi destekleyecek bazı örnekler 

oluşturulmuştur.  

 

Anahtar Kelimeler: Gauss eğriliği, Lie grup, yüzeyler. 

 

 

1 Introduction  
 

Differential geometry of curves and surfaces is an 

important and widely researched area in such fields as 

engineering and physics. Calculating the Gaussian 

curvature of a two-dimensional surface becomes 

necessary in many propagation problems in engineering 

[1]. In engineering, there exist correlations between a 

structure's stability and its Gaussian curvature at every 

point on its surface. Consequently, a useful formula for 

calculating the curvature is occasionally needed by 

engineers who work on the design of structures. A few 

other technical applications, such as computer vision and 

engineering, occasionally confront the tough task of 

determining a surface's Gaussian curvature in order to 

obtain three-dimensional depth data or range.  

In general, curves in differential geometry, most 

studies on surfaces, and special curves on surfaces are 

examined. Moreover, the concept of the construction of a 

surface is an important issue in differential geometry. 

Until today, numerous studies have been focused on 

constructing surfaces with a common special curve such 

as a geodesic, an asymptotic, or a line of curvature [2-7]. 

To create this, they used the curve and its Frenet frame on 

the surface. On the other hand, the concept of curvature is 

also a widely used concept in differential geometry. 

Gauss’s work was a start in this regard. If we express the 

Gauss curvature 𝐾 as the product of the principal 

curvature, 𝜅1 and 𝜅2, then 𝐾 = 0 if one of the principal 

curvatures is zero. It is also important to understand that 

Gauss curvature is an intrinsic property of surfaces. This 

leads to Minding’s Theorem which states that two 

surfaces of the same constant Gauss curvature 𝐾 are 

locally isometric. The results of Minding’s Theorem lead 

to the fact that surfaces of positive constant Gauss 

curvature 𝐾 > 0 are locally isometric to a sphere, and 
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surfaces of negative constant Gauss curvature 𝐾 < 0 are 

locally isometric to a pseudosphere and surfaces of zero 

Gauss curvature 𝐾 = 0 are locally isometric to a plane 

[8,9]. These surfaces are known as developable surfaces 

because they can be created from a flat sheet of material 

without being stretched or torn as a result. Additionally, 

applications for real developable surfaces are widespread 

in the fields of engineering and manufacturing. For 

example, an aircraft designer utilizes them to create the 

wings of an airplane.  

On the other hand, recently, Bayram [10,11] 

introduced the theory of obtaining surfaces with constant 

mean and Gauss curvature through a given curve in the 

Minkowski and Euclidean 3-spaces, respectively. 

The major goal of this research is to investigate how 

to derive sufficient conditions for the parametric surface 

when its Gauss curvature is constant along the given curve 

and illustrate some examples to present our theory. 

 

2 Prelimınaries 
 

In this section, we will give a summary of the theory 

of the Lie Group. For more information, we may refer to 

[12-14]. 

The Frenet formulas for a unit speed curve 𝛼(𝑠) in the 

Lie group are expressed as  

 

[

𝑇′  (𝑠)

𝑁′ (𝑠)

𝐵′  (𝑠)
]=[−

0   𝜅 0
𝜅 0 (𝜏 − 𝜏𝐺)

0 −(𝜏 − 𝜏𝐺) 0
] [

𝑇(𝑠)
𝑁(𝑠)

𝐵(𝑠)
], 

 

where 𝜅 and 𝜏  are the curvature functions of 𝛼(𝑠) and 𝜏𝐺 

is called Lie torsion which is defined by 𝜏𝐺 =
1

2
<

𝑇, [𝑁, 𝐵] >. 
 

Definition 2.1:  ℎ =
𝜏−𝜏𝐺

𝜅
  is the harmonic curvature 

function [13]. 

 

Definition 2.3: Let 𝑃(𝑠, 𝑡) be a surface in the 3-

dimesional Lie Group, then the Gauss curvature of this 

surface, such that the unit surface normal 𝜂, is defined by 

 

𝐾=
𝑙𝑛−𝑚2

𝐸𝐺−𝐹2
,                                                                          (1) 

 

where 𝑙=⟨𝜂 ,
𝜕2𝑃

𝜕𝑠2
⟩, 𝑚=⟨𝜂 ,

𝜕2𝑃

𝜕𝑡𝜕𝑠
⟩, 𝑛=⟨𝜂 ,

𝜕2𝑃

𝜕𝑡2
⟩, 𝐸=⟨ 

𝜕𝑃

𝜕𝑠
,
𝜕𝑃

𝜕𝑠
⟩, 

𝐹=⟨ 
𝜕𝑃

𝜕𝑠
,
𝜕𝑃

𝜕𝑡
⟩, 𝐺=⟨ 

𝜕𝑃

𝜕𝑡
,
𝜕𝑃

𝜕𝑡
⟩ [9]. 

