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Abstract: In our work we were interested in the toxicity of fluorine on the various 

parameters of stress: chlorophyll, proteins, and antioxidant system in the lichen 

Xanthoria parietina (L.) Th. Fr., and for this purpose, lichen thalli were treated by 

sodium fluoride (NaF) at concentrations of 0, 0.5, 1.0, 5.0 and 10.0 mM, for time 

scale 0, 24, 48 and 96 h. The analysis results obtained revealed that all the 

parameters evaluated showed significant variations compared to those of the 

controls. From the analysis results obtained, it was noted that chlorophyll a (Ca), 

chlorophyll b (Cb) and total chlorophyll (Ca+b) decreased correlating with exposure 

times to NaF (r = -0.785, p < 0.001; r = -0.955, p < 0.001; r = -0.899, p < 0.001, 

respectively), with a significant increase of Ca/b ratio (p = 0.00572**) showing that 

Cb was more affected than Ca. However, hydrogen peroxide (H2O2) increased (r = 

0.949, p < 0.001). In correlation with NaF concentrations, Glutathione (GSH) 

increased (r = 0.969, p < 0.001), while proteins decreased (r = -0.872, p < 0.001). 

Furthermore, results showed that catalase activity (CAT) increased correlating with 

increasing exposure time of X. parietina to increasing concentrations of NaF. Long-

term exposure (48 h -96 h) caused a significant decrease in GSH content (p = 0.02*) 

followed by total destruction at time 96 h. 
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1. INTRODUCTION 

In their habitat, lichens are exposed to severe abiotic stresses such as desiccation and 

temperature extremes (Beckett et al., 2021), salinity (Chowaniec & Rola, 2022), heat (Kraft et 

al., 2022) heavy metals (Rola, 2020), and fluoride (Roberts & Thompson, 2011).  

Plants endured significant biochemical and physiological changes as a result of the stressful 

environment. Chlorophyll degradation is the most common metric used to assess the toxicity of 

air pollution on lichens (Sujetovienė, 2015). 

Fluoride is found in a variety of environmental matrices and even at low quantities and is 

one of the most phytotoxic chemical elements for plants (Banerjee & Roychoudhury, 2019). It 

affects the metabolic activity of plants by decreasing nutrient uptake, germination, 
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photosynthesis, growth, and productivity (Sharma & Kaur, 2018). Fluoride toxicity has also a 

negative impact on enzyme activity, protein synthesis, gene expression patterns, and the 

formation of reactive oxygen species (ROS) (Choudhary et al., 2019). 

The most important adaptation mechanism used by lichens for tolerance to stressful 

conditions is the scavenging of ROS. To prevent ROS-induced damage, plants synthesize many 

enzymatic components like catalase (Lei et al., 2022) and non-enzymatic components like 

glutathione (Hasanuzzaman et al., 2020), and change their protein composition (Amnan et al., 

2022). In response to abiotic stress, plants also produce H2O2 as one of the ROS (Zhang, 2022). 

Under stressful conditions, GSH levels rise in plants (Nahar et al., 2017), and it is one of the 

plant's adaptive methods for combating and tolerating stress (Gong et al., 2018). Catalase 

activity also increases in plant under fluoride stress correlating with high concentration (Sharma 

& Kaur, 2019) and with exposure time (Sharma et al., 2019). 

The study's aim is to explore the harmful effect of fluorine which is in the form of sodium 

fluoride (NaF) on the lichen Xanthoria parietina, by measuring contents of chlorophyll, 

proteins, catalase, hydrogen peroxide (H2O2), and reduced glutathione (GSH) as stress 

biomarkers. 

2. MATERIAL and METHODS 

2.1. Lichen Material 

The X. parietina lichen thalli were collected in a rural area far from any urban or industrial area 

south of Jijel (Algeria) during the spring season 2017. Samples were transported to the 

laboratory in clean closed boxes. The thalli were then separated from their supports and kept in 

the laboratory until their use. 