 

3 Surfaces with Constant Gauss Curvature  
 

In this section, we introduce surfaces whose has the 

constant Gauss curvature in the three dimensional Lie 

group. Furthermore, some examples of the surface are 

obtained in the study and are given visualized. 

Let α(s) be an arc length parametrized curve on a 

surface 𝑃(𝑠, 𝑡) in G. Then the parametric form of a surface 

𝑃(𝑠, 𝑡) along given curve α(s) and its Frenet frame is 

defined as follows      
 

 𝑃(𝑠, 𝑡) = 𝛼(𝑠)+𝑥(𝑠, 𝑡)𝑇(𝑠)+ 𝑦(𝑠, 𝑡)𝑁(𝑠)+𝑧(𝑠, 𝑡)𝐵(𝑠)    (2) 

𝐿1 ≤ s ≤ 𝐿2      and     𝑇1 ≤ t ≤ 𝑇2, 
 

where 𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑧(𝑠, 𝑡) are all 𝐶1 functions. These 

functions are called the marching-scale functions. 

According to the definition of an isoparametric curve on a 

surface, there exists a parameter 𝑡0 ∈ [T1, 𝑇2] such 

that α(s) = 𝑃(𝑠, 𝑡0), 𝐿1 ≤ s ≤ 𝐿2, that is,  

 

𝑥(𝑠, 𝑡0) = 𝑦(𝑠, 𝑡0) = 𝑧(𝑠, 𝑡0) = 0, (3) 

 

𝐿1 ≤ s ≤ 𝐿2      ve     𝑇1 ≤ 𝑡0 ≤ 𝑇2 

 

Now we calculate the Gauss curvature of 𝑃(𝑠, 𝑡) 
given by (2) using the equation (1).  

First, we will find the unit surface normal using the 

following equation 

 

𝜂(𝑠, 𝑡) = 

𝜕𝑃(𝑠,𝑡) 

𝜕𝑠
 × 
𝜕𝑃(𝑠,𝑡) 

𝜕𝑡

‖
𝜕𝑃(𝑠,𝑡) 

𝜕𝑠
 × 
𝜕𝑃(𝑠,𝑡) 

𝜕𝑡
‖
. 

 

So we get 

 
𝜕𝑃

𝜕𝑠
 =(1 +

𝜕𝑥

𝜕𝑠
(𝑠, 𝑡)– 𝑦(𝑠, 𝑡)𝜅(𝑠)) 𝑇(𝑠) + (𝑥(𝑠, 𝑡)𝜅(𝑠) +

 
𝜕𝑦

𝜕𝑠
(𝑠, 𝑡)– (𝜏(𝑠) − 𝜏𝐺(𝑠))𝑧(𝑠, 𝑡) ) 𝑁(𝑠) +((𝜏(𝑠) −

𝜏𝐺(𝑠))𝑦(𝑠, 𝑡) +
𝜕𝑧

𝜕𝑠
(𝑠, 𝑡)) 𝐵(𝑠), 

 
𝜕𝑃

𝜕𝑡
=

𝜕𝑥

𝜕𝑡
(𝑠, 𝑡)𝑇(𝑠) +

𝜕𝑦

𝜕𝑡
(𝑠, 𝑡) 𝑁(𝑠) +

𝜕𝑧

𝜕𝑡
(𝑠, 𝑡)𝐵(𝑠), 

 

‖
𝜕𝑃(𝑠,𝑡) 

𝜕𝑠
 ×  

𝜕𝑃(𝑠,𝑡) 

𝜕𝑡
‖ = ((

𝜕𝑦

𝜕𝑡
)
2

+ (
𝜕𝑧

𝜕𝑡
)
2

)

1

2
. 

 

We obtain 

 

𝜂(𝑠, 𝑡0) =(
𝜕𝑦

𝜕𝑡
𝐵(𝑠)  − 

𝜕𝑧

𝜕𝑡
𝑁(𝑠) ) ((

𝜕𝑦

𝜕𝑡
)
2
+ (

𝜕𝑧

𝜕𝑡
)
2
)
−
1

2
(𝑠, 𝑡0). 

 

To calculate Gauss curvature, we easily get 

 

𝐸(𝑠, 𝑡0)=⟨ 
𝜕𝑃

𝜕𝑠
(𝑠, 𝑡0),

𝜕𝑃

𝜕𝑠
(𝑠, 𝑡0)⟩=‖

𝜕𝑃

𝜕𝑠
(𝑠, 𝑡0)‖

2
= ‖𝑇(𝑠) ‖2 = 1, 

 

𝐹(𝑠, 𝑡0)= ⟨ 
𝜕𝑃

𝜕𝑠
(𝑠, 𝑡0),

𝜕𝑃

𝜕𝑡
(𝑠, 𝑡0) ⟩ = 

𝜕𝑥

𝜕𝑡
(𝑠, 𝑡0) 

 

𝐺(𝑠, 𝑡0)= ⟨ 
𝜕𝑃

𝜕𝑡
(𝑠, 𝑡0),

𝜕𝑃

𝜕𝑡
(𝑠, 𝑡0) ⟩ = (

𝜕𝑥

𝜕𝑡
(𝑠, 𝑡0))

2

+ 

(
𝜕𝑦

𝜕𝑡
(𝑠, 𝑡0))

2

+ (
𝜕𝑧

𝜕𝑡
(𝑠, 𝑡0))

2

, 

 

𝑙(𝑠, 𝑡0) = ⟨𝜂,
𝜕2𝑃

𝜕𝑠𝜕𝑠
⟩ = 

−𝜅(𝑠) 
𝜕𝑧

𝜕𝑡

√(
𝜕𝑦

𝜕𝑡
)
2
+ (

𝜕𝑧

𝜕𝑡
)
2
(𝑠, 𝑡0), 

 

𝑚(𝑠, 𝑡0) =  ⟨𝜂,
𝜕2𝑃

𝜕𝑡𝜕𝑠
⟩ =

(
𝜕𝑧

𝜕𝑡
)
2 
(𝜏(𝑠)−𝜏𝐺(𝑠))−

𝜕𝑧

𝜕𝑡

𝜕𝑥

𝜕𝑡
𝜅(𝑠)−

𝜕2𝑦

𝜕𝑡𝜕𝑠

𝜕𝑧

𝜕𝑡
 + (

𝜕𝑦

𝜕𝑡
)
2
(𝜏(𝑠)−𝜏𝐺(𝑠))+

𝜕2𝑧

𝜕𝑡𝜕𝑠

𝜕𝑦

𝜕𝑡
   

√(
𝜕𝑦

𝜕𝑡
)
2
+ (

𝜕𝑧

𝜕𝑡
)
2

(𝑠, 𝑡0),  

 

and 
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𝑛(𝑠, 𝑡0)= ⟨𝜂,
𝜕2𝑃

𝜕𝑡𝜕𝑡
⟩ = 

𝜕2𝑧

𝜕𝑡𝜕𝑡

𝜕𝑦

𝜕𝑡
−
𝜕2𝑦

𝜕𝑡𝜕𝑡

𝜕𝑧

𝜕𝑡

√(
𝜕𝑦

𝜕𝑡
)
2
+ (

𝜕𝑧

𝜕𝑡
)
2
(𝑠, 𝑡0). 

 

Then substituting these values into equation (1), 

Gauss curvature of the given surface is obtained as 

 

𝐾  =   
𝐴−𝐵

((
𝜕𝑦

𝜕𝑡
)
2
+ (

𝜕𝑧

𝜕𝑡
)
2
)

2 (𝑠, 𝑡0),                                                 (4) 

 

where  

𝐴 = 𝜅(𝑠) (
𝜕2𝑦

𝜕𝑡2
(
𝜕𝑧

𝜕𝑡
)
2
−
𝜕𝑧

𝜕𝑡

𝜕𝑦

𝜕𝑡

𝜕2𝑧

𝜕𝑡2
), 

 

B=(((
𝜕𝑧

𝜕𝑡
)
2
+ (

𝜕𝑦

𝜕𝑡
)
2
) (ℎ(𝑠)𝜅(𝑠)) −

𝜕𝑧

𝜕𝑡

𝜕𝑥

𝜕𝑡
𝜅(𝑠) −

𝜕2𝑦

𝜕𝑡𝜕𝑠

𝜕𝑧

𝜕𝑡
+

𝜕2𝑧

𝜕𝑡𝜕𝑠

𝜕𝑦

𝜕𝑡
)

2

and ℎ(𝑠) =   
𝜏(𝑠)−𝜏𝐺(𝑠)

2
. 