2.2. Fluorine Treatment 

The lichen thalli of X. parietina were incubated in NaF solutions at 0.5, 1.0, 5.0, and 10.0 mM 

concentrations at room temperature in comparison with a control test which consists of a 

treatment in distilled water. These solutions were then kept at room temperature for 0, 24, 48, 

and 96 h in the dark. After treatment and before each analysis, the samples were washed three 

times with distilled water to remove excess NaF solutions attached to thalli surfaces.  

2.3. Chlorophyll Analysis 

Chlorophyll a (Ca), chlorophyll b (Cb), and total chlorophyll (Ca+b) contents were assayed 

according to the method described by Lichtenthaler (1987). The fresh lichen sample was 

macerated in 80 % acetone, and the maceration extract was then filtered and read at 663 nm and 

645 nm using a spectrophotometer. Chlorophyll contents were calculated using the following 

equation: 

Ca = 12.7 × A663 – 2.69 × A645 

Cb = 22.9 × A645 – 4.68 × A663 

Ca+b = 20.2 × A645 – 8.02 × A663 

Where A663, A645 absorbance at 663 and 645 nm, respectively. Results were expressed in µg.g-1. 
To measure the physiological activity of algal cells, the chlorophyll a/b (ca/b) ratio was calculated. 

2.4. Proteins Assay 

Protein contents were tested using Bradford's method (1976). 100 mg of fresh weight lichens 

were homogenized in 2 ml of 0.05 M phosphate buffer pH 6.8 and centrifuged for 20 min at 

12000 t/min at 4 °C. An amount of 2 ml of Bradford's solution was added to 50 µl of 

supernatant. After 10 min, a reading of 595 nm was recorded. BSA's equation (y = 28.9 x, R2 = 

0.9911) was used to quantify protein levels (mg.g-1). 
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2.5. Catalase Activity Assay 

Catalase activity was measured using the Chance and Maehly’s method (1955). An amount of 

50 mg fresh weight of lichens was homogenized in 2 ml of 0.05 M phosphate buffer at pH 7, 

and then centrifuged at 15000 t / min at 5 °C for 20 min. 50 µl of the supernatant was added to 

2.95 ml of 0.015 M H2O2 in the phosphate buffer. A first reading was taken at 240 nm right 

away, and a second was taken 3 min later. The following formula was used to calculate 

catalase's enzymatic activity: 

k = 2.303 / T x log (A1/A2) 

of which:  

K: the reaction rate constant.  

T: Time interval in min.  

A1: Absorbance at t = 0.  

A2: Absorbance after 3 min. 

Results were expressed in IU/g of proteins. 

2.6. H2O2 Assay 

H2O2 concentration was assayed according to the method described by Sagisaka (1976). An 

amount of 2 ml of 5 % trichloroacetic acid (TCA) was used to homogenize about 1g of fresh 

lichen material. The resultant mixture was centrifuged for 20 min at 0 °C at 14000 g. 1.6 ml of 

supernatant was mixed with a mixture of 0.4 ml TCA (50 %), 0.4 ml ferrous ammonium sulfate 

(1 %) and 0.2 ml of thio potassium cyanate (1 %). The amount of H2O2 in the supernatant was 

calculated using the optical density at 480 nm. The concentration of H2O2 (mmol.g-1) was 

calculated using an equation based on known H2O2 standard concentrations (y = 0.1864 x + 

0.2281, R2 = 0.09691).  

2.7. GSH Assay 

GSH assay was carried out by the colorimetric method described by Ellman (1959). GSH is 

oxidized by producing thionitro-benzoic acid (TNB), which absorbs at 412 nm, in the presence 

of 5,5'-dithiobis 2-nitrobenzoic acid (DTNB). Lichen thalli were homogenized in 50 mM 

phosphate buffer (pH 6.5) and centrifuged at 12000 g for 15 min at 4 °C. The absorbance at 412 

nm of a combination containing 100 µl of supernatant and 1200 µl of DTNB solution was 

measured. The results were represented in mmol.g-1 using an equation based on known GSH 

standard concentrations (y = 0.2012 x + 0.3852, R2 = 0.9573). 

2.8. Statistical Analysis 

Three repetitions were performed at each concentration, so that we could calculate the standard 

deviation (SD). The statistical study was performed using the ORIGIN 6.0 system using the test 

univariate variance (one way ANOVA). For this study, the results were expressed as mean ± 

SD. The difference was considered to be not significant when p > 0.05 (NS), significant when 

0.01 < p < 0.05 (*), very significant when 0.001 < p < 0.01 (**), and highly significant when p 

< 0.001 (***). 

Correlation matrices between NaF and different studied parameters were analyzed by 

STATISTICA Version 10 software. 

3. RESULTS 

3.1. Chlorophyll Contents Variations 

Variations in Ca, Cb, and Ca+b contents in X. parietina are shown in Figure 1 (a, b and c, 

respectively), whereas, Ca/b ratio variations are presented in Table 1.  
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Figure 1. Chlorophyll content variations in X. parietina after treatment of thalli by NaF solutions, (a): 

Ca, (b): Cb, (c): Ca+b  

   

   
Figure 1 (a) shows a significant decrease in Ca content as a function of different 

concentrations of NaF (p = 0.0052**) and as a function of exposure time (p = 0.0031**), 

variations in Ca levels are not significant between 48 h and 96 h of exposure time (p > 0.05). 

From the Figure 1 (b), it was noticed that all the concentrations of NaF exhibit the same 

effect on Cb content, where a very significant decrease was observed (p = 0.007**). According 

to the exposure time, a significant decrease in the content of Cb was also noted in the 24 h 

following the treatment (p = 0.0037**), between 48h and 96 h of treatment, Cb content variations 

were not significant (p = 0.755NS). 

Figure 1 (c) shows that the decrease in Ca+b content is significant as a function of exposure 

time (p = 0.0012**) as well as a function of NaF concentrations (p = 0.020*).  

The results presented in Figure 1 allowed us to deduce that the variations in chlorophyll 

contents (Ca, Cb, and Ca+b) in X. parietina under NaF stress are significant as a function of 

exposure time as well as a function of NaF concentrations. From the results presented in Table 

1, it was noted a significant increase of Ca/b ratio (p = 0.00572**). This increase explains well 

that Cb is the most affected by fluorine compared to Ca. 

Table 1. Chlorophyll a/b ratio variations in the lichen X. parietina after treatment of thalli by NaF 

solutions. 

 0 mM 0.5 mM 1 mM 5 mM 10 mM 

0 h 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 

24 h 0.82 ± 0.02 2.86 ± 0.02 2.5 ± 0.02 2.77 ± 0.1 3.51 ± 0.02 

48 h 0.9 ± 0.07 2.98 ± 0.08 2.84 ± 0.04 3.27 ± 0.02 3.03 ± 0.07 

96 h 1.18 ± 0.05 3.17 ± 0.02 3.52 ± 0.03 4.13 ± 0.03 3.65 ± 0.05 
The data in the table are represented as the mean ± SD. 
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3.2. Effect of Fluorine on Proteins, Catalase, H2O2, and GSH Contents  

Under fluorine stress, proteins contents decrease (Figure 2), whereas catalase, H2O2 and GSH 

contents increase (Figures 3, 4, and 5, respectively). 

Figure 2. Protein content variations in X. parietina after treatment of thalli by NaF solutions. 

 
 
Figure 2 shows that protein levels are affected by NaF, with a significant decrease at all 

concentrations (p = 0.0240*), and a significant decrease was also noted within 24 h of treatment 

(p = 0.0062**); however, between 24 h and 96 of exposure time, the decrease in protein contents 

was not significant (p > 0.05NS). 