 

In light of these results, we can state the following two 

theorems when the Gauss curvature of the surface is 

constant: 

 

Theorem 3.1: Let 𝑃(𝑠, 𝑡)  be the surface given by 

Equation (2). If the Gauss curvature of 𝑃(𝑠, 𝑡)  in equation 

(4) along the isoparametric curve α(s) is a constant, then 

one of the following two conditions is satisfied: 

 

1.{
𝑥(𝑠, 𝑡0) = 𝑦(𝑠, 𝑡0) = 𝑧(𝑠, 𝑡0) =  

𝜕𝑧

𝜕𝑡
(𝑠, 𝑡0) ≡ 0,

𝜕𝑦

𝜕𝑡
(𝑠, 𝑡0) ≠ 0, ℎ(𝑠) = 𝑐𝑜𝑛𝑠𝑡., 𝜅(𝑠) = 𝑐𝑜𝑛𝑠𝑡.

 

 

2.

{
 

 𝑥(𝑠, 𝑡0) = 𝑦(𝑠, 𝑡0) = 𝑧(𝑠, 𝑡0) =  
𝜕𝑥

𝜕𝑡
(𝑠, 𝑡0)  ≡ 0,

𝜕𝑧

𝜕𝑡
(𝑠, 𝑡0) ≠ 0 ≡

𝜕𝑦

𝜕𝑡
(𝑠, 𝑡0) ≡

𝜕2𝑦

𝜕𝑡2
(𝑠, 𝑡0),

ℎ(𝑠) = 𝑐𝑜𝑛𝑠𝑡., 𝜅(𝑠) = 𝑐𝑜𝑛𝑠𝑡.

 

 

Theorem 3.2: Let 𝑃(𝑠, 𝑡) be the surface given by 

Equation (2). If the Gauss curvature of the ruled surfaces 

𝑃(𝑠, 𝑡)  along the isoparametric curve α(s) is a constant, 

then the following condition is satisfied: 

 

{
𝑥(𝑠, 𝑡0) = 𝑦(𝑠, 𝑡0) = 𝑧(𝑠, 𝑡0) = 𝑡 − 𝑡0,

2ℎ(𝑠)𝜅(𝑠) − 𝜅(𝑠) = 𝑐𝑜𝑛𝑠𝑡.
 

 

Corollary 3.3: If we take 2ℎ(𝑠)𝜅(𝑠) − 𝜅(𝑠) = 0, then 

𝐾 = 0. So 𝑃(𝑠, 𝑡) surfaces become developable ruled 

surfaces. 

 

Example 3.4: Suppose that α(s) given by 

 

α(s) = (sin(s), cos(s), 0).   
 

By straightforward calculations, we get the 

𝑇, 𝑁 𝑎𝑛𝑑 𝐵 vectors in the three dimensional Lie Group as 

follows 

 

𝑇(𝑠) = (cos(𝑠), sin(s), 0), 
 

𝑁(𝑠) = (−sin(s), cos(s), 0), 
 

𝐵(𝑠) = (0,0, −1), 

where 𝜅 = 1, 𝜏 = 0, 𝜏𝐺 =
1

2
 and ℎ(𝑠) = −

1

2
.  

 

Case 1: Choosing marching-scale functions as 𝑥(𝑠, 𝑡)=𝑠𝑡, 

𝑦(𝑠, 𝑡)= 𝑡, 𝑧(𝑠, 𝑡)=s𝑡2 (
𝜕𝑦

𝜕𝑡
≠ 0,

𝜕𝑧

𝜕𝑡
= 0) and 𝑡0 = 0.  

 

Then, the first condition of Theorem 3.1 is satisfied 

and the surface 𝑃1(𝑠, 𝑡) given by (2) in the Lie group G is 

obtained as 

 
𝑃1(𝑠, 𝑡) = ((1 − 𝑡) sin(s) +  𝑠𝑡cos(s), (1 − 𝑡)cos(s) – 𝑠𝑡sin(s),− s𝑡

2).  

 

In Figure 1, the surface 𝑃1(𝑠, 𝑡) with constant Gauss 

curvature 𝐾(𝑠, 𝑡0) = −
1

4
 along the curve α(s) can be seen 

as follows 

 

 
Figure 1. The surface 𝑃1(𝑠, 𝑡) with constant Gauss curvature along the 

curve α(s). 