Figure 3. Catalase activity variations in X. parietina after treatment of thalli by NaF solutions.  

 

According to Figure 3, it was found that the expression of the catalase increases with increasing 

concentration (p = 0.047*), and increasing exposure time of NaF (p = 0.045*). 

Figure 4. H2O2 content variations in X. parietina after treatment of thalli by NaF solutions. 
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According to the results presented in Figure 4, it was noticed that the variations of H2O2 

concentrations are not significant either according to the different concentrations of NaF (p = 

0.95NS), or after the 48 h which follow the treatment (p = 0.16NS), however, a significant 

increase was observed after 96 h of treatment (p = 0.017*). 

Figure 5. GSH content variations in X. parietina after treatment of thalli by NaF solutions. 

 

From the data presented in Figure 5, it was noted that the variations in GSH content in thalli 

treated with low concentrations of NaF (0.5 mM and 1 mM) are negligible. Whereas, the high 

concentrations (5 mM and 10 mM) caused a significant increase after 24 h and a non-significant 

increase after 48 h of treatment (p = 0.64NS). However, a significant decrease in the GSH content 

was noted between 48 h and 96 h of exposure time (p = 0.02*) with complete degradation after 

96 h of treatment.  

3.3. Correlation Analyzes 

Correlation matrices between NaF and different studied parameters are presented in Table 2. 

From the data presented in Table 2, the statistical analysis results show a significant negative 

correlation between Ca, Cb, Ca+b and exposure time of NaF and between proteins and increasing 

concentrations of NaF. A significant positive correlation was noted between Ca/b ratio and 

exposure time of NaF, catalase and exposure time to increasing concentrations of NaF, H2O2 
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NaF. 

Table 2. Correlation matrices between NaF and Ca, Cb, Ca+b, Ca/b, proteins, catalase, H2O2, and GSH 

contents in X. parietina 

Correlation matrices Correlation dependency r p Significance 

NaF / Ca Time (0 - 48 h) -0.785 < 0.001 *** 

NaF / Cb Time (0 - 24 h) -0.955 < 0.001 *** 

NaF / Ca+b Time (0 - 48 h) -0.899 < 0.001 *** 

NaF / Ca/b Time 0.818 < 0.001 *** 

NaF / proteins Concentration -0.872 < 0.001 *** 

NaF / catalase Time and concentration 0.784 < 0.001 *** 

NaF / H2O2 Time (48 -96 h) 0.949 < 0.001 *** 
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4. DISCUSSION   

Compared with the control test, and depending on the increase of concentration and exposure 

time to NaF, our results show a significant decrease in Ca, Cb, and Ca+b contents in X. parietina. 
Zhao et al. (2021) found the same thing, indicating that high cadmium concentrations affect 

photosynthesis in Sassafras seedlings. Wang et al. (2021) also found that the contents of Ca, 

Cb, and Ca+b, decrease in tall fescue under lead stress. Significant decrease of total chorophyll 

content was also observed in Lonicera japonica Thunb. in response to 150 mg kg⁻¹ or 200 mg 

kg⁻¹ of cadmium (Li et al., 2022). 

Photosynthesis and respiration are the processes most affected by fluoride (Sharma & Kaur, 

2018). According to the results of statistical analysis presented in Table 2, it was noted a 

significant decrease of Ca, Cb, and  Ca+b contents correlating with exposure time to NaF (r = -

0.785, p < 0.001; r = -0.955, p < 0.001 and r = -0.899, p < 0.001, respectively). Our results are 

in the same line with those obtained by Chakrabarti et al. (2014) who reported that chlorophyll 

decreased in paddy (Oryza sativa L.) with increasing fluoride treatment. Mondal (2017) also 

found pigment degradation in four widely cultivated rice (O. sativa) varieties treated to 5, 10, 

and 20 mg dm-3 NaF. An other study carried out by Iram and Khan (2016)  showed that Ca, Cb, 

and Ca+b decreased in Abelmoschus esculentus (L.) Moench under NaF stress. Fan et al. (2022) 

also found a significant decrease in chlorophyll content after high concentration of NaF 

treatment in tall fescue (Festuca arundinacea Schreb).  Our results show a significant increase 

of Ca/b ratio correlating with exposure time to NaF (r = 0.818, p < 0.001). These results allowed 

us to conclude that Cb is more affected than Ca in thalli treated by NaF and the same results 

were obtained by Purnama et al. (2015), who showed a significant decrease in Cb content in 

Seagrass under lead stress, even though they also found that Cb was more affected than Ca as a 

result of lead effect.  

Plants vary their protein composition for rebuilding, tolerance, resistance, and 

responsiveness to stressful situations (Amnan et al., 2022). Our results show a significant 

decrease in protein contents in X. parietina correlating with increasing concentrations of NaF 

(r = -0.872, p < 0.001). The same result was obtained by Chetia et al. (2021), who found a 

decrease in total protein contents to correlate with Pb, Cd, Zn, Cu, Co, Ni, and Cr in lichens 

growing in differently polluted areas. Khan et al. (2021) found a drop in total protein contents 

in cultivated rice grown in lead-contaminated soil. Sharma et al. (2019) also showed significant 

reduction (p ≤ 0.05) in protein content in Spirodela polyrhiza (L.) Schleiden under treatment 

with fluoride at all the exposure periods (24, 72, 120 and 168 h). According to Szostek and 

Ciecko (2017), the decrease in total protein content caused by fluoride can be explained by 

channeling degraded products towards metabolic pathways for energy and stress management. 
On the other hand, Souahi et al. (2021) found an increase in total protein contents in Triticum 

durum Desf. leaves and roots after treatment with 0.3 and 0.6 g/l lead acetate. 

Plants increase the activities of antioxidant enzymes like catalase to trap ROS and detoxify 

their effects (Lei et al., 2022). Ours results show that the expression of catalase in X. parietina 

increases correlating with increasing concentrations of NaF (r = 0.784, p < 0.001). Mondal 

(2017) reported similar results, demonstrating that catalase activity increased with increasing 

fluorine concentrations in four widely cultivated rice (O. sativa). Elloumi et al. (2017) also 

showed that increased catalase activity is one of the indices of oxidative stress induced by 

fluoride air pollution in Eriobotrya japonica. AL-Zurfi et al. (2021) found the same results, 

indicating that Hydrilla verticillata responds to cadmium stress by steadily increasing the 

catalase enzyme concentration. Our results are likewise consistent with those of Abu-Muriefah 

(2015) and Khan et al. (2021), who found that catalase levels increase significantly in plants 

exposed to lead. Sharma and Kaur (2019) also found a significant increase of catalase activity 

in Spirodela polyrhiza under fluoride stress at high concentration compared to control at a very 
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first exposure period of 24 h. In addition, Sharma et al. (2019) showed that  fluoride treatment 

significantly increased catalase activity in exposed S. polyrhiza fronds when compared to 

control during all exposure periods (24, 72, 120 and 168 h). Ghosh et al. (2021) also found that 

during the ripening of chili fruits, treatment with chitosan and putrescine modulates reactive 

oxygen species metabolism, and causes an increase in catalase activity. However Chakrabarti 

et al. (2014) found that catalase activity decreased with increasing fluoride treatment. 

Furthermore, Orabi et al. (2015) indicate that the excess of H2O2 caused a decrease in the 

activity of catalase.  