 

Case 2: Choosing 𝑥(𝑠, 𝑡)=0, 𝑦(𝑠, 𝑡)=𝑠𝑖𝑛(𝑡), 𝑧(𝑠, 𝑡)=𝑡3 

(
𝜕𝑦

𝜕𝑡
≠ 0,

𝜕𝑧

𝜕𝑡
= 0) and 𝑡0 = 0. Then, the first condition of 

Theorem 3.1 is satisfied and the surface 𝑃2(𝑠, 𝑡) given by 

(2) in the Lie group G is obtained as 

 

𝑃2(𝑠, 𝑡) = ((1 − 𝑠𝑖𝑛(𝑡)) sin(𝑠) , (1 − 𝑠𝑖𝑛(𝑡)) cos(s) , − 𝑡
3)  

 

In Figure 2, the surface 𝑃2(𝑠, 𝑡) with 𝐾(𝑠, 𝑡0) = −
1

4
 

along the curve α(s) can be seen as follows  

 

 
Figure 2. The surface 𝑃2(𝑠, 𝑡) with constant Gauss curvature along the 

curve α(s). 

 

Case 3: Choosing 𝑥(s, t) = 0, 𝑦(s, t) = 𝑠𝑡3, 𝑧(s, t) =
𝑠𝑠𝑖𝑛(𝑡) and 𝑡0 = 0. Then, the second condition of 

Theorem 3.1 is satisfied and the surface 𝑃3(𝑠, 𝑡) given by 

(2) in the Lie group G is obtained as 

 

𝑃3(𝑠, 𝑡) = ((1 − 𝑠𝑡3)sin(s), (1 − 𝑠𝑡3)cos(s), −𝑠𝑠𝑖𝑛(𝑡)) 
 

In Figure 3, the surface 𝑃3(𝑠, 𝑡) with 𝐾(𝑠, 𝑡0) = −
1

4
 

along the curve α(s) can be seen as follows  
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Figure 3: The surface 𝑃3(𝑠, 𝑡) with constant Gauss curvature along the 

curve α(s). 

 

Case 4: Choosing 𝑥(s, t) =𝑡2, 𝑦(s, t) = 0, 𝑧(s, t) = 𝑠𝑡 and 

𝑡0 = 0. Then, the second condition of Theorem 3.1 is 

satisfied and the surface 𝑃4(𝑠, 𝑡) given by (2) in the Lie 

group G is obtained as 

 
𝑃4(𝑠, 𝑡) = (sin(𝑠) − 𝑡

2cos(𝑠), cos(𝑠) − 𝑡2sin(𝑠), −𝑠𝑡 )  

 

In Figure 4, the surface 𝑃4(𝑠, 𝑡) with 𝐾(𝑠, 𝑡0) = −
1

4
  along 

the curve α(s) can be seen as follows 

 

 
Figure 4: The surface 𝑃4(𝑠, 𝑡) with constant Gauss curvature along the 

curve α(s). 
 

Case 5: Choosing marching-scale functions as 𝑥(𝑠, 𝑡)= 

𝑦(𝑠, 𝑡)=𝑧(𝑠, 𝑡)= 𝑡 − 𝑡0 and 𝑡0 = 0. Then, Theorem 3.2 is 

satisfied and the ruled surface 𝑃5(𝑠, 𝑡) given by (2) in the 

Lie group G is obtained as 

 
𝑃5(𝑠, 𝑡) = ((1 − 𝑡)sin(𝑠) + 𝑡𝑐𝑜𝑠(𝑠), (1 − 𝑡)cos(𝑠) − 𝑡𝑠𝑖𝑛(𝑠),−𝑡 )  

 

In Figure 5, the surface 𝑃5(𝑠, 𝑡) with 𝐾(𝑠, 𝑡0) = −1 

along the curve α(s) can be seen as follows 

 

 
Figure 5. The surface 𝑃5(𝑠, 𝑡) with constant Gauss curvature along the 

curve α(s). 

4 Conclusion 
 

In this paper, we defined sufficient conditions to find 

the surfaces which have constant Gauss curvature along a 

given curve in the Lie group. Moreover, we derived 

sufficient conditions when the finding surface is a ruled 

surface, which is commonly utilized in mechanical 

engineering. Finally, using the same base curve α(s) and 

various marching-scale functions, we created the surfaces 

𝑃𝑖(𝑠, 𝑡), 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 5 with constant Gauss curvature, 

and illustrated them in Figures 1-5 for the parameters 

−1 ≤ 𝑠 ≤ 1 and −2 ≤ 𝑡 ≤ 2, respectively. 
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