Plants create H2O2 as one of the ROS in response to abiotic stress (Zhang, 2022). According 

to Sofo et al. (2015), H2O2 generation is regarded as a stress marker. H2O2 is also necessary for 

plants to tolerate harsh situations (Černý et al., 2018). According to Hung et al. (2005), plants 

have developed complex regulatory mechanisms to adapt to various environmental stresses, the 

most important of which is to convert the  ROS formed into hydrogen peroxide (H2O2). The 

statistical analysis results presented in Table 2 show that H2O2 increases correlating with 

increasing exposure time to NaF (r = 0.949, p < 0.001). These results are comparable with those 

of Panda (2007), who investigated the effect of chromium on rice and discovered that this 

pollutant produces H2O2, which is proportional to exposure time and pollutant concentration. 

Furthermore, those obtained by Liu et al. (2010), who found that contents of H2O2 decrease in 

tomato seedlings when the concentration of Mn2+ reached 400-600 μmolL-1 under hypoxia 

stress. Our results are also similarly consistent with those of Liu et al. (2021), who found that 

lead induces the increase of H2O2 in edible amaranth under simultaneous stresses of lead from 

soils and atmosphere, and with those of Li et al. (2022) who found higher levels of H2O2 in 

response to high concentration of cadmium (150 mg kg⁻¹ or 200 mg kg⁻¹ Cd). According to Liu 

et al. (2020), trealose treatment of tomato under cold stress causes elevated H2O2 levels as a 

way of tolerance. Our results show that the accumulation of H2O2 is accompanied with the 

decrease in protein content, the same results were obtained by James et al. (2022) who showed 

a negative correlation between H2O2 and proteins in bleuet Northland under hypobaric storage. 

GSH increases in plants under stressful conditions (Nahar et al., 2017) and it is part of the 

adaptation strategies used by plants to combat and tolerate stressful conditions (Gong et al., 

2018). The results obtained show that the GSH content increases correlating with increasing 

concentrations of NaF (r = 0.969, p < 0.001) and the same result was obtained by Li et al. 

(2022) who showed that in response to 150 mg kg⁻¹ or 200 mg kg⁻¹ of Cd, the antioxidants GSH 

increased in Lonicera japonica with increasing concentration of Cd, and by Pristupa et al. 

(2021) who found a decrease in GSH content in transgenic plants Nicotiana tabacum L. under 

abiotic stress conditions.  

Correlating with exposure time to NaF, our results show a decrease in GSH content between 

48 h and 96 h of treatment (r = -0.6, p = 0.06). According to Cempírková and Večeřová (2018), 

the long-term stress exposure of the individual species of green algal and cyanobacterial lichen 

had a significant impact on the antioxidant content resulting from high light stress. Our results 

are similar with those of Balarinová et al. (2014), who discovered that during the first 30-40 

min of high light treatment, total GSH increased in two Antarctic lichens (Usnea antarctica and 

Usnea aurantiaco-atra), followed by a reduction at 60 min of treatment, and with those of Li 

et al. (2015) who found that increased heavy metal concentrations resulted in a considerable 

reduction in GSH content in both safflower roots and leaves. 

According to our results, the buildup of H2O2 is associated with a decrease in GSH content; 

these results are in the same line with those of James et al. (2022), who found that hydrogen 

peroxide was negatively correlated with GSH in bleuet Northland under hypobaric storage. 

Arianmehr et al. (2022) also investigated the role of GSH in reducing arsenic (As) toxicity in 

Isatis cappadocica DESV. and Erysimum allionii exposed to different concentrations (0, 400, 
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and 800 M) of arsenic for 3 weeks, and discovered that application of GSH increased fresh 

weight and total chlorophyll while inhibiting H2O2 accumulation. 

5. CONCLUSION 

The results of the present study revealed that NaF stress caused a decrease in chlorophyll and 

protein contents, and an increase of H2O2, catalase, and GSH levels in X. parietina correlating 

with increasing exposure time and/or increasing concentrations of NaF. Furthermore, the 

obtained results show that Cb is more affected than Ca, and that high concentration of fluorine 

disturbed the detoxification system, resulting in total glutathione decomposition. 
